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Modern Single Core Machines

― Cost of memory access depends on whether it’s a (cache) hit or miss

― Data in cache may get evicted to make space for new data items

― Good performance requires high locality in memory accesses

Memory Hierarchy



Multicores

Intel Core Duo, Intel Xeon AMD Opteron, AMD Athlon

Intel Itanium 2 Intel Nehalem, AMD Barcelona



LRU (Least Recently Used) Cache Replacement Policy

When a new block must be brought into the cache, but the cache 

is full, then the cache block that was accessed least recently is 

evicted to make space for the new block

Assumptions

Automatic Cache Replacement

Done automatically by the OS or the hardware

Fully Associative Caches

A block brought into the cache from memory can reside 

anywhere in the cache

Two Level Memory Hierarchy

A single level of cache (caches) of size C (each) connected to a 

main memory of unbounded size and block size B



Parallel Caching Model: Distributed Caches

main memory

block 
transfer
(size = B) 

private cache
(size = C)

CPU

block 
transfer
(size = B) 

private cache
(size = C)

CPU

block 
transfer
(size = B) 

private cache
(size = C)

CPU

1 2 p

― p processing elements

― a private cache of size C for each processing element

― an arbitrarily large global shared memory

― block transfer size B ( between caches and memory )

― number of block transfers across all caches

Configuration:

Cache Performance Measure:



main memory

shared cache
(size = C)

CPU

block 
transfer
(size = B) 

CPU CPU

1 2 p

― p processing elements

― a shared cache of size C

― an arbitrarily large global shared memory

― C ≥ p ⋅ B, where C is block transfer size

― number of block transfers between the cache and 

the memory

Configuration:

Cache Performance Measure:

Parallel Caching Model: Shared Cache



Temporal Locality

If a particular memory location is accessed at a particular time, 

then it is likely that the same memory location will be accessed 

again in the near future.

Take advantage of the cache size C to retain memory locations 

already loaded into the cache for future references.

Locality of Reference

Spatial Locality

If a particular memory location is accessed at a particular time, 

then it is likely that nearby memory locations will also be accessed 

in the near future.

Take advantage of the block size B to load all memory locations in 

the same block into the cache when a particular memory location in 

that block is accessed.



Iterative Matrix Multiplication
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Iter-MM ( Z, X, Y )              { X, Y, Z are n × n matrices,

where n is a positive integer }

1.  for i ← 1 to n do

3.            Z[ i ][ j ] ← 0

4.            for k ← 1 to n do

2.       for j ← 1 to n do

5.                 Z[ i ][ j ] ← Z[ i ][ j ] + X[ i ][ k ] ⋅ Y[ k ][ j ]



Iterative Matrix Multiplication

Iter-MM ( Z, X, Y )              { X, Y, Z are n × n matrices,

where n is a positive integer }

1.  for i ← 1 to n do

3.            Z[ i ][ j ] ← 0

4.            for k ← 1 to n do

2.       for j ← 1 to n do

5.                 Z[ i ][ j ] ← Z[ i ][ j ] + X[ i ][ k ] ⋅ Y[ k ][ j ]
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row-major order
store in

row-major order
store in

Each iteration of the for loop in line 3 incurs Ο � cache misses.

Cache-complexity of Iter-MM, Q � � Ο �� .



Iterative Matrix Multiplication

Iter-MM ( Z, X, Y )              { X, Y, Z are n × n matrices,

where n is a positive integer }

1.  for i ← 1 to n do

3.            Z[ i ][ j ] ← 0

4.            for k ← 1 to n do

2.       for j ← 1 to n do

5.                 Z[ i ][ j ] ← Z[ i ][ j ] + X[ i ][ k ] ⋅ Y[ k ][ j ]
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row-major order
store in

column-major order
store in

Each iteration of the for loop in line 3 incurs Ο 1 � �� cache misses.

Cache-complexity of Iter-MM, Q � � Ο �	 1 � �� � Ο
�

� � �	 .



Block Matrix Multiplication

Block-MM ( X, Y, Z )

1.   for i ← 1  to n / m  do

2.         for j ← 1  to n / m  do

3.               for k ← 1  to n / m  do

4.                      Iter-MM ( Xik, Ykj, Zij )

==== ××××
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Block Matrix Multiplication

Block-MM ( X, Y, Z )

1.   for i ← 1  to n / m  do

2.         for j ← 1  to n / m  do

3.               for k ← 1  to n / m  do

4.                      Iter-MM ( Xik, Ykj, Zij )

n

n

m

m

Choose � � � 3⁄ , so that Xik, Ykj and Zij just fit into the cache.

