CSE 613: Parallel Programming

Lectures 23 & 26
(Parallel Maximal Independent Set)

Rezaul A. Chowdhury

Department of Computer Science
SUNY Stony Brook
Spring 2015

Independent Sets
Let G = (V, E) be an undirected graph.

Independent Set: A subset I € V is said to be independent provided
for each v € I none of its neighbors in G belongs to I.

Maximal Independent Set: An independent set of (¢ is maximal if it is
not properly contained in any other independent set in G.

Maximum Independent Set: O O Q O
A maximal independent set
of the largest size.

O O O O
Finding a maximum
independent set is NP-hard. R " R 0
But finding a maximal
independent set is trivial in . . o
the sequential setting. Maximal Independent Sets (red vertices) of the Cube Graph

Source: Wikipedia

Finding a Maximal Independent Set Sequentially

Input: Vis the set of vertices, and E is the set of edges. For each v e V, we
denote by I'(v) the set of neighboring vertices of v.

Output: A maximal independent set MIS of the input graph.

Serial-Greedy-MIS (V, E)

1. MIS« ¢

2. forv«1to|V]| do

3. ifMISNT(v)=¢ then MIS— MISU{Vv}
4. return MIS

This algorithm can be easily implemented to run in ®(n + m) time, where n
is the number of vertices and m is the number of edges in the input graph.

The output of this algorithm is called the Lexicographically First MIS (LFMIS).

Finding a Maximal Independent Set Sequentially

Input: Vis the set of vertices, and E is the set of edges. For each v e V, we
denote by I'(v) the set of neighboring vertices of v.

Output: A maximal independent set MIS of the input graph.

Serial-Greedy-MIS-2 (V, E')
1. MIS« ¢
2. while |V] >0do
3. pick an arbitrary vertex ve V
4., MIS<MSu{v}
5. R—{viuTI(v)
6. V< V\R
7. E<E\N{(v,vz)|IvyeRorv,eR}
8. return MIS

Always choosing the vertex with the smallest id in the current graph will
produce exactly the same MIS as in Serial-Greedy-MIS.

Finding a Maximal Independent Set Sequentially

Input: Vis the set of vertices, and E is the set of edges. For each S C V, we
denote by I'(S) the set of neighboring vertices of S.

Output: A maximal independent set MIS of the input graph.

Serial-Greedy-MIS-3 (V, E)

1. MIS« ¢

2. while |V] >0do

3. find an independent set S c V
4 MIS— MISU S
5. R—SuTI(S)
6. V< V\R
7. E<E\N{(v,vz)|vseRorv,eR}
8. return MIS

Parallelizing Serial-Greedy-MIS-3

— Number of iterations can be kept small Serial-Greedy-MIS-3 (V, E)
by finding in each iteration an S with 1. M5 < ¢
. . e rpe 2. while |V| >0do
large S U I'(S). But this is difficult to do. 3. find an independent st § V
. . . 4, MIS<— MISU S
— Instead in each iteration we choose an 5. ReSUL(S)
S such that a large fraction of current 6. V< VAR
. . 7. E«<E R R
edges are incident on S U I'(S). CENUv) Tvie Rorve RS
8. return MIS

— To select S we start with a random S'c V.

* By choosing lower degree vertices with higher probability we are
likely to have very few edges with both end-pointsin §’.

* We check each edge with both end-points in S/, and drop the end-
point with lower degree from S". Our intention is to keep I'(S) as
large as we can.

e After removing all edges as above we are left with an independent
set. This is our S.

 We will prove that if we remove S U I'(S) from the current graph a
large fraction of current edges will also get removed.

Randomized Maximal Independent Set (MIS)

Input: n is the number of vertices, and for each vertexue [1,n], V[u]is set
to u. E is the set of edges sorted in non-decreasing order of the first vertex.
For every edge (u, v) both (u,v)and (v, u) areincluded in E.

Output: Forallue [1,n], MIS[u]is set to 1 if vertex u is in the MIS.

for each u find the

dl u] (i.e., degree of
vertex u) can now be
computed easily by
subtracting clu—1]
fromc[u]

\

if both end-points of
an edge is marked,

unmark the one with
the lower degree

remove marked
vertices along with
their neighbors as
well as the
corresponding edges

S

Par-Randomized-MIS (n, V, E, MIS)
1. while |V| > 0 do
arrayd[1: VI L, c[1:1VI]I={0} M[1:|VI]={0}

ifi=|ElorE[i].u#E[i+1]).u thenc[E[i]l.u]«i

\

rallel for u < 1 to |V| do

ifu=1thend[u]l <« c[u]elsed[u]l «c[u]-c[u-1]

4
5 pa
\
7
8
9

O~

11.

