CSE 613: Parallel Programming

Department of Computer Science
SUNY Stony Brook
Spring 2015

“We used to joke that

“parallel computing is the future, and always will be,”
but the pessimists have been proven wrong.”

— Tony Hey

Course Information

Lecture Time: TuTh 2:30 pm - 3:50 pm
Location: CS 2129, West Campus

Instructor: Rezaul A. Chowdhury
Office Hours: TuTh 12:00 pm - 1:30 pm, 1421 Computer Science
Email: rezaul@cs.stonybrook.edu

TA: Unlikely

Class Webpage:
http://www3.cs.stonybrook.edu/~rezaul/CSE613-515.html

Prerequisites

Required: Background in algorithms analysis
(e.g., CSE 373 or CSE 548)

Required: Background in programming languages (C / C++)

Helpful but Not Required: Background in computer architecture

Please Note: This is not a course on
— Programming languages
— Computer architecture

Main Emphasis: Parallel algorithms

Topics to be Covered

The following topics will be covered

— Analytical modeling of parallel programs
— Scheduling

— Programming using the message-passing paradigm
and for shared address-space platforms

— Parallel algorithms for dense matrix operations,
sorting, searching, graphs, computational
geometry, and dynamic programming

— Concurrent data structures

— Transactional memory, etc.

Grading Policy

Homeworks (three: lowest score 5%, highest score 15%, and the
remaining one 10%): 30%

Group project (one): 55%
— Proposal: Feb 17
— Progress report: Mar 31
— Final demo / report: May 7

Scribe note (one lecture): 10%

Class participation & attendance: 5%

Programming Environment

This course is supported by an educational grant from

— Extreme Science and Engineering Discovery Environment (XSEDE):
https://www.xsede.org

We have access to the following two supercomputers

— Stampede (Texas Advanced Comp. Center): 6,400 nodes;
16 cores (2 Intel Sandy Bridge) and 1/2 Intel Xeon Phi coprocessor(s) per node

— Trestles (San Diego Supercomputer Center): 300+ nodes;
32 cores (4 AMD Magny Cours processors) per node

Programming Environment

World’s Most Powerful Supercomputers in November, 2014
(www.top500.0rg)

RANK SITE SYSTEM CORES (TFLOP/S) (TFLOP/S) (KW)
1 National Super Computer Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, 3,120,000 33,862.7 54,902.4 17,808
Center in Guangzhou Intel Xeon E5-2692 12C 2.200GHz, TH
China Express-2, Intel Xeon Phi 3151P
NUDT
2 DOE/SC/0ak Ridge National Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, 560,640 17.5%0.0 27.112.5 8,209
Laboratory Cray Gemini interconnect, NVIDIA K20x
United States Cray Inc.
3 DOE/NNSA/LLNL Sequoia - BlueGene/Q, Power BQC 16C 1.60 1,572,864 17,173.2 20,132.7 7,890
United States GHz, Custom
IBM
4 RIKEN Advanced Institute for K computer, SPARC64 VllIfx 2.0GHz, Tofu 705,024 10,510.0 11,280.4 12,660
Computational Science (AICS) interconnect
Japan Fujitsu
6] DOE/SC/Argonne National Mira - BlueGene/Q, Power BAC 16C 1.60GHz, 786,432 8,586.6 10,066.3 3,945
Laboratory Custom
United States IBM
6 Swiss National Supercomputing Piz Daint - Cray XC30, Xeon E5-2670 8C 115,984 6,271.0 7,788.9 2,325
Centre [CSCS) 2.600GHz, Aries interconnect , NVIDIA K20x
Switzerland Cray Inc.
7 Texas Advanced Computing Stampede - PowerEdge C8220, Xeon E5-2680 462,462 5,168.1 8,520.1 4,510
Center/Univ. of Texas 8C 2.700GHz, Infiniband FDR, Intel Xeon Phi
United States SE10P
Dell
8 Forschungszentrum Juelich JUQUEEN - BlueGene/Q, Power BQC 16C 458,752 5.008.9 5,872.0 2,301
(FZJ) 1.600GHz, Custom Interconnect
Germany IBM
9 DOE/NNSA/LLNL Vulcan - BlueGene/Q, Power BQC 16C 393,216 4,293.3 5,033.2 1,972
United States 1.600GHz, Custom Interconnect
IBM
10 Government Cray CS-5torm, Intel Xeon E5-2660v2 10C 72,800 3,577.0 6,131.8 1,499

United States

2.2GHz, Infiniband FDR, Nvidia K40
Cray Inc.

Recommended Textbooks

A. Grama, G. Karypis, V. Kumar, and A. Gupta. Introduction to Parallel
Computing (2nd Edition), Addison Wesley, 2003.

J. JAJa. An Introduction to Parallel Algorithms (1st Edition), Addison
Wesley, 1992.

T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms
(3rd Edition), MIT Press, 2009.

