CSE 590: Special Topics Course
( Supercomputing )

Department of Computer Science
Stony Brook University
Spring 2016

“To put it quite bluntly: as long as there were no machines, programming
was no problem at all; when we had a few weak computers, programming
became a mild problem, and now we have gigantic computers, programming
has become an equally gigantic problem.”

— Edsger Dijkstra, The Humble Programmer, CACM



Course Information

Lecture Time: MoWe 4:00 pm - 5:20 pm
Location: Earth & Space 079, West Campus

Instructor: Rezaul A. Chowdhury
Office Hours: MoWe 2:00 pm - 3:30 pm, 239 New CS Building
Email: rezaul@cs.stonybrook.edu

TA: TBA
TA Office Hours: TBA
TA Email: TBA

Class Webpage:
http://www.cs.sunysb.edu/~rezaul/CSE590-S16.html



Prerequisites

Required: Background in algorithms analysis
(e.g., CSE 373 or CSE 548 )

Required: Background in programming languages ( C / C++ )

Helpful but Not Required: Background in computer architecture

Please Note: This is not a course on
— Programming languages
— Computer architecture

Main Emphasis: Parallel algorithms ( for supercomputing )



Course Organization

— First Part: 11 Lectures ( tentative )
— Introduction ( 2)
— Shared-memory parallelism & Cilk ( 2 )
— Distributed-memory parallelism & MPI ( 2 )
— GPGPU computation & CUDA ( 2)
— MapReduce & Hadoop (2)
— Cloud computing (1)

— Second Part:
— Paper presentations
— Group projects



Grading Policy

Programming assignments ( best 3 of 4 ): 15%
Paper presentation ( one ): 25%
Report on a paper presented by another student ( one ): 10%

Group project ( one ): 40%
— Proposal ( in-class ): Feb 29
— Progress report ( in-class ): April 11
— Final presentation (in-class ): May 4 -6

Class participation & attendance: 10%



Programming Environment

This course is supported by an educational grant from

— Extreme Science and Engineering Discovery Environment
( XSEDE ): https://www.xsede.org

We will use XSEDE for homeworks/projects involving
— Shared-memory parallelism
— Distributed-memory parallelism

— GPGPU and Intel MIC



Programming Environment

On XSEDE we have access to
— Stampede: 6,400 nodes with 16 cores/node & Intel MIC / NVIDIA GPU
— Comet: = 2,000 compute nodes with 24 cores/node

— SuperMIC: 360 nodes with 20 cores/node & Intel MIC / NVIDIA GPU

World’s Most Powerful Supercomputers in November, 2012
( www.top500.0rg )

RMAX RPEAK POWER
RANK SITE SYSTEM CORES  (TFLOP/S)  (TFLOP/S) (KW
1 DOE/SC/0ak Ridge National Titan - Cray XK7, Opteron 6274 16C 560,640 17,590.0 27,112.5 8,209
Laboratory 2.200GHz, Cray Gemini interconnect,
United States NVIDIA K20x
Cray Inc.
2 DOE/NNSA/LLNL Sequoia - BlueGene/Q, Power BQC 16C 1,572,864 16,324.8 7,890
United States 1.60 GHz, Custom
IBM
3 RIKEN Advanced Institute for K computer, SPARC64 VllIfx 2.0GHz, Tofu 705,024 10,510.0 12,660
Computational Science (AICS) interconnect
Japan Fujitsu
A DOE/SC/Argonne National Mira - BlueGene/Q, Power BQC 16C 786,432 8,162.4 3,945
Laboratory 1.60GHz, Custom
United States IBM
5 Forschungszentrum Juelich (FZJ) JUQUEEN - BlueGene/Q, Power BQC 16C 393,216 4,141.2 1,970
Germany 1.600GHz, Custom Interconnect
IBM
) Leibniz Rechenzentrum SuperMUC - iDataPlex DX360M4, Xeon 147,456 2,897.0 3,423
Germany E5-2680 8C 2.70GHz, Infiniband FDR
IBM/Lenovo
7 Texas Advanced Computing Stampede - PowerEdge C8220, Xeon E5- 204,900 2,660.3

Center/Univ. of Texas
United States

2680 8C 2.700GHz, Infiniband FDR, Intel
Xeon Phi
Dell



Recommended Texis

No required textbook.

