
“To put it quite bluntly: as long as there were no machines, programming

was no problem at all; when we had a few weak computers, programming

became a mild problem, and now we have gigantic computers, programming

has become an equally gigantic problem.”

— Edsger Dijkstra, The Humble Programmer, CACM

CSE 590: Special Topics Course

(Supercomputing)

Department of Computer Science

Stony Brook University

Spring 2016

Course Information

― Lecture Time: MoWe 4:00 pm - 5:20 pm

― Location: Earth & Space 079, West Campus

― Instructor: Rezaul A. Chowdhury

― Office Hours: MoWe 2:00 pm - 3:30 pm, 239 New CS Building

― Email: rezaul@cs.stonybrook.edu

― TA: TBA

― TA Office Hours: TBA

― TA Email: TBA

― Class Webpage:

http://www.cs.sunysb.edu/~rezaul/CSE590-S16.html

Prerequisites

― Required: Background in algorithms analysis

(e.g., CSE 373 or CSE 548)

― Required: Background in programming languages (C / C++)

― Helpful but Not Required: Background in computer architecture

― Please Note: This is not a course on

― Programming languages

― Computer architecture

― Main Emphasis: Parallel algorithms (for supercomputing)

Course Organization

― First Part: 11 Lectures (tentative)

― Introduction (2)

― Shared-memory parallelism & Cilk (2)

― Distributed-memory parallelism & MPI (2)

― GPGPU computation & CUDA (2)

― MapReduce & Hadoop (2)

― Cloud computing (1)

― Second Part:

― Paper presentations

― Group projects

Grading Policy

― Programming assignments (best 3 of 4): 15%

― Paper presentation (one): 25%

― Report on a paper presented by another student (one): 10%

― Group project (one): 40%

― Proposal (in-class): Feb 29

― Progress report (in-class): April 11

― Final presentation (in-class): May 4 - 6

― Class participation & attendance: 10%

Programming Environment

This course is supported by an educational grant from

― Extreme Science and Engineering Discovery Environment

(XSEDE): https://www.xsede.org

We will use XSEDE for homeworks/projects involving

― Shared-memory parallelism

― Distributed-memory parallelism

― GPGPU and Intel MIC

Programming Environment

On XSEDE we have access to

― Stampede: 6,400 nodes with 16 cores/node & Intel MIC / NVIDIA GPU

― Comet: ≈ 2,000 compute nodes with 24 cores/node

― SuperMIC: 360 nodes with 20 cores/node & Intel MIC / NVIDIA GPU

World’s Most Powerful Supercomputers in November, 2012
(www.top500.org)

Recommended Texts

No required textbook.

Some useful ones are as follows
― A. Grama, G. Karypis, V. Kumar, and A. Gupta. Introduction to Parallel

Computing (2nd Edition), Addison Wesley, 2003.

― M. Herlihy and N. Shavit. The Art of Multiprocessor Programming (1st

Edition), Morgan Kaufmann, 2008.

― P. Pacheco. Parallel Programming with MPI (1st Edition), Morgan

Kaufmann, 1996.

― D. and W. Hwu. Programming Massively Parallel Processors: A Hands-on

Approach (1st Edition), Morgan Kaufmann, 2010.

― J. Lin and C. Dyer. Data-Intensive Text Processing with MapReduce,

Morgan and Claypool Publishers, 2010.

― T. White. Hadoop: The Definitive Guide (2nd Edition), Yahoo Press, 2010.

― T. Velte, A. Velte, and R. Elsenpeter. Cloud Computing, A Practical

Approach (1st Edition), McGraw-Hill Osborne Media, 2009.

Supercomputing

&

Parallel Computing

Top 10 Supercomputing Sites in Nov. 2015

Source: www.top500.org

Top 500 Supercomputing Sites
(Cores per Socket – Systems Share)

Source: www.top500.org

Why Parallelism?

Moore’s Law

Source: Wikipedia

Unicore Performance

Source: Jeff Preshing, 2012, http://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/

Unicore Performance Has Hit a Wall!

Some Reasons

― Lack of additional ILP

(Instruction Level Hidden Parallelism)

― High power density

― Manufacturing issues

― Physical limits

― Memory speed

Unicore Performance: No Additional ILP

Exhausted all ideas to exploit hidden parallelism?

― Multiple simultaneous instructions

― Instruction Pipelining

― Out-of-order instructions

― Speculative execution

― Branch prediction

― Register renaming, etc.