M. Herlihy and N. Shavit. The Art of Multiprocessor Programming (1st
Edition), Morgan Kaufmann, 2008.

P. Pacheco. Parallel Programming with MPI (1st Edition), Morgan
Kaufmann, 1996.

Why Parallelism?

Transistor count

2,600,000,000 -
1,000,000,000 -

100,000,000 -

10,000,000

1,000,000

100,000 -

10,000

2,300 -

Moore’s Law

16Core SPARC T3
Sw-Cere Core I7

Six-Core Xeon 7400 l ©10-Core Xa0n Wastmare-EX

Oual-Core harium 2@ @ ‘4 8-core POWER7

8d-Qore 2106
AMD KIO\ .:_—— ad-Core tanum Tutwia
PONERG® g P, B-Core Xoon Nahaler EX

Hanum 2 with 9\M8 cache ® Sx-Co 2800
ROK108 ot e Opteron

/
Rankum 2:/‘ E:r 2 Dwo
AMD X8

®larvn © Ao
© AMD K611
curve shows transistor /
count doubling every @ Perdium B
I 1 | | 1
1971 1980 1990 2000 2011

Date of introduction Source: Wikipedia

Unicore Performance

Slngle-Threaded Flnatlng Point Performance

on adjusted SPECTpE results

+21%

per year

m Intel Xeon

® |ntel Core
Intel Pentium

& |ntel Hamium

m ntel Celeron
AMD FX

m AMD Opteron
AMD Phenom

& AMD Athlon
IBM POWER

= &= PowerPC

Fujitsu SPARC
o . Sun SPARC
*) 4 DEC Alpha

MIPS
per year » HP PA-RISC

" i i, 1, G i . ["
{) £ Y N v, A W,
e o . 5 £ i ., % - ! [y - .

" b b \ - 1 A . & ¥ A .
™, e v k L ; 15 ’ b L ; 1

Source: Jeff Preshing, 2012, http://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/

Unicore Performance Has Hit a Wall!

Some Reasons

— Lack of additional ILP
(Instruction Level Hidden Parallelism)

— High power density
— Manufacturing issues
— Physical limits

— Memory speed

Unicore Performance: No Additional ILP
“Everything that can be invented has been invented.”

— Charles H. Duell
Commissioner, U.S. patent office, 1899

Exhausted all ideas to exploit hidden parallelism?
— Multiple simultaneous instructions
— Instruction Pipelining
— Out-of-order instructions
— Speculative execution
— Branch prediction

— Register renaming, etc.

Unicore Performance: High Power Density
— Dynamic power, P,o< V2 fC

— V =supply voltage
— f=clock frequency
— C=capacitance

— But Vo< f
3
— Thus P, o< f
10.000 Sun's Surface >,

e Rocket Nozzle
E} 1,000 =—————,
% Muclear Reactor
' -
E 100 Pentium®
g 8086
= Hot Plate
o 4004 8085 —

%18008 3

286 S
8080 486
1
70 ‘80 ‘90 00 10

Source: Patrick Gelsinger, Intel Developer Forum, Spring 2004 (Simon Floyd)

Unicore Performance: Manufacturing Issues

— Frequency, fe<1/s

— s =feature size (transistor dimension)

— Transistors / unit area o< 1 / s?
— Typically, die size < 1/ s

— So, what happens if feature size goes down by a factor of x?

— Raw computing power goes up by a factor of x*!

— Typically most programs run faster by a factor of x3
without any change!

Source: Kathy Yelick and Jim Demmel, UC Berkeley

Unicore Performance: Manufacturing Issues

— Manufacturing cost goes up as feature size decreases

— Cost of a semiconductor fabrication plant doubles
every 4 years (Rock’s Law)

— CMOS feature size is limited to 5 nm (at least 10 atoms)

Cost of semiconductor factories in millions of 1995 dollars
10,000

Hratlo scale)
- //
1,000 |-
: /
E /‘
100 g »
E / e
: ,./ W
10$E/’
1
'66 ‘74 ‘g2 '90 '98

Source: Kathy Yelick and Jim Demmel, UC Berkeley

Unicore Performance: Physical Limits

Execute the following loop on a serial machine in 1 second:

for (i=0;i<102; ++i)

zZ[il=x[i]+ylil];
— We will have to access 3x101?2 data items in one second
— Speed of light is, c = 3x108m/s

— So each data item must be within ¢/ 3x10*2 = 0.1 mm
from the CPU on the average

— All data must be put inside a 0.2 mm x 0.2 mm square

— Each data item (> 8 bytes) can occupy only 1 A2 space!
(size of a small atom!)

