
CSE548, AMS542: Analysis of Algorithms, Spring 2019 Date: Apr 10

Homework #2
( Due: Apr 20 )

Task 1. [ 70 Points ] Yet Another Quicksort Variant1

Consider the quicksort variant given in Figure 1.

Quicksort( A[1 : n], n )

Input: An array A[1 : n] of n distinct numbers.

Output: A[1 : n] with its numbers sorted in increasing order of value.

1. if n < 2 then return

2. else

3. x← A[1]

4. rearrange the numbers of A[1 : n] such that

• A[k] = x for some k ∈ [1, n],

• A[i] < x for each i ∈ [1, k − 1],

• A[i] > x for each i ∈ [k + 1, n],

• A[1] < A[i] for each i ∈ [2, n],

• A[n] > A[i] for each i ∈ [1, n− 1],

5. Quicksort( A[2 : k − 1], k − 2 )

6. Quicksort( A[k + 1 : n− 1], n− k − 1 )

7. return

Figure 1: [Task 1] A variant of standard quicksort algorithm that excludes the smallest and the
largest numbers (in addition to the pivot) in the input array from recursive calls.

Given an input of size n, in this task we will analyze the average number of element comparisons
(i.e., comparisons between two numbers of the input array) performed by this algorithm over all
n! possible permutations of the input numbers. We will assume that the partitioning algorithm
is stable, i.e., if two numbers p and q end up in the same partition and p appears before q in the
input, then p must also appear before q in the resulting partition.

(a) [ 5 Points ] Show how to implement step 4 of Figure 1 to get a stable partitioning of the
numbers in A[1 : n] using only 2

(
n+ 1

n − 2
)

element comparisons on average, where the
average is taken over all n! possible permutations of the input numbers.

(b) [ 10 Points ] Let tn be the average number of element comparisons performed by the
algorithm given in Figure 1 to sort A[1 : n], where n ≥ 0 and the average is taken over

1Taras Kolomatski helped in setting this problem.

1



all n! possible permutations of the numbers in A. Show that

tn =


0 if n < 2,
1 if n = 2,

2
(
n+ 1

n − 2
)

+ 2
n

∑n−2
k=0 tk otherwise.

(c) [ 15 Points] Let T (z) be a generating function for tn:

T (z) = t0 + t1z + t2z
2 + . . .+ tnz

n + . . . . . .

Show that T ′(z) = 2z
1−z T (z) + 2z(1+z)

(1−z)3 .

(d) [ 20 Points] Solve the differential equation from part (c) to show that

T (z) = F (z)G(z),

where, F (z) =
∑∞

k=0

(∑k
j=0

(−2)k−j(j+1)
(k−j)!

)
zk, and G(z) =

∑∞
k=2

2
k

(
2k−2

(k−2)! + 2
∑k−3

j=0
2j

j!

)
zk.

(e) [ 15 Points] Use your solution from part (d) to show that for n ≥ 0,

tn =
n−2∑
k=0

(
2

n− k

) k∑
j=0

(−2)k−j(j + 1)

(k − j)!

 2n−k−2

(n− k − 2)!
+

n−k−3∑
j=0

2j+1

j!

.
Compute the numerical value of tn for 0 ≤ n ≤ 10.

(f) [ 5 Points] Use your solution from part (e) to show that tn = Θ (n log n).

Task 2. [ 50 Points ] Tiling an n× 3 Grid

Given an n × 3 grid G[n] for some integer n ≥ 0, your task is to write a program that counts the
number of different ways one can entirely cover the grid using only the four tile types (a, b, c, d)
shown in the top row of Figure 2 but always avoiding the forbidden pattern shown in the middle
row. You are not allowed to rotate or flip the tiles. Also tiles covering G must not overlap.

Now answer the following questions.

(a) [ 10 Points ] Give a recursive algorithm for printing each of the different ways one can cover
G[n]. Assuming that printing each tiling requires Θ (n) time, make sure and prove that your
algorithm’s running time, T (n) = Θ (n× cn), where cn is the number of different ways one
can tile G[n].

(b) [ 5 Points ] We need to know cn to predict T (n). Argue that cn can be described using the
following recurrence.

cn =


1 if n < 2,
2 if n = 2,
5 if n = 3,
cn−1 + cn−2 + 2cn−3 otherwise.
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Figure 2: [Task 2] Given an n × 3 grid G[n] in how many ways can one entirely cover the grid
(without any overlaps) using only the four tile types (a, b, c, d) shown in the top row but always
avoiding the pattern shown in the middle row? The bottom row shows two different ways of covering
a G[8].

(c) [ 20 Points ] Use a generating function to show that

cn =
1

21

(
3× 2n+2 −

(√
−3

2
− 9

2

)(
−1

2
+

√
−3

2

)n

−
(
−
√
−3

2
− 9

2

)(
−1

2
−
√
−3

2

)n)
.

(d) [ 10 Points ] Simplify the expression for cn from part (c) to show that

cn =
1

21

(
3× 2n+2 −

√
3× sin

(
4nπ

3

)
+ 9× cos

(
4nπ

3

))
.

(e) [ 5 Points ] Simplify the expression for cn from part (d) even further to show that

7cn =


2n+2 + 3 if n mod 3 = 0,
2n+2 − 1 if n mod 3 = 1,
2n+2 − 2 if n mod 3 = 2.
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Task 3. [ 60 Points ] A Priority Queue with Decrease-Keys

Consider the following heap data structure H that supports Insert, Minimum, Extract-Min,
Decrease-Key, and Union operations.

