
CSE548, AMS542: Analysis of Algorithms, Spring 2019 Date: May 4

Homework #4
( Due: May 12 )

Task 1. [ 110 Points ] The Truck that Couldn’t.

This task will help a long-haul truck that once got stuck under an overpass. Now when going from
one location to another the truck wants to know which roads to take so that it never again gets
stuck under something somewhere along the route.

Figure 1: “The Truck that Couldn’t” deliver the overpass because it was too heavy.

An entire road network will be given to you as a directed graph G = (V,E), where V = {v1, v2, . . . , vn}
are locations, and each directed edge (vi, vj) is a direct road (a local road or a highway) going from
location vi to location vj , where i 6= j and 1 ≤ i, j ≤ n. Each (vi, vj) is also labeled by a real-valued
positive height h(vi, vj) which gives the maximum height of a truck that can pass through that
road (e.g., determined by the heights of overpasses and other hanging objects on the road). If
(vi, vj) /∈ E, h(vi, vj) is assumed to have a value 0. The height value of a path is defined as the
minimum of the h values of the edges in the path. For each pair vi, vj ∈ V , π[i, j] is defined to be
the largest of the height values of all paths going from vi to vj .

Figure 2 shows an iterative algorithm Loop-Max-Height for computing the π[i, j] value for every
pair of vertices vi, vj ∈ V . The input is an n × n matrix Π[1 . . . n, 1 . . . n] in which for every pair
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i, j ∈ [1, n], Π[i, j] is initialized with h(vi, vj). After the algorithm terminates Π[i, j] = π[i, j] for all
i, j ∈ [1, n].

In this task we will consider a number of recursive divide-and-conquer implementations of Loop-
Max-Height which are shown in Figures 3, 5 and 6. For simplicity we will assume n to be a
power of 2. Each of these implementations is launched by calling A(X,X,X), where X points
to Π[1 . . . n, 1 . . . n] initialized with edge lengths of G as described in the previous paragraph.
In general, for each F ∈ {A,B, C}, function A / Aloop accepts X ≡ Π[i1 . . . i2, j1 . . . j2], U ≡
Π[i1 . . . i2, k1 . . . k2] and V ≡ Π[k1 . . . k2, j1 . . . j2] as inputs, where i1, i2, j1, j2, k1, k2 ∈ [1, n] with
i2 − i1 = j2 − j1 = k2 − k1 ≥ 0. Each update Π[i, j] ← max (Π[i, j],min (Π[i, k],Π[k, j])) applied
by F(X,U, V ) / Floop(X,U, V ) updates Π[i, j] ∈ X using Π[i, k] ∈ U and Π[k, j] ∈ V , where
i1 ≤ i ≤ i2, j1 ≤ j ≤ j2 and k1 ≤ k ≤ k2. In order to reduce the overhead of recursion each
recursive function F(X,U, V ) switches to an iterative function Floop(X,U, V ) as shown in Figure 4
when the problem size becomes small but still requires enough work to solve it so that the overhead
of recursively reaching that problem size does not dominate the cost of solving the problem.

We want to avoid all data races in all subtasks below unless mentioned otherwise.

Loop-Max-Height(Π, n)

1. for k ← 1 to n do

2. for i← 1 to n do

3. for j ← 1 to n do

4. Π[i, j]← max (Π[i, j],min (Π[i, k],Π[k, j]))

Figure 2: [Iterative Algorithm] Looping code for computing π[i, j] values.

A(X,U, V ) {possibly X ≡ U ≡ V }

1. if X is an m×m matrix then Aloop(X,U, V )

else

2. A(X11, U11, V11)

3. parallel: A(X12, U11, V12), A(X21, U21, V11)

4. A(X22, U21, V12)

5. A(X22, U22, V22)

6. parallel: A(X21, U22, V21), A(X12, U12, V22)

7. A(X11, U12, V21)

Figure 3: [Recursive Implementation 1] The initial call is A(X,X,X), where X points to

Π[1 . . . n, 1 . . . n] and n is assumed to be a power of 2. By X11, X12, X21 and X22 we denote the top-

left, top-right, bottom-left and bottom-right quadrant of X, respectively.