Some useful ones are as follows

A. Grama, G. Karypis, V. Kumar, and A. Gupta. Introduction to Parallel
Computing (2nd Edition), Addison Wesley, 2003.

M. Herlihy and N. Shavit. The Art of Multiprocessor Programming (1st
Edition), Morgan Kaufmann, 2008.

P. Pacheco. Parallel Programming with MPI (1st Edition), Morgan
Kaufmann, 1996.

D. and W. Hwu. Programming Massively Parallel Processors: A Hands-on
Approach (1st Edition), Morgan Kaufmann, 2010.

J. Lin and C. Dyer. Data-Intensive Text Processing with MapReduce,
Morgan and Claypool Publishers, 2010.

T. White. Hadoop: The Definitive Guide (2nd Edition), Yahoo Press, 2010.
T. Velte, A. Velte, and R. Elsenpeter. Cloud Computing, A Practical
Approach (1st Edition), McGraw-Hill Osborne Media, 2009.



Supercomputing
&
Parallel Computing



Top 10 Supercomputing Sites in Nov. 2015

RANK SITE

1

National Super Computer Center in
Guangzhou
China

DOE/SC/Oak Ridge National
Laboratory
United States

DOE/NNSA/LLNL
United States

RIKEN Advanced Institute for
Computational Science [AICS)
Japan

DOE/SC/Argonne National Laboratory
United States

DOE/NNSA/LANL/SNL
United States

Swiss National Supercomputing
Centre [CSCS)
Switzerland

HLRS -
Hdochstleistungsrechenzentrum
Stuttgart

Germany

King Abdullah University of Science
and Technology
Saudi Arabia

Texas Advanced Computing
Center/Univ. of Texas
United States

RMAX

SYSTEM (TFLOP/S)

Tianhe-2 (MilkyWay-2) - TH-IVB-FEP
Cluster, Intel Xeon E5-2692 12C
2.200GHz, TH Express-2
31S1P
NUDT

33,862.7

Titan - Cray XK7, Opteron 6274 16C
2.200GHz, Cray Gemini interconnect,

17,590.0

y

Sequoia - BlueGene/Q, Power BQC 16C
1.60 GHz, Custom
IBM

17,173.2

K computer, SPARC64 VIIIfx 2.0GHz, Tofu
interconnect
Fujitsu

10,510.0

Mira - BlueGene/Q, Power BQC 16C
1.60GHz, Custom
IBM

8,386.6

Trinity - Cray XC40, Xeon E5-2698v3 16C
2.3GHz, Aries interconnect
Cray Inc.

8,100.9

Piz Daint - Cray XC30, Xeon E5-2670 8C
GHz, Aries interconnect

6,271.0

Cray Inc.

Hazel Hen - Cray XC40, Xeon E5-2680v3
12C 2.5GHz, Aries interconnect
Cray Inc.

5,640.2

Shaheen Il - Cray XC40, Xeon E5-2698v3
16C 2.3GHz, Aries interconnect
Cray Inc.

5,537.0

Stampede - PowerEdge C8220, Xeon E5- 5,168.1
2680 8C 2.700GHz, Infiniband FDR

SE10P

Dell

Source: www.top500.o0rg

RPEAK
(TFLOP/S)

POWER
(KW)

54,902.4 17,808

27,112.5 8,209

20,132.7 7,890

11,280.4

12,660

10,066.3

3,943

11,078.9

7.788.9 2,325

7,603.5

7,235.2 2,834

8,520.1 4,310



Top 500 Supercomputing Sites

( Cores per Socket - Systems Share )

6 71 (1-1.209%6)

16 43 (8.60%)
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Why Parallelism?



Transistor count
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Unicore Performance

Single-Threaded Flnatlng Point Performance

Based on adjusted SPECTpE results
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Source: Jeff Preshing, 2012, http://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/



Unicore Performance Has Hit a Wall!

Some Reasons

— Lack of additional ILP
( Instruction Level Hidden Parallelism )

— High power density
— Manufacturing issues
— Physical limits

— Memory speed



Unicore Performance: No Additional ILP
“Everything that can be invented has been invented.”

— Charles H. Duell
Commissioner, U.S. patent office, 1899

Exhausted all ideas to exploit hidden parallelism?
— Multiple simultaneous instructions
— Instruction Pipelining
— OQOut-of-order instructions
— Speculative execution
— Branch prediction

— Register renaming, etc.



Unicore Performance: High Power Density
— Dynamic power, P,o< V2 fC

— V =supply voltage
— f=clock frequency
— C=capacitance

— But Ve f
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Source: Patrick Gelsinger, Intel Developer Forum, Spring 2004 ( Simon Floyd )



Unicore Performance: Manufacturing Issues

— Frequency, fo<1/s

— s =feature size ( transistor dimension )

— Transistors / unit area o< 1 / s2
— Typically, die size<1/s

— So, what happens if feature size goes down by a factor of x?

— Raw computing power goes up by a factor of x*!

— Typically most programs run faster by a factor of x3
without any change!

