
CSE 613: Parallel Programming

Lecture 5

(Greedy Scheduling)
(inspiration for some slides comes from lectures given

by Charles Leiserson)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Spring 2015

Scheduler

A runtime/online scheduler

maps tasks to processing

elements dynamically at

runtime.

The map is called a schedule.

An offline scheduler prepares

the schedule prior to the

actual execution of the

program.

Greedy Scheduling

A strand / task is called

ready provided all its parents

(if any) have already been

executed.

A greedy scheduler tries to

perform as much work as

possible at every step.

executed task

ready to be executed

not yet ready

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if ≥ p tasks are ready:

execute any p of them

(complete step)

― if < p tasks are ready:

execute all of them

(incomplete step)

p = 3

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if ≥ p tasks are ready:

execute any p of them

(complete step)

― if < p tasks are ready:

execute all of them

(incomplete step)

p = 3
1

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if ≥ p tasks are ready:

execute any p of them

(complete step)

― if < p tasks are ready:

execute all of them

(incomplete step)

p = 3
1

2

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if ≥ p tasks are ready:

execute any p of them

(complete step)

― if < p tasks are ready:

execute all of them

(incomplete step)

p = 3
1

2

3 3

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if ≥ p tasks are ready:

execute any p of them

(complete step)

― if < p tasks are ready:

execute all of them

(incomplete step)

p = 3
1

2

3 3

4 4 4

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if ≥ p tasks are ready:

execute any p of them

(complete step)

― if < p tasks are ready:

execute all of them

(incomplete step)

p = 3
1

2

3 3

4 4 4 5

5 5

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if ≥ p tasks are ready:

execute any p of them

(complete step)

― if < p tasks are ready:

execute all of them

(incomplete step)

p = 3
1

2

3 3

4 4 4 5

5 5 6 6 6

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if ≥ p tasks are ready:

execute any p of them

(complete step)

― if < p tasks are ready:

execute all of them

(incomplete step)

p = 3
1

2

3 3

4 4 4 5

5 5 6 6 6

7 7 7

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if ≥ p tasks are ready:

execute any p of them

(complete step)

― if < p tasks are ready:

execute all of them

(incomplete step)

p = 3
1

2

3 3

4 4 4 5

5 5 6 6 6

7 7 7

8 8

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if ≥ p tasks are ready:

execute any p of them

(complete step)

― if < p tasks are ready:

execute all of them

(incomplete step)

p = 3
1

2

3 3

4 4 4 5

5 5 6 6 6

7 7 7

8 8

9

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if ≥ p tasks are ready:

execute any p of them

(complete step)

― if < p tasks are ready:

execute all of them

(incomplete step)

p = 3
1

2

3 3

4 4 4 5

5 5 6 6 6

7 7 7

8 8

9

10

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if ≥ p tasks are ready:

execute any p of them

(complete step)

― if < p tasks are ready:

execute all of them

(incomplete step)

p = 3
1

2

3 3

4 4 4 5

5 5 6 6 6

7 7 7

8 8

9

10

11

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if ≥ p tasks are ready:

execute any p of them

(complete step)

― if < p tasks are ready:

execute all of them

(incomplete step)

p = 3
1

2

3 3

4 4 4 5

5 5 6 6 6

7 7 7

8 8

9

10

11

12

Greed Scheduling Theorem

Theorem [Graham’68, Brent’74]:

For any greedy scheduler,

��≤
��

�
� �∞

Proof:

��= #complete steps

+ #incomplete steps

― Each complete step

performs p work:

#complete steps ≤
��

�

― Each incomplete step reduces

the span by 1:

#incomplete steps ≤	�∞

p = 3
1

2

3 3

4 4 4 5

5 5 6 6 6

7 7 7

8 8

9

10

11

12

Optimality of the Greedy Scheduler

Corollary 1: For any greedy scheduler �� 	 2� 	�
∗ , where � 	�

∗ is the

running time due to optimal scheduling on p processing elements.

Proof:

Work law: � 	�
∗ �

��

�

Span law: � 	�
∗ � �∞

∴ From Graham-Brent Theorem:

	��≤
��

�
� �∞ 	 � 	�

∗ + � 	�
∗
 2� 	�

∗

Optimality of the Greedy Scheduler

Corollary 2: Any greedy scheduler achieves 	��	≈	� (i.e., nearly

linear speedup) provided
��

�∞
≫ �.

Proof:

Given,
��

�∞
≫ �	⇒

��

�
≫ �∞

∴ From Graham-Brent Theorem:

	��≤
��

�
� �∞	≈	

��

�

⇒
��

	��
≈	�	⇒ 	��	≈	�

