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GPU vs CPU: FLOP/s
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GPU vs CPU: Memory Bandwidth
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CPU’s are designed for general purpose computations requiring 

sophisticated control flow and caching mechanisms. 

GPU’s are designed for special purpose computations with massive 

data-parallelism and high arithmetic intensity. 

― Since the same program is executed for each data element there is 

a lower requirement of sophisticated flow control

― Because of high arithmetic intensity, the memory access latency 

can be hidden with calculations instead of big caches

So GPU’s can devote more transistors to data processing rather than 

data caching and flow control. 

GPU vs CPU: Design Philosophy



Architecture of a Modern GPU

Source: NVIDIA



CUDA ( Compute Unified Device Architecture )
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A general purpose parallel computing architecture with

― a new parallel programming model, and 

― instruction set architecture

that leverages the parallel compute engine in NVIDIA GPUs to 

solve data-parallel computations more efficiently than CPUs.



CUDA: a Scalable Programming Model

Three Key abstractions exposed as a minimal set of language 

extensions

― A hierarchy of thread groups

― Shared memories

― Barrier synchronization

The programmer partitions 

― the problem into coarse sub-

problems that can be solved 

independently in parallel by 

blocks of threads

― each sub-problem into finer 

pieces that can be solved 

cooperatively in parallel by all 

threads within the block

The thread blocks can be 

executed in any order ― 

concurrently or sequen-ally ― 

leading to automatic scalability.
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Differences between CPU and CUDA Threads

― CUDA threads are extremely lightweight compared to CPU 

threads 

― Only a few cycles to create

― Instant switching

― CUDA runs thousands of threads while CPU’s run only a few



CUDA Extensions to C Functional Declarations

Executed on the: Only callable from the:

__device__ float DeviceFunc( ) device device

__global__ void KernelFunc( ) device host

__host__ float HostFunc( ) host host



Kernel Functions
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― Called from host ( CPU )

― Executed on device ( GPU )

― Only one kernel runs at a time ( for compute capability < 2.0 )

― All running threads execute the same kernel ( except above )

― All kernel launches are asynchronous ( control returns to the 

CPU immediately )

Execution Configuration



Kernel Functions ( Restrictions )

― Must return void

― Variable number of arguments ( i.e., varargs ) not allowed

― No static variables

― No access to host memory

― Must be non-recursive
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Thread Hierarchy: Thread Index

Threads can be identified using a 1, 2 or 3 dimensional thread index

forming  a 1, 2 or 3 dimensional thread block.

Source: NVIDIA



Thread Hierarchy: Block Index

Blocks can be identified using a 1, 2 or 3 dimensional block index

forming  a 1, 2 or 3 dimensional grid.

Source: NVIDIA



Thread Hierarchy: Grids, Blocks and Threads
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All __device__ and __global__ 

functions have access to the 

following built-in device 

variables

― dim3 gridDim: dimenions of 

the grid in blocks

― dim3 blockDim: dimenions of 

a block in threads

― dim3 blockIdx: block index 

within the grid

― dim3 threadIdx: thread index 

within a block



CUDA Memory Model

Host

Source: NVIDIA

Registers

― Very large number of registers per 

processor ( thread )

― Instant access

Local Memory

― A portion of global memory that is 

private to a processor ( thread )

― Used for register spills

― Slow ( same as global memory )

Shared Memory

― A small ( e.g., 16 KB ) 

block of memory 

shared by all processors

( threads ) in a multi

-processor ( block )

― Divided into Several memory banks

― As fast as registers w/o bank conflicts



CUDA Memory Model

Host

Source: NVIDIA

Global Memory

― A large block ( in GB ) of memory 

shared by all multiprocessors  on a 

GPU

― High bandwidth ( � 100 GB/s )

― Slow ( several 100 clock cycles 

when not cached )

Constant Memory

― Small ( e.g., 64 KB ) read-only 

memory shared by all multi-

processors

― Cached ( per multi

-processor )

― Slow ( several 100 clock 

cycles on cache miss )

Texture Memory

― Similar to constant memory

― Reads can be samplings ( e.g., nearest point of interpolation )



CUDA Memory Model

cudaMalloc( ): allocates object in 

the devices global memory.

cudaFree( ): frees objects from 

device global memory.

cudaMemcpy( ): memory data 

transfer:

― host to host

― host to device

― device to host

― device to device Host

Source: NVIDIA



Synchronization

For the following tasks control is returned to the host before the 

device completes the task

― Kernel launches

― Memory copies between two addresses on the same device

― Memory copies of size 64KB or less from host to device

― Memory copies by functions suffixed with Async

― Memory set function calls

However, kernel launches and cudaMemcpy can start only after all 

previous CUDA calls have completed. 

cudaDeviceSynchronize( ): blocks until the device has completed all 

previously requested tasks

__syncthreads( ): synchronize all threads in a block



Example: CUDA Memory Functions
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CUDA Variable Type Qualifiers

Memory Scope Lifetime

automatic variables other 

than arrays
register thread kernel

automatic array variables local thread kernel

__device__ global grid application

__shared__ shared block kernel

__constant__ constant grid application



Matrix Multiplication w/o Shared Memory
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Matrix Multiplication with Shared Memory

Source: NVIDIA



Matrix Multiplication with Shared Memory

Source: NVIDIA



Matrix Multiplication with Shared Memory

Source: NVIDIA



Some Optimization Tips

― Increase data parallelism

― Keep resource usage ( e.g., registers, shared memory ) low 

enough to allow multiple warps per multiprocessor

― Increase arithmetic intensity

― Recompute on device to avoid costly host to device data 

transfers

― Use the fast shared memory more than the slow global memory

― Increase coalesced accesses to global memory

― Avoid bank conflicts in shared memory

― Improve spatial locality for cached memory

― One large data transfer is much faster than many small transfers