“Everything that can be invented has been invented.”

— Charles H. Duell

Commissioner, U.S. patent office, 1899

Unicore Performance: High Power Density
― Dynamic power, Pd ∝ V 2 f C

― V = supply voltage

― f = clock frequency

― C = capacitance

― But V ∝ f

― Thus Pd ∝ f 3

Source: Patrick Gelsinger, Intel Developer Forum, Spring 2004 (Simon Floyd)

Unicore Performance: Manufacturing Issues

― Frequency, f ∝ 1 / s

― s = feature size (transistor dimension)

― Transistors / unit area ∝ 1 / s2

― Typically, die size ∝ 1 / s

― So, what happens if feature size goes down by a factor of x?

― Raw computing power goes up by a factor of x4 !

― Typically most programs run faster by a factor of x3

without any change!

Source: Kathy Yelick and Jim Demmel, UC Berkeley

Unicore Performance: Manufacturing Issues

― Manufacturing cost goes up as feature size decreases
― Cost of a semiconductor fabrication plant doubles

every 4 years (Rock’s Law)

― CMOS feature size is limited to 5 nm (at least 10 atoms)

Source: Kathy Yelick and Jim Demmel, UC Berkeley

Unicore Performance: Physical Limits

Execute the following loop on a serial machine in 1 second:

for (i = 0; i < 1012; ++i)

z[i] = x[i] + y[i];

― We will have to access 3×1012 data items in one second

― Speed of light is, c ≈ 3×108 m/s

― So each data item must be within c / 3×1012
≈ 0.1 mm

from the CPU on the average

― All data must be put inside a 0.2 mm × 0.2 mm square

― Each data item (≥ 8 bytes) can occupy only 1 Å2 space!

(size of a small atom!)

Source: Kathy Yelick and Jim Demmel, UC Berkeley

Unicore Performance: Memory Wall

Source: Rick Hetherington, Chief Technology Officer, Microelectronics, Sun Microsystems

Unicore Performance Has Hit a Wall!

Some Reasons

― Lack of additional ILP

(Instruction Level Hidden Parallelism)

― High power density

― Manufacturing issues

― Physical limits

― Memory speed

“Oh Sinnerman, where you gonna run to?”

— Sinnerman (recorded by Nina Simone)

Where You Gonna Run To?

― Changing f by 20% changes performance by 13%

― So what happens if we overclock by 20%?

Source: Andrew A. Chien, Vice President of Research, Intel Corporation

― Changing f by 20% changes performance by 13%

― So what happens if we overclock by 20%?

― And underclock by 20%?

Source: Andrew A. Chien, Vice President of Research, Intel Corporation

Where You Gonna Run To?

― Changing f by 20% changes performance by 13%

― So what happens if we overclock by 20%?

― And underclock by 20%?

Source: Andrew A. Chien, Vice President of Research, Intel Corporation

Where You Gonna Run To?

Moore’s Law Reinterpreted

Source: Report of the 2011 Workshop on Exascale Programming Challenges

Top 500 Supercomputing Sites
(Cores per Socket – Systems Share)

Source: www.top500.org

No Free Lunch for Traditional Software

Source: Simon Floyd, Workstation Performance: Tomorrow's Possibilities (Viewpoint Column)

Insatiable Demand for Performance

Source: Patrick Gelsinger, Intel Developer Forum, 2008

Some Useful Classifications

of Parallel Computers

Parallel Computer Memory Architecture
(Distributed Memory)

― Each processor has its own

local memory ― no global

address space

― Changes in local memory by

one processor have no effect

on memory of other processors

― Communication network to connect inter-processor memory

― Programming
― Message Passing Interface (MPI)

― Many once available: PVM, Chameleon, MPL, NX, etc.

Source: Blaise Barney, LLNL

Parallel Computer Memory Architecture
(Distributed Memory)

Advantages

― Easily scalable

― No cache-coherency

needed among processors

― Cost-effective

Disadvantages

― Communication is user responsibility

― Non-uniform memory access

― May be difficult to map shared-memory data structures

to this type of memory organization

Source: Blaise Barney, LLNL

Parallel Computer Memory Architecture
(Shared Memory)

― All processors access all memory

as global address space

― Changes in memory by one

processor are visible to all others

― Two types

― Uniform Memory Access

(UMA)

― Non-Uniform Memory Access

(NUMA)

― Programming
― Open Multi-Processing (OpenMP)

― Cilk/Cilk++ and Intel Cilk Plus

― Intel Thread Building Block (TBB), etc.