2.
3. parallel for i < 1 to |E| do

(ifdfu]=0then M[u] « 1

| else M[u] « 1 (with probability 1/ (2d[u]))]/

parallel for each (u, v) € E do

(if M[u]l=1andM[v]=1 then
ifdlul]<d[v]thenM[u]l <« OelseM[v] <« O

12. parallel for u <« 1 to |V]| do

ifM[ul=1then MISfTV[u]] « 1

_—

14 (V,E) « Par-Compress (V,E, M)

edge with the
largest index i such
that E[i].u =u, and
store thatiinc[u]

/

mark lower-degree

vertices with higher
probability

/

add all marked
vertices to MIS

/

Removing Marked Vertices and Their Neighbors

Input: Arrays V and E, and bit array M[1: |V|]. Each entry of E is of the form
(u,v),wherel<u,v<|V|.If forsomeu, M[u]=1,thenuandallvsuch
that (u, v) € E must be removed from V along with all edges (u, v) from E.

Output: Updated Vand E.

marked vertices
will be removed

\

find new indices
for surviving
vertices & edges

/

move surviving
edges to the
smaller array F

~~

6.

1. pa
12.

Par-Compress (V, E, M)

1.[array S,L1: IVIT=013, SYL1: IVIT, SeL1: 1EIT={13, Sel1: 1EI]

2. parallel for u<« 1 to |V]| do

\

3. ifMful=1thenS[u]« 0

4. parallel for i« 1to |E| do

5. [u<—E[i].u,v<—E[i].v]/
ifM[ul=1orM[v]l=1thenSJu]l<« 0,S[v]« 0,SJ[i]« O

7.1S% « Par-Prefix-Sum (Sy, +), S < Par-Prefix-Sum (Sg, +)

8. arrayU[1:S,[IVIT], FI1:S:[IEI]]

9. parallel for u<« 1 to |V]| do

10. ifSful=1thenU[S, [u]l]l <« V[u]

-

rallel fori < 1 to |E| do

ifSLil1=1then F[S:[i]1]<« E[]

13. parallel for i« 1 to |F| do

14. ru<—F[i].u, v« F[i].v

N\

initialize

| —

neighbors of
marked vertices &

corresponding

edges must go

/

move surviving
vertices to the
smaller array U

/

update the end-
points of the
surviving edges to
new vertex
indices

—

15. LF[i].u<—S’V[u],F[i].v<—S’V[v])

16. return (U, F)

Removing Marked Vertices and Their Neighbors

Par-Compress (V, E, M)

1.

o v A W N

array Sy[1: VI]1={1} SU[1:1VI],
Sel1:1EI]={1} SEl1:1El]
parallel for u < 1 to |V| do
ifMful=1thenS[u]l<« 0
parallel for i < 1 to |E| do
u<E[ilu, vE[il].v
ifMfu]l]=10orM[v]=1then
Sul« 0,5 [v]« 0,S5[i]< O
SV « Par-Prefix-Sum (Sy, +),

St « Par-Prefix-Sum (Sg, +)

8. arrayU[1:S[IVI]], FI1:SE[IEI]]

9. parallel for u < 1 to |V| do

10.
11.
12.
13.
14.
15.
16.

ifSful=1thenU[S [u]]l« V[u]
parallel for i < 1 to |E| do

if Sefil=1then F[SEi]l] <« E[i]
parallel for i < 1to |F| do

u« F[il.u, veF[il].v

Flilu«<S'JJul, FTilve« S’ [vVv]
return (U, F)

The prefix sums in line 7 perform O(|V| + |E|)
work and have ®(log?|V| + log? |E|) depth. The
rest of the algorithm also perform ®(|V| + |E|)
work but in ®(log|V| + log |E|) depth. Hence,

Work: O(|V| + |E|)
Span: ©(log?|V| + log? |E|)

Randomized Maximal Independent Set (MIS)

Par-Randomized-MIS (n, V, E, MIS)

1.
2.

10.
1.

12.
13.
14.

while | V]| > 0 do

arrayd[1: V|], c[1:1V]]={0},
M[1:1VI]1={0}
parallel for i < 1 to |E| do
ifi=|ElorE[i]l.u#E[i+1].u then
c[E[i]u]«i
parallel for u <« 1 to |V]| do
ifu=1thend[u] < c[u]
elsedfu]«c[u]l-c[u-1]
ifdfu]=0thenM[u] « 1
else Mfu] « 1 (withprob1/ (2d[u]))
parallel for each (u, v) € E do
ifM[u]l]=1and M[v] =1 then
ifdflu]l]<d[v]thenM[u]<« 0
elseM[v]«0
parallel for u<« 1 to |V]| do
ifM[u]=1thenMIS[V[u]]« 1
(V, E) « Par-Compress (V,E, M)

Let n = #vertices, and m = #edges initially.

Let us assume for the time being that at least a
constant fraction of the edges are removed in
each iteration of the while loop (we will prove
this shortly). Let this fraction be f(< 1).

This implies that the while loop iterates
@(logl/(l_f) m) = O(ogm) times. (how?)