Then line 4 incurs Θ � 1 � �� cache misses.

Cache-complexity of Block-MM [assuming a tall cache, i.e., � � � �	 ]

( Optimal: Hong & Kung, STOC’81 )
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Block Matrix Multiplication

Block-MM ( X, Y, Z )

1.   for i ← 1  to n / m  do

2.         for j ← 1  to n / m  do

3.               for k ← 1  to n / m  do

4.                      Iter-MM ( Xik, Ykj, Zij )
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Choose � � � 3⁄ , so that Xik, Ykj and Zij just fit into the cache.

Then line 4 incurs Θ � 1 � �� cache misses.

Cache-complexity of Block-MM [assuming a tall cache, i.e., � � � �	 ]
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Optimal for any algorithm that performs 

the operations given by the following 

definition of matrix multiplication:
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( Optimal: Hong & Kung, STOC’81 )



Multiple Levels of Cache

n

n
s

s

Block-MM ( X, Y, Z )

1.   for i ← 1  to n / s  do

2.         for j ← 1  to n / s  do

3.               for k ← 1  to n / s  do

4.                      Iter-MM ( Xik, Ykj, Zij )



Multiple Levels of Cache

n

n
s
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Block-MM ( X, Y, Z )

1.   for i1 ← 1  to n / s  do

2.         for j1 ← 1  to n / s  do

3.               for k1 ← 1  to n / s  do

7.                                          Iter-MM ( (Xi1k1
)i2k2

, (Yk1j1
)k2j2

, (Zi1j1
)i2j2

)

4.                      for i2 ← 1  to s / t  do

5.                            for j2 ← 1  to s / t  do

6.                                   for k2 ← 1  to s / t  do

One Parameter Per Caching Level!



Parallel Recursive MM

Par-Rec-MM ( Z, X, Y )     { X, Y, Z are n × n matrices,

where n = 2k for integer k ≥ 0 }

1.  if n = 1 then

3.  else

4.      spawn Par-Rec-MM (  Z11,  X11,  Y11 )

2.      Z ← Z + X ⋅ Y

5.      spawn Par-Rec-MM (  Z12,  X11,  Y12 )

6.      spawn Par-Rec-MM (  Z21,  X21,  Y11 )

7.                Par-Rec-MM (  Z21,  X21,  Y11 )

9.      spawn Par-Rec-MM (  Z11,  X12,  Y21 )

10.      spawn Par-Rec-MM (  Z12,  X12,  Y22 )

11.      spawn Par-Rec-MM (  Z21,  X22,  Y21 )

12.                Par-Rec-MM (  Z22,  X22,  Y22 )

13.      sync

14.  endif

8.      sync

�� � � �Θ 1 , 																		��	� � 1,8�� �2 � Θ 1 , 		��� !"�# .
� 	Θ �� [ MT Case 1 ]

�% � � �Θ 1 , 																						��	� � 1,2�% �2 � Θ 1 , 				��� !"�# .
� 	Θ � [ MT Case 1 ]

#% � � Θ 1
Parallelism: 

&' �&( � � Θ �	
Additional Space:

Span:

Work:

Parallel Running Time:

�) � � Ο
�� �* � �% � � Ο

��* � �



Parallel Recursive MM on a Single Core

Par-Rec-MM ( Z, X, Y )     { X, Y, Z are n × n matrices,

where n = 2k for integer k ≥ 0 }

1.  if n = 1 then

3.  else

4.      spawn Par-Rec-MM (  Z11,  X11,  Y11 )

2.      Z ← Z + X ⋅ Y

5.      spawn Par-Rec-MM (  Z12,  X11,  Y12 )

6.      spawn Par-Rec-MM (  Z21,  X21,  Y11 )

7.                Par-Rec-MM (  Z21,  X21,  Y11 )

9.      spawn Par-Rec-MM (  Z11,  X12,  Y21 )

10.      spawn Par-Rec-MM (  Z12,  X12,  Y22 )

11.      spawn Par-Rec-MM (  Z21,  X22,  Y21 )

12.                Par-Rec-MM (  Z22,  X22,  Y22 )

13.      sync

14.  endif

8.      sync

+� � � Ο � � �	� , ��	�	 , -�,
8+� �2 , 																��� !"�# .

� 	Θ �

� � � ��

� � 1 , 

when � � Ω �	

Cache Complexity:



Parallel Recursive MM on Distributed Caches

+) � � �+� � , 					��	* � 1,8+).
�2 , 						��� !"�# .