UMA

NUMA

Source: Blaise Barney, LLNL

Parallel Computer Memory Architecture
(Shared Memory)

Advantages

― User-friendly programming

perspective to memory

― Fast data sharing

Disadvantages

― Difficult and expensive

to scale

― Correct data access is

user responsibility

Source: Blaise Barney, LLNL

UMA

NUMA

Parallel Computer Memory Architecture
(Hybrid Distributed-Shared Memory)

― The shared-memory component

can be a cache-coherent SMP or

a Graphics Processing Unit (GPU)

― The distributed-memory

component is the networking of

multiple SMP/GPU machines

― Most common architecture

for the largest and fastest

computers in the world today

― Programming
― OpenMP / Cilk + CUDA / OpenCL + MPI, etc.

Source: Blaise Barney, LLNL

Flynn’s Taxonomy of Parallel Computers

Single Data

(SD)

Multiple Data

(MD)

Single Instruction

(SI)
SISD SIMD

Multiple Instruction

(MI)
MISD MIMD

Flynn’s classical taxonomy (1966):

Classification of multi-processor computer architectures along

two independent dimensions of instruction and data.

Flynn’s Taxonomy of Parallel Computers

SISD

― A serial (non-parallel) computer

― The oldest and the most common

type of computers

― Example: Uniprocessor unicore

machines
Source: Blaise Barney, LLNL

Flynn’s Taxonomy of Parallel Computers

SIMD

― A type of parallel computer

― All PU’s run the same instruction at any given clock cycle

― Each PU can act on a different data item

― Synchronous (lockstep) execution

― Two types: processor arrays and vector pipelines

― Example: GPUs (Graphics Processing Units)

Source: Blaise Barney, LLNL

Flynn’s Taxonomy of Parallel Computers

MISD

― A type of parallel computer

― Very few ever existed

MIMD

― A type of parallel computer

― Synchronous /asynchronous

execution

― Examples: most modern

supercomputers, parallel

computing clusters,

multicore PCs
Source: Blaise Barney, LLNL

Parallel Algorithms

Warm-up

“The way the processor industry is going, is to add more and more cores, but

nobody knows how to program those things. I mean, two, yeah; four, not

really; eight, forget it.”

— Steve Jobs, NY Times interview, June 10 2008

Parallel Algorithms Warm-up (1)

Consider the following loop:

for i = 1 to n do

C[i] ← A[i] × B[i]

― Suppose you have an infinite number of processors/cores

― Ignore all overheads due to scheduling, memory accesses,

communication, etc.

― Suppose each operation takes a constant amount of time

― How long will this loop take to complete execution?

Parallel Algorithms Warm-up (1)

Consider the following loop:

for i = 1 to n do

C[i] ← A[i] × B[i]

― Suppose you have an infinite number of processors/cores

― Ignore all overheads due to scheduling, memory accesses,

communication, etc.

― Suppose each operation takes a constant amount of time

― How long will this loop take to complete execution?

― O(1) time

Parallel Algorithms Warm-up (2)

Now consider the following loop:

c ← 0

for i = 1 to n do

c ← c + A[i] × B[i]

― How long will this loop take to complete execution?

Parallel Algorithms Warm-up (2)

Now consider the following loop:

c ← 0

for i = 1 to n do

c ← c + A[i] × B[i]

― How long will this loop take to complete execution?

― O(log n) time

Parallel Algorithms Warm-up (3)

Now consider quicksort:

QSort(A)

if |A|≤ 1 return A

else p ← A[rand(|A|)]

return QSort({ x ∈ A: x < p })

{ p } #

QSort({ x ∈ A: x > p })

― Assuming that A is split in the middle everytime, and the two

recursive calls can be made in parallel, how long will this

algorithm take?

Parallel Algorithms Warm-up (3)

Now consider quicksort:

QSort(A)

if |A|≤ 1 return A

else p ← A[rand(|A|)]

return QSort({ x ∈ A: x < p })

{ p } #

QSort({ x ∈ A: x > p })

― Assuming that A is split in the middle everytime, and the two

recursive calls can be made in parallel, how long will this

algorithm take?

― O(log2 n) (if partitioning takes logarithmic time)

― O(log n) (but can be partitioned in constant time)