(a) [ 10 Points ] Figure 2 shows a serial iterative algorithm Loop-Max-Height for computing
the π[i, j] value for every pair of vertices vi, vj ∈ V . Can you parallelize this algorithm by
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Floop(X,U, V ) {F ∈ {A,B, C}}

1. let i1, i2, j1, j2, k1, k2 ∈ [1, n] with i2 − i1 = j2 − j1 = k2 − k1 ≥ 0 be indices such that

X ≡ Π[i1 . . . i2, j1 . . . j2], U ≡ Π[i1 . . . i2, k1 . . . k2] and V ≡ Π[k1 . . . k2, j1 . . . j2].

2. for k ← k1 to k2 do

3. for i← i1 to i2 do

4. for j ← j1 to j2 do

5. Π[i, j]← max (Π[i, j],min (Π[i, k],Π[k, j]))

Figure 4: Looping base case for the recursive implementation of Loop-Max-Height.

only replacing the serial for loops with parallel for loops? Why or why not? If you are able
to parallelize, compute the work, span and parallelism of your parallel algorithm.

(b) [ 10 Points ] If data races are allowed which serial for loops of Loop-Max-Height in
Figure 2 can be replaced with parallel for loops without compromising the correctness of the
algorithm? Justify your answer. If you are able to parallelize, compute the work, span and
parallelism of your parallel algorithm.

(c) [ 40 Points ] Assuming m to be a (small) constant1 independent of n, compute the work,
span and parallelism of each of the three recursive divide-and-conquer implementations of
Loop-Max-Height given in Figures 3, 5 and 6.

(d) [ 20 Points ] Observe that Aloop, Bloop, Cloop, and Dloop must implement the same triply
nested for loop as shown in Figure 4. Parallelize each of them using only parallel for loops.
Compute the work, span and parallelism of each of those four functions.

(e) [ 15 Points ] Consider the recursive implementation from Figure 6. Can you improve
its parallelism even further by using extra space for storing intermediate values the way
we did for recursive matrix multiplication? Show your analysis. How about the recursive
implementations in Figures 3 and 5.

(f) [ 15 Points ] Can you improve the parallelism of your parallel algorithm for Dloop from part
1(d) using extra space? Replace the serial for loop(s) you could not parallelize in part 1(d)
with (possibly recursive) parallel code that uses extra space but do not change your parallel
for loop(s). Analyze the work, span, parallelism and space usage of your improved parallel
algorithm.

1for this subtask you may even assume m = 1 if you like

3



A(X,U, V ) {possibly X ≡ U ≡ V }

1. if X is an m×m matrix then Aloop(X,U, V )

else

2. A(X11, U11, V11)

3. parallel: B(X12, U11, V12), C(X21, U21, V11)

4. A(X22, U21, V12)

5. A(X22, U22, V22)

6. parallel: B(X21, U22, V21), C(X12, U12, V22)

7. A(X11, U12, V21)

B(X,U, V ) {X and U are dsjoint, but possibly X ≡ V }

1. if X is an m×m matrix then Bloop(X,U, V )

else

2. parallel: B(X11, U11, V11), B(X12, U11, V12)

3. parallel: B(X21, U21, V11), B(X22, U21, V12)

4. parallel: B(X21, U22, V21), B(X22, U22, V22)

5. parallel: B(X11, U12, V21), B(X12, U12, V22)

C(X,U, V ) {X and V are dsjoint, but possibly X ≡ U}

1. if X is an m×m matrix then Cloop(X,U, V )

else

2. parallel: C(X11, U11, V11), C(X21, U21, V11)

3. parallel: C(X12, U11, V12), C(X22, U21, V12)

4. parallel: C(X12, U12, V22), C(X22, U22, V22)