� 	Θ �

� � � * · ��

� � * * , 

when � � Ω �	

Cache Complexity:

Par-Rec-MM ( Z, X, Y )     { X, Y, Z are n × n matrices,

where n = 2k for integer k ≥ 0 }

1.  if n = 1 then

3.  else

4.      spawn Par-Rec-MM (  Z11,  X11,  Y11 )

2.      Z ← Z + X ⋅ Y

5.      spawn Par-Rec-MM (  Z12,  X11,  Y12 )

6.      spawn Par-Rec-MM (  Z21,  X21,  Y11 )

7.                Par-Rec-MM (  Z21,  X21,  Y11 )

9.      spawn Par-Rec-MM (  Z11,  X12,  Y21 )

10.      spawn Par-Rec-MM (  Z12,  X12,  Y22 )

11.      spawn Par-Rec-MM (  Z21,  X22,  Y21 )

12.                Par-Rec-MM (  Z22,  X22,  Y22 )

13.      sync

14.  endif

8.      sync

* � 41 2 �	-�
Assumption: if * 3 1, then * is evenly 

distributed among the simultaneously 

spawned  functions. 



The Longest Common Subsequence (LCS) Problem

A subsequence of a sequence X is obtained by deleting zero or more 

symbols from X.

Example:

X = abcba

Z = bca ← obtained by deleting the 1st ‘a’ and the 2nd ‘b’ from X

A Longest Common Subsequence (LCS) of two sequence X and Y is a 

sequence Z that is a subsequence of both X and Y, and is the longest 

among all such subsequences.

Given X and Y, the LCS problem asks for such a Z.



Given: X = x1 x2 … xn and Y = y1 y2 … yn

Fills up an array c[0 … n, 0 … n ] using the following recurrence.

[[[[ ]]]]

{{{{ }}}}

 = ∨ == ∨ == ∨ == ∨ =


= − − + > ∧ == − − + > ∧ == − − + > ∧ == − − + > ∧ =
 − −− −− −− −

0  0 0

1 1 1  0

1 1

,

, [ , ] , ,

m ax [ , ], [ , ] .

i j

if i j

c i j c i j if i j x y

c i j c i j otherw ise

Traceback 

Path (LCS)

y1 y2 y3 y4 y5 y6 y7 y8c

x1

x2

x3

x4

x5

x6

x7

x8

c[ i, j ]

c[ n, n ]

= length of LCS

Local Dependency:

value of each cell depends

only on values of adjacent 

cells.

The Longest Common Subsequence (LCS) Problem



The classic ( iterative ) serial LCS DP runs in Θ �	 time, 

uses Θ �	 space, and 

incurs Θ
��
� cache misses.

The Longest Common Subsequence (LCS) Problem

Any algorithm using Θ # space must incur Ω
4� cache misses.

Hence in order to reduce the cache complexity of the LCS algorithm 

from Θ
��
� we must first reduce its space usage below Θ �	 .



Y

X

c

stored values

1.  Decompose Q:  

Split Q into four quadrants.

Q

Q ≡≡≡≡ c[1 … n, 1 … n]

n = 2q

2.  Forward Pass ( Generate Boundaries ):  

Generate the right and the bottom 

boundaries of the quadrants recursively.

( of at most 3 quadrants )

Q11 Q12

Q21 Q22

3.  Backward Pass ( Extract Traceback Path 

Fragments ):  

Extract fragments of the traceback

path from the quadrants recursively. 

( from at most 3 quadrants )

traceback path

4.  Compose Traceback Path:  

Combine the path fragments.

Sequential Cache-efficient LCS Algorithm



Cache Performance

Cache complexity:

where +′� � is the cache complexity of recursive boundary generation 

( in the forward pass ):

Substituting, +� � � Ο
��
�� � �� � 1 optimal

+� � , Ο 1 � �� , 																																									��	� , -�,
3+′� �2 � 3+� �2 � Ο 1 � �� , 					��� !"�# .

+′� � , Ο 1 � �� , 									��	� , -�,
4+6� �2 � Ο 1 , 					��� !"�# .

													� Ο
�	�� � �� � 1



Parallel 

Cache-efficient LCS Algorithm

for Distributed Caches



Parallel Cache-efficient Boundary Computation 

( PAR-BOUNDARY )
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Q ≡≡≡≡ c[1 … n, 1 … n]

n >>>> pC
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1.  Decompose Q:  

Split Q into p2 submatrices of size

( n / p ) ×××× ( n / p ) each.