Heap H is a collection of trees stored in two separate doubly linked lists H.Dnew and H.Dold. The
linked list H.Dnew stores only singleton trees each containing a node newly inserted into H which
is waiting for further processing. The other linked list H.Dold stores all other trees, e.g., subtrees
cut during Decrease-Key operations and trees generated by Union operations.

A pointer, called a min pointer, is maintained that always points to the root of a tree with the
smallest key in H.Dnew ∪H.Dold.

Similar to the heap data structures we saw in the class, Link( x, y ) links two trees rooted at nodes
x and y to form a single tree by making the node with the larger key the leftmost child of the node
with the smaller key (ties are broken arbitrarily). However, unlike in those data structures x and
y do not need to have the same rank.

By n we will denote the total number of items (i.e., nodes) currently in H.

While H.Dnew has no restriction on how many trees it can store, H.Dold is restricted to store fewer
than dlog ne trees.

The following procedure links all trees in H.Dnew ∪H.Dold to form a single tree.

Consolidate( H ). Extract and put every tree from H.Dnew into an initially empty FIFO queue
Q. Set H.Dnew ← ∅. Then perform the following steps until the number of trees in Q reduces to
one: dequeue two trees from Q, link them, and enqueue the new tree into Q. Let Tnew be the final
tree in Q. Now extract all trees from H.Dold, sort them in non-decreasing order of the keys stored
at their roots, and push them in that order into an initially empty stack S. Set H.Dold ← ∅. Now
perform the following steps until the number of trees in S reduces to one: pop two trees from S,
link them, and push the new tree into S. Let Told be the final tree in S. Now link Tnew and Told to
form a new tree T . Put T into H.Dold.

The various heap operations are performed as follows.

Insert( H, x ). Create a singleton tree containing only node x and insert that tree into H.Dnew.
Update the min pointer.

Minimum( H ). Return the key stored at the root of the tree pointed to by the min pointer.

Extract-Min( H ). First remove the root of the tree pointed to by the min pointer. Let that
root be x and let r be the number of children of x. Let S be an empty stack. Now scan the children
of x from left to right, and let y1, y2, y3, . . . , yr be those children in that order. Now if r > 1 then
for each i from 1 to

⌊
r
2

⌋
link y2i−1 and y2i and push the resulting tree into S. If r is odd then push

yr into S at the end. Now perform the following steps until the number of trees in S reduces to
one: pop the top two trees from S, link them, and push the new tree into S. Let T be the final
tree in S. Insert T into H.Dold. Then call Consolidate( H ). Return the key stored at node x.

Decrease-Key( H, x, k ). Decrease the key of x to k. If x is not a root then (i) cut x’s subtree
from its parent y, (ii) cut the subtree rooted at x’s leftmost child z from x, (iii) let z’s subtree
take x’s subtree’s position as a child of y, and (iv) put rest of x’s subtree (i.e., without the subtree
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rooted at z) as a separate tree inH.Dold. Now if H.Dold holds dlog ne trees, call Consolidate( H ).
Update the min pointer as necessary.

Union( H1, H2 ). Suppose H1 contains no more keys than H2 (if not, swap the roles of H1 and
H2). Call Consolidate( H1 ) to link all trees of H1 into a single tree T1. Add T1 to H2.Dold and
destroy H1. If now H2.Dold holds dlog ne trees, call Consolidate( H2 ). Update the min pointer
as necessary.

Clearly, the worst-case cost of Minimum( H ) is O (1). We will analyze the amortized costs of all
other operations above. We will use the following credit assignments, where c, cnew and cold are
positive constants.

(i) We store cnew credits at the root of each tree in H.Dnew.

(ii) We store cold log logn credits at the root of each tree in H.Dold.

(iii) When we link two subtrees rooted at nodes x and y making y the leftmost child of x, we store
log (nx + ny) − log ny credits with the link (i.e., edge) connecting x and y, where nx and ny
are the number of nodes in the subtrees rooted at nodes x and y, respectively, at the time
they were linked.

(iv) We store c log n credits with H itself.

Observe that the credits under items (ii) and (iv) above depend on n which is the number of nodes
currently in H, but those under items (i) and (iii) do not.

Now answer the following questions.

(a) [ 10 Points ] Show that Consolidate( H ) is free provided the number of trees in H.Dold

is Ω
(

logn
log logn

)
at the time of consolidation, otherwise its amortized cost is O (log n).

(b) [ 5 Points ] Observe that the credit stored at the root of each tree in H.Dold depends on n
which is the number of nodes currently in H. That means even if you do not change anything
in H.Dold but the number of nodes in H increases from n to some n′ > n, the credit stored at
each root of H.Dold must also change from cold log logn to cold log log n′. Prove that for any
n′ ∈ (n, 2n], you can make this change for all tree roots in H.Dold adding only a total of O (1)
credits, i.e., r · cold · (log log n′ − log log n) = O (1), where r is the number of trees in H.Dold.

(c) [ 7 Points ] Show that the amortized cost of Insert( H, x ) is O (1). Remember that you
will have to account for the credit changes elsewhere in the data structure that depend on n.

(d) [ 15 Points ] Show that the amortized cost of Extract-Min( H ) is O (log n).

(e) [ 15 Points ] Show that the amortized cost of Decrease-Key( H, x, k ) is O (log log n).

(f) [ 8 Points ] Show that the amortized cost of Union( H1, H2 ) is O (log log n), where n is
the total number of nodes in the combined heap.
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