Each iteration performs ®(|V| + |E|) work and
has ®(log?|V| + log? |E|) depth. Hence,

Work: T;(n,m) = ® ((n +m) Yk (1 - f)i)
=0Mn+m)

Span: T,(n,m) = ©((log?n + logZm)logm)
= O(og3n)

o (22

Parallelism: =
TOO(nJm)

Analysis of Randomized MIS
Let, d(v) be the degree of vertex v, and I'(v) be its set of neighbors.

d(v
(), where,
3

Good Vertex: A vertex v is good provided |L(v)| >

L(v) = {u | (u € F(v)) A (d(u) < d(v)) }

Bad Vertex: A vertex is bad if it is not good.

Good Edge: An edge (u, v) is good if at least one of u and v is good.

Bad Edge: An edge (u, v) is bad if both u and v are bad.

Analysis of Randomized MIS

Lemma 1: In some iteration of the while loop, let v be a good vertex
with d(v) > 0, and let M be the set of vertices that got marked (in
lines 7-8). Then

Pr{lT(W) "M =0}>1—e /6
Proof: We have, Pr{T(wW) "M #0}=1-Pr{I'(v) "M =0}

=1-— 1_[PriugM}>1-— 1_[Pr{u¢ M}

u er(v) u €L(v)
—11_[(1 1)>1H(1 1)
u €L(v) Zd(u) u €L(v) Zd(v)
1 . 1 IL(V)I>1 1 1 d(v)/3
0\ 2dw) =5 7 2dw)
_dw)/3

1
>1—e 2dW) =1—¢"6

Analysis of Randomized MIS

Lemma 2: In any iteration of the while loop, let M be the set of vertices
that got marked (in lines 7-8), and let S be the set of vertices that got
included in the MIS (in line 13). Then

Pr{vESIvEM}Z%.

Proof: We have, Priv e S |ve M}

>1—Pr{auel(w)s.t. (dlu)=dw))A(ueM)}

=1- z 2d1(u)21_ 2 2d1(v)

u € T'(v) u€r()
d(u)=d(v) d(uw)=d(v)

1 1 1
21) 2a) LT AW X5aEs =3

uer)

Analysis of Randomized MIS

Lemma 3: In any iteration of the while loop, let V; be the set of good
vertices, and let S be the vertex set that got included in the MIS. Then

Pr{veSUT(S)[veV;}=-(1 —e V/5).
Proof: We have, Pr{v e SUT(S) |v eV, }
>Pr{ivelS)|veV;}=Pr{lTw) NS¢ |veV;}

=Pr{ilfv) NS+ |T(w)NM=+*o¢p,veV;}
XPrilTw)NnM=+*¢|veV:}

>PriuesS|luel(v)NnM,veV;}
XPr{iTwW)NnM=+*¢|velV;}

1
- _ »,—1/6
> > (1 e)

Analysis of Randomized MIS

Lemma 3: In any iteration of the while loop, let V; be the set of good
vertices, and let S be the vertex set that got included in the MIS. Then

Pr{veSUT(S)[veV;}=-(1 —e V/5).

Corollary 1: In any iteration of the while loop, a good vertex gets

removed (in line 14) with probability at least % (1 —e~1/¢).

Corollary 2: In any iteration of the while loop, a good edge gets

removed (in line 14) with probability at least % (1 —e~1/¢).

Analysis of Randomized MIS

Lemma 4: In any iteration of the while loop, let E and E; be the sets

of all edges and good edges, respectively. Then |E;| = |E|/2.
Proof: For each edge (u,v) € E, direct (u,v) fromutovifd(u) <

d(v), and v to u otherwise.

For every vertex v in the resulting digraph let d;(v) and d,(v) denote
its in-degree and out-degree, respectively.

Let V. and Vz be the set of good and bad vertices, respectively.

Then foreachv € Vg, d,(v) — d;(v) = d(gv) .

Let mgg, mgs, Mg and m; be the #edges directed from Vg to Vp,
from Vy to Vi, from V, to V5, and from V to V., respectively.

Analysis of Randomized MIS

Lemma 4: In any iteration of the while loop, let E and E; be the sets

of all edges and good edges, respectively. Then |E;| = |E|/2.

Proof (continued): We have,
ZmBB + Mpea + Mep

= Y dw) <3 Y (do@) = i) =3 Y (diw) — do(v))

VEV VEV VEV g
= 3((mBG + mgg) — (mgp + mGG)) = 3(mpg — Mgp)

< 3(mpg + mgp)

ThUS ZmBB + Mpea + Mep < 3(mBG + mGB)
= Mpp < Mpg + Mgp = Mpp < Mpg + Mgp + Mg
= (mpg + mgp + Mgg) + mpp < 2(Mmpg + Mgp + Mgg)
= |E| < 2|E¢]

Analysis of Randomized MIS
Lemma 5: In any iteration of the while loop, let E be the set of all
edges. Then the expected number of edges removed (in line 14)

. o 1 _
during this iteration is at Ieastz(l — e~ VO)IE].

Proof: Follows from Lemma 4 and Corollary 2.