Source: Kathy Yelick and Jim Demmel, UC Berkeley



Unicore Performance: Manufacturing Issues

— Manufacturing cost goes up as feature size decreases

— Cost of a semiconductor fabrication plant doubles
every 4 years ( Rock’s Law )

— CMOS feature size is limited to 5 nm ( at least 10 atoms )

Cost of semiconductor factories in millions of 1995 dollars
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Source: Kathy Yelick and Jim Demmel, UC Berkeley



Unicore Performance: Physical Limits

Execute the following loop on a serial machine in 1 second:

for (i=0;i<101% ++i)

zZ[il=x[i]+yli];
— We will have to access 3x101? data items in one second
— Speed of light is, c = 3x108m/s

— So each data item must be within ¢ / 3x1012 = 0.1 mm
from the CPU on the average

— All data must be put inside a 0.2 mm x 0.2 mm square

— Each data item ( > 8 bytes ) can occupy only 1 A2 space!
( size of a small atom!)

Source: Kathy Yelick and Jim Demmel, UC Berkeley



Unicore Performance: Memory Wall

Relative
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Source: Sun World Wide Analyst Conference Feb. 25, 2003

Source: Rick Hetherington, Chief Technology Officer, Microelectronics, Sun Microsystems



Unicore Performance Has Hit a Wall!

“Oh Sinnerman, where you gonna run to?”

— Sinnerman (recorded by Nina Simone )



Where You Gonna Run To?

— Changing f by 20% changes performance by 13%

— So what happens if we overclock by 20%?

[ Performance

Power

1.00x

Design
Frequency

Source: Andrew A. Chien, Vice President of Research, Intel Corporation



Where You Gonna Run To?

— Changing f by 20% changes performance by 13%
— So what happens if we overclock by 20%?

— And underclock by 20%?

1.73x \| Performance

Over-clocked Design
(+20%) Frequency

Source: Andrew A. Chien, Vice President of Research, Intel Corporation



Where You Gonna Run To?

— Changing f by 20% changes performance by 13%
— So what happens if we overclock by 20%?

— And underclock by 20%?

Over-clocked Design Dual-core
(+20%) Frequency Und{egc:}&c‘ked

Source: Andrew A. Chien, Vice President of Research, Intel Corporation



Moore’s Law Reinterpreted
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Top 500 Supercomputing Sites

( Cores per Socket - Systems Share )
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Operations per second for serial code

No Free Lunch for Traditional Sofiware
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Additional operations per second if code can take advantage of concurrency

Source: Simon Floyd, Workstation Performance: Tomorrow's Possibilities (Viewpoint Column)



Insatiable Demand for Perfformance

Genomics Research Financial Analysis Medical Imaging

Source: Patrick Gelsinger, Intel Developer Forum, 2008



Some Useful Classifications
of Parallel Computers



Parallel Computer Memory Architecture
( Distributed Memory )

Each processor has its own
local memory — no global
address space

Changes in local memory by

one processor have no effect

Source: Blaise Barney, LLNL

on memory of other processors
Communication network to connect inter-processor memory

Programming

— Message Passing Interface ( MPI )
— Many once available: PVYM, Chameleon, MPL, NX, etc.



Parallel Computer Memory Architecture
( Distributed Memory )

Advantages
— Easily scalable

— No cache-coherency
needed among processors

— Cost-effective

Source: Blaise Barney, LLNL
Disadvantages
— Communication is user responsibility

— Non-uniform memory access

— May be difficult to map shared-memory data structures

to this type of memory organization



Parallel Computer Memory Architecture
( Shared Memory )

— All processors access all memory
as global address space

— Changes in memory by one
processor are visible to all others

— Two types
— Uniform Memory Access
(UMA)

— Non-Uniform Memory Access
(NUMA)

Bus Interconnect

— Programming
— Open Multi-Processing ( OpenMP )-=-

— Cilk/Cilk++ and Intel Cilk Plus

— Intel Thread Building Block ( TBB ), etc. NUMA

Source: Blaise Barney, LLNL



Parallel Computer Memory Architecture
( Shared Memory )

Advantages

— User-friendly programming
perspective to memory

— Fast data sharing

Disadvantages

— Difficult and expensive

to scale

Bus Interconnect

user responsibility
NUMA

Source: Blaise Barney, LLNL



Parallel Computer Memory Architecture
(_ Hybrid Distributed-Shared Memory )

— The shared-memory component

can be a cache-coherent SMP or
a Graphics Processing Unit (GPU)

— The distributed-memory
component is the networking of
multiple SMP/GPU machines

— Most common architecture
for the largest and fastest
computers in the world today

— Programming
— OpenMP /Cilk + CUDA / OpenCL + MPI, etc.