5. parallel: C(X11, U12, V21), C(X21, U22, V12)

Figure 5: [Recursive Implementation 2] The initial call is A(X,X,X), where X points to

Π[1 . . . n, 1 . . . n] and n is assumed to be a power of 2. By X11, X12, X21 and X22 we denote the top-

left, top-right, bottom-left and bottom-right quadrant of X, respectively.
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A(X,U, V ) {X ≡ U ≡ V }

1. if X is an m×m matrix then Aloop(X,U, V )

else

2. A(X11, U11, V11)

3. parallel: B(X12, U11, V12), C(X21, U21, V11)

4. D(X22, U21, V12)

5. A(X22, U22, V22)

6. parallel: B(X21, U22, V21), C(X12, U12, V22)

7. D(X11, U12, V21)

B(X,U, V ) {X and U are dsjoint, but X ≡ V }

1. if X is an m×m matrix then Bloop(X,U, V )

else

2. parallel: B(X11, U11, V11), B(X12, U11, V12)

3. parallel: D(X21, U21, V11), D(X22, U21, V12)

4. parallel: B(X21, U22, V21), B(X22, U22, V22)

5. parallel: D(X11, U12, V21), D(X12, U12, V22)

C(X,U, V ) {X and V are dsjoint, but X ≡ U}

1. if X is an m×m matrix then Cloop(X,U, V )

else

2. parallel: C(X11, U11, V11), C(X21, U21, V11)

3. parallel: D(X12, U11, V12), D(X22, U21, V12)

4. parallel: C(X12, U12, V22), C(X22, U22, V22)

5. parallel: D(X11, U12, V21), D(X21, U22, V12)

D(X,U, V ) {X, U and V are dsjoint}

1. if X is an m×m matrix then Dloop(X,U, V )

else

2. parallel: D(X11, U11, V11), D(X12, U11, V12), D(X21, U21, V11), D(X22, U21, V12)

3. parallel: D(X11, U12, V21), D(X12, U12, V22), D(X21, U22, V21), D(X22, U22, V22)

Figure 6: [Recursive Implementation 3] The initial call is A(X,X,X), where X points to

Π[1 . . . n, 1 . . . n] and n is assumed to be a power of 2. By X11, X12, X21 and X22 we denote the top-

left, top-right, bottom-left and bottom-right quadrant of X, respectively.
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Task 2. [ 70 Points ] Devices and Switches.

Consider m devices that need to be activated using n switches.

Each switch controls two activation points (AP) – one red and one green. If your turn a switch to
point to its red AP it will activate all devices connected to that AP, otherwise it will activate all
devices connected to its green AP. There is no restriction on how many (including zero) devices
can be connected to an AP.

Each device is connected to either exactly one AP or exactly k different APs for some given integer
k > 1. If a device is connected to exactly one AP it must be connected to a red AP. A device gets
activated if at least one of the APs it is connected to becomes active, otherwise the device remains
inactive.

Figure 7 shows an example.

Figure 7: Three devices are connected to four switches but only two devices are active under the
switch setting shown. If we turn the bottom switch to red then all three devices will be active.

Given m devices connected to the APs of n switches, we will analyze a very simple randomized
approximation algorithm for finding a switch setting to activate a number of devices that is within
a constant factor of the optimal. The algorithm is as follows: on every switch flip a biased coin
that turns up heads with some probability p > 1

2 , and turn the switch to red if the coin turns up
heads otherwise turn it to green.
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(a) [ 20 Points ] Prove that for k = 2 the algorithm above gives an expected min (p, 1− p2)-
approximation of the optimal.

(b) [ 10 Points ] How do you turn the given algorithm to an expected
√

5−1
2 -approximation

algorithm for k = 2?

(c) [ 10 Points ] Show that the algorithm from part 2(b) returns a 3
5 or even better approximation

of the optimal w.h.p. in m.

(d) [ 30 Points ] Repeat parts 2(a)–2(c) for k = 3. What approximation bounds do you get?
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