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Scheduler

A runtime/online scheduler

maps tasks to processing 

elements dynamically at 

runtime.

The map is called a schedule.

An offline scheduler prepares

the schedule prior to the

actual execution of the 

program.



Greedy Scheduling

A strand / task is called

ready provided all its parents

( if any ) have already been

executed.

A greedy scheduler tries to 

perform as much work as

possible at every step.

executed task

ready to be executed

not yet ready



A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if ≥ p tasks are ready: 

execute any p of them

( complete step )

― if < p tasks are ready:

execute all of them

( incomplete step )
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Greed Scheduling Theorem

Theorem [ Graham’68, Brent’74 ]:

For any greedy scheduler,

��≤
��

�
� �∞

Proof:

��= #complete steps

+ #incomplete steps

― Each complete step 

performs p work: 

#complete steps ≤
��

�

― Each incomplete step reduces 

the span by 1:

#incomplete steps ≤	�∞
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Optimality of the Greedy Scheduler

Corollary 1: For any greedy scheduler �� 	 2� 	�
∗ ,  where � 	�

∗ is the 

running time due to optimal scheduling on p processing elements.

Proof:

Work law: � 	�
∗ �

��

�

Span law: � 	�
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∴ From Graham-Brent Theorem: 
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Optimality of the Greedy Scheduler

Corollary 2: Any greedy scheduler achieves 	��	≈	� ( i.e., nearly 

linear speedup ) provided 
��

�∞
≫ �.

Proof:

Given,
��

�∞
≫ �	⇒

��

�
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∴ From Graham-Brent Theorem: 
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