Source: Blaise Barney, LLNL



Flynn's Taxonomy of Parallel Computers

Flynn’s classical taxonomy ( 1966 ):
Classification of multi-processor computer architectures along
two independent dimensions of instruction and data.

Single Data Multiple Data
(SD) (MD)

SISD SIMD

Multlpl(eI:,r;ls;ructlon MISD MIMD

Single Instruction

(SI)




Flynn's Taxonomy of Parallel Computers

SISD

— A serial ( non-parallel ) computer

— The oldest and the most common

type of computers

— Example: Uniprocessor unicore

machines

load A
load B
C=A+B

aw )

store C
A=B*2

store A

Source: Blaise Barney, LLNL



Flynn's Taxonomy of Parallel Computers

prev instruct prev instruct prev instruct
load A(1) load A(2) load A(n) @ x(1 (e | x2 | xi x0_|)
load B(1) load B(2) load B(n) -~ * i ) t ,
C(1)=A(1)*B(1) C(2)=A(2)*B(2) C(n)=A(n)*B(n)| E I vl Dys Iyer] w1 Iy lj
store C(1) store C(2) store C(n) X[1+Y[] rx3+y3 r:-:2+-,r2 |’x1 +y1 fxu + yﬂ-|j
next instruct next instruct next instruct
P1 T T Source: Blaise Barney, LLNL
SIMD

— A type of parallel computer

— All PU’s run the same instruction at any given clock cycle
— Each PU can act on a different data item

— Synchronous ( lockstep ) execution

— Two types: processor arrays and vector pipelines

— Example: GPUs ( Graphics Processing Units )



Flynn's Taxonomy of Parallel Computers

M I S D prev instruct prev instruct prev instruct
— Atype of parallel computer | 2220 ool oadAD 1 |
C(1)=A(1)*1 C(2)=A(1)*2 C(n)=A(1)*n 3
— Ve ry few ever existed store C(1) store C(2) store C(n)
next instruct next instruct next instruct M
P1 P2 Pn
MIMD
- A type Of pa ra”el CompUter prev instruct prev instruct prev instruct
load A(1) call funcD do 10 i=1,N
— Synchronous /asynchronous 22 — aohe=w3 | |
. 3
execution C()=A(1)*B(1) sum=x*2 zeta=C(i) ®
store C(1) call sub1(i,j) 10 continue
o Examples: mOSt mOdern next instruct next instruct next instruct M
supercomputers, parallel P1 P2 Pn

computing clusters,

multicore PCs
Source: Blaise Barney, LLNL



Parallel Algorithms
Warm-up

“The way the processor industry is going, is to add more and more cores, but
nobody Rnows how to program those things. I mean, two, yeah; four, not
really; eight, forget it.”

— Steve Jobs, NY Times interview, June 10 2008



Parallel Algorithms Warm-up (1)

Consider the following loop:

fori=1tondo
Cli]<A[i]xB[i]

— Suppose you have an infinite number of processors/cores

— lgnore all overheads due to scheduling, memory accesses,
communication, etc.

— Suppose each operation takes a constant amount of time

— How long will this loop take to complete execution?



Parallel Algorithms Warm-up (1)

Consider the following loop:

fori=1tondo
Cli]<A[i]xB[i]

— Suppose you have an infinite number of processors/cores

— lgnore all overheads due to scheduling, memory accesses,
communication, etc.

— Suppose each operation takes a constant amount of time
— How long will this loop take to complete execution?

— O(1)time



Parallel Algorithms Warm-up (2)

Now consider the following loop:

c<—0

fori=1tondo
c<Cc+A[i]xB[i]

— How long will this loop take to complete execution?



Parallel Algorithms Warm-up (2)

Now consider the following loop:

c<—0
fori=1tondo
c<Cc+A[i]xB[i]

— How long will this loop take to complete execution?

— O(logn) time



Parallel Algorithms Warm-up (3)

Now consider quicksort:

QSort( A )
if |A|<1return A
else p<« Alrand( |A| )]
return QSort({xe A:x<p})

#H{p}#
QSort({xe A:x>p})

— Assuming that A is split in the middle everytime, and the two
recursive calls can be made in parallel, how long will this

algorithm take?



Parallel Algorithms Warm-up (3)

Now consider quicksort:

QSort( A )
if |A|<1return A
else p<« Alrand( |A| )]
return QSort({xe A:x<p})

#H{p}#
QSort({xe A:x>p})

— Assuming that A is split in the middle everytime, and the two
recursive calls can be made in parallel, how long will this

algorithm take?

— O(log? n) (if partitioning takes logarithmic time )
— O(logn) (butcan be partitioned in constant time )