Source: Kathy Yelick and Jim Demmel, UC Berkeley

Unicore Performance: Memory Wall

Relative
Performance
10000
B CcPU
1000
100
10
1
1980 1985 1990 1995 2000 2005

Source: Sun World Wide Analyst Conference Feb. 25, 2003

Source: Rick Hetherington, Chief Technology Officer, Microelectronics, Sun Microsystems

Unicore Performance Has Hit a Wall!

“Oh Sinnerman, where you gonna run to?”

— Sinnerman (recorded by Nina Simone)

Where You Gonna Run To?

— Changing f by 20% changes performance by 13%

— So what happens if we overclock by 20%?

'\ Performance

Power

1.00x

Design
Frequency

Source: Andrew A. Chien, Vice President of Research, Intel Corporation

Where You Gonna Run To?

— Changing f by 20% changes performance by 13%
— So what happens if we overclock by 20%?

— And underclock by 20%?

1.73x | Performance

Power

1.13x

1.00x

Over-clocked Design
(+20%) Frequency

Source: Andrew A. Chien, Vice President of Research, Intel Corporation

Where You Gonna Run To?

— Changing f by 20% changes performance by 13%
— So what happens if we overclock by 20%?

— And underclock by 20%?

Over-clocked Design Dual-core

+20% Frequen Underclocked
() quency (-20%)

Source: Andrew A. Chien, Vice President of Research, Intel Corporation

Moore’s Law Reinterpreted

10000000 -
s
1000000 _ -
* Transistors (Thousands) %
. L3
I— = Frequency (MHz) ..
a Power (W) *
10000 +—— ® Cores
1000
“
100 ‘o
& &
& A
D 1 1 1 1 1 1 1 1
1970 1975 1980 1985 1990 1995 2000 2005 2010

Source: Report of the 2011 Workshop on Exascale Programming Challenges

Cores / Processor (General Purpose)

Future: 100+

arrabee: 12-32

Mehalem: 8+

- Dunnington (6)

lCu re2 Quad (4)

Number of Core:

_"]
Core 2 Duo (2)

2006 2007 2008 2009 2010 2015

Source: Andrew A. Chien, Vice President of Research, Intel Corporation

Operations per second for serial code

No Free Lunch for Traditional Software

11 Core |

.

0 18

@ AL

€z |3|! [rgnestoon |

£ | | Speed: 3.80GHz

mas | Single Core

c2f il L2

%E’E &I |2Cnras]

EE§ =1 4-""-

EE'E £l s

LL'EE o P :

'EE% : T 4 Cores

P

32 ! # i '8 Cores |
g 3 GHz. 4 Cores oL BCony —— — —
£ e —— 7

1
" -
b= - =

Additional operations per second if code can take advantage of concurrency

Source: Simon Floyd, Workstation Performance: Tomorrow's Possibilities (Viewpoint Column)

100

Tg 500 Supercomputing Sites (Cores / Socket)

o =d=

o 55 (114 _240h]

[16 4 {H_STs)]

[_:I.I:I BF {17F «0%a} -

o - 17
Source: www.top500.org

Insatiable Demand for Performance

—_—

Weather Prediction

Genomics Research Financial Analysis Medical Imaging

Source: Patrick Gelsinger, Intel Developer Forum, 2008

Numerical Weather Prediction
Problem: (temperature, pressure, ..., humidity, wind velocity)

< f(longitude, latitude, height, time)

Approach (very coarse resolution):

— Consider only modeling fluid flow in the atmosphere

— Divide the entire global atmosphere into cubic cells of
size 1 mile x 1 mile x 1 mile each to a height of 10 miles
=~ 2 x 10° cells

— Simulate 7 days in 1 minute intervals
~ 10% time-steps to simulate

— 200 floating point operations (flop) / cell / time-step
=~ 4 x 10*° floating point operations in total

— To predictin 1 hour = 1 Tflop/s (Tera flop / sec)

Some Useful Classifications
of Parallel Computers

Parallel Computer Memory Architecture
(Distributed Memory)

Each processor has its own
local memory — no global
address space

Changes in local memory by

one processor have no effect

Source: Blaise Barney, LLNL

on memory of other processors
Communication network to connect inter-processor memory

Programming

— Message Passing Interface (MPI)
— Many once available: PVM, Chameleon, MPL, NX, etc.

Parallel Computer Memory Architecture
(Distributed Memory)

Advantages
— Easily scalable

— No cache-coherency
needed among processors

— Cost-effective
Source: Blaise Barney, LLNL
Disadvantages
— Communication is user responsibility

— Non-uniform memory access

— May be difficult to map shared-memory data structures
to this type of memory organization

Parallel Computer Memory Architecture
(Shared Memory)

All processors access all memory

as global address space

Changes in memory by one
processor are visible to all others

Two types
— Uniform Memory Access
(UMA)

— Non-Uniform Memory Access
(NUMA)

Bus Interconnect

Programming
— Open Multi-Processing (OpenMP)-=-

— Cilk/Cilk++ and Intel Cilk Plus
N NUMA
— Intel Thread Building Block (TBB), etc.