2. Generate Boundaries:  

In iteration i ∈∈∈∈ [1, 2p- 1], solve 

all submatrices on the i-th forward 

diagonal in parallel using the 

sequential cache-oblivious algorithm.

For each cell also compute:

the cell on the input boundary where 

the traceback path through the given 

cell intersects. 



Parallel Time Complexity:

Cache Complexity:

Performance Bounds

( PAR-BOUNDARY )
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Y

X

c

stored values

1.  Decompose Q:  

Split Q into four quadrants.

Q

Q11 Q12

Q21 Q22

3.  Backward Pass ( Extract Traceback Path 

Fragments ):  

traceback path

4.  Compose Traceback Path:  

Combine the path fragments.

Parallel Cache-efficient Traceback Path

( PAR-TRACEBACK )

2.  Forward Pass ( Generate Boundaries ):  

Generate the right and the bottom 

boundaries of all quadrants by calling 

PAR-BOUNDARY ( using all p processors ).

Extract path fragments from Q22, Q12

and Q11 in parallel by calling PAR-TRACEBACK

with p / 3 processors each. 

Q ≡≡≡≡ c[1 … n, 1 … n]

n >>>> pC



Y

X

c

stored values

Q

Q11 Q12

Q21 Q22

traceback path

Performance Bounds

( PAR-TRACEBACK )

Parallel Time Complexity:

Cache Complexity:

Q ≡≡≡≡ c[1 … n, 1 … n]

n >>>> pC

�) � � 4�′) �	 � �:

�	 � Ο

�)
											� Ο

��
) � �

+) � � 4+′) �2 � 3+)�
�2 � Ο 1 � ��

												� Ο
�	�� � * · �� � *	

												� Ο
�	�� 																		 #��8 	� 9 *�
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DP with Local Dependencies

Generalization of the LCS Result

Problem Time Space Cache-complexity Parallel Time

Longest Common 

Subsequence 

Pairwise Sequence 

Alignment

( affine gap costs )

Median of three 

Sequences

( affine gap costs )

RNA Secondary 

Structure Prediction 

with Simple 

Pseudoknots
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n = sequence length, C = cache size, B = block transfer size, p = #processors



Performance of Cache-efficient Serial LCS

Algorithms compared:

� The cache-efficient LCS algorithm ( CO )

� Hirschberg’s linear-space LCS algorithm ( Hi )

Computing Environment:

Architecture Processor Speed L1 Cache ( B ) L2 Cache ( B ) RAM

Intel Xeon 3 GHz 8 KB ( 64 B ) 512 KB ( 64 B ) 4 GB

AMD Opteron 2.4 GHz 64 KB ( 64 B ) 1 MB ( 64 B ) 4 GB

SUN Blade 1 GHz 64 KB ( 32 B ) 8 MB ( 512 B ) 1 GB



Ratio of Running Times on Random Sequences

(Hirschberg vs the Cache-efficient Algorithm)



Ratio of L1 Misses on Random Sequences

(Hirschberg vs the Cache-efficient Algorithm)



Cache Performance 

of 

Divide-and-Conquer Algorithms 

under the 

Work-Stealing Scheduler



Series-Parallel DAG

base case

serial composition

parallel composition



Assumptions

s

( fork / spawn )

t

( join / sync )

G1 G2

Two-way Division ( Spawn ):

Each division generates only two subtasks.

Serial Execution:

The left (first) subtask generated by a fork 

node is always executed first. 

Parallel Execution:

Only the right (second) subtask generated 

by a fork node can be stolen. 

Drifted Nodes:

In a parallel execution we say that a node is 

drifted when it is executed on a different 

processing element than its predecessor in 

the serial execution. 



Observations

Observation 1: 

Consider two executions of a sequence of instructions X. Each 

execution takes place completely on a single processing element 

connected to a cache of size C and block size B. Then the number 

of cache misses incurred by the two executions can differ by at 

most C / B.

( As under LRU cache replacement policy only the first access to 

each of the C / B blocks can cause a cache miss in one execution 

that is not a miss in the other )

Observation 2:

Each steal can cause at most two nodes to drift: the stolen 

node and possibly the join node with its sibling.



Implications

Now suppose a divide-and-conquer algorithm incurs +� � cache 

misses on a serial machine. 

Then on a parallel machine with * parallel processing elements 

each connected to a cache of size �	 and block size �, the total 

number of cache misses incurred:

+) � , +� � �Ο ; · ��
� +� � � Ο *�% � · �� 			<	". �. *. =

If there are S successful steals during parallel execution then there 

will be at most 2; 7 �� additional cache misses compared to the 

sequential execution.