Source: Blaise Barney, LLNL

Parallel Computer Memory Architecture
(Distributed Memory)

Advantages
— Easily scalable

— No cache-coherency
needed among processors

— Cost-effective
Source: Blaise Barney, LLNL
Disadvantages
— Communication is user responsibility

— Non-uniform memory access

— May be difficult to map shared-memory data structures
to this type of memory organization

Parallel Computer Memory Architecture
(Hybrid Distributed-Shared Memory)

— The share-memory component
can be a cache-coherent SMP or
a Graphics Processing Unit (GPU

— The distributed-memory
component is the networking of
multiple SMP/GPU machines

— Most common architecture
for the largest and fastest
computers in the world today

— Programming
— OpenMP / Cilk + CUDA / OpenCL + MPI, etc.

Source: Blaise Barney, LLNL

Flynn's Taxonomy of Parallel Computers

Flynn’s classical taxonomy (1966):
Classification of multi-processor computer architectures along

two independent dimensions of instruction and data.

Single Data Multiple Data
(SD) (MD)

Single Instruction SISD SIMD
(SI)
Multlpl(el::ls;ructlon MISD MIMD

Flynn's Taxonomy of Parallel Computers

SISD

— A serial (non-parallel) computer

— The oldest and the most common

type of computers

— Example: Uniprocessor unicore

machines

load A
load B
C=A+B

dwiy

store C
A=B*2

store A

Source: Blaise Barney, LLNL

Flynn's Taxonomy of Parallel Computers

prev instruct prev instruct prev instruct
load A(1) load A(2) load A(n)
load B(1) load B(2) load B(n)
C(1)=A(1)*B(1) C(2)=A(2)*B(2) C(n)=A(n)*B(n)j
store C(1) store C(2) store C(n)
next instruct next instruct next instruct
P1 B .
SIMD

— A type of parallel computer

awiy

=7

+

~ 7

(X+Y)

xi1 [1 x| <1 | x |
= +

' RIEEE E7E T BTN
X[1+Y][] |,x3+y3 x2+y2 | x1+y1 x0+y0|j

Source: Blaise Barney, LLNL

— All PU’s run the same instruction at any given clock cycle

— Each PU can act on a different data item

— Synchronous (lockstep) execution

— Two types: processor arrays and vector pipelines

Example: GPUs (Graphics Processing Units)

Flynn's Taxonomy of Parallel Computers

MISD
— A type of parallel computer

— Very few ever existed

MIMD
— A type of parallel computer

— Synchronous /asynchronous
execution

— Examples: most modern
supercomputers, parallel
computing clusters,
multicore PCs

prev instruct prev instruct prev instruct
load A(1) load A(1) load A(1)
C(1)=A(1)"1 C(2)=A(1)*2 C(n)=A(1)*n
store C(1) store C(2) store C(n)
next instruct next instruct next instruct
P1 P2 ~ Pn
prev instruct prev instruct prev instruct
load A(1) call funcD do 10 i=1,N
load B(1) x=y*z alpha=w**3
C(1)=A(1)*B(1) sum=x*2 zeta=C(i)
store C(1) call sub1(i,j) 10 continue
next instruct next instruct next instruct
P1 P2 ~ Pn

Source: Blaise Barney, LLNL

awny

awi)

Parallel Algorithms
Warm-up

“The way the processor industry is going, is to add more and more cores, but
nobody Rnows how to program those things. I mean, two, yeah; four, not
really; eight, forget it.”

— Steve Jobs, NY Times interview, June 10 2008

Parallel Algorithms Warm-up (1)

Consider the following loop:

fori=1tondo
Cl[i]<A[i]xB[i]

— Suppose you have an infinite number of processors/cores

— Ignore all overheads due to scheduling, memory accesses,
communication, etc.

— Suppose each operation takes a constant amount of time

— How long will this loop take to complete execution?

Parallel Algorithms Warm-up (1)

Consider the following loop:

fori=1tondo
Cl[i]<A[i]xB[i]

— Suppose you have an infinite number of processors/cores

— Ignore all overheads due to scheduling, memory accesses,
communication, etc.

— Suppose each operation takes a constant amount of time
— How long will this loop take to complete execution?

— O(1)time

Parallel Algorithms Warm-up (2)

Now consider the following loop:

c<—0

fori=1tondo
c<—c+A[i]xB[i]

— How long will this loop take to complete execution?

Parallel Algorithms Warm-up (2)

Now consider the following loop:

c<—0

fori=1tondo
c<—c+A[i]xB[i]

— How long will this loop take to complete execution?

— O(logn) time

Parallel Algorithms Warm-up (3)

Now consider quicksort:

QSort(A)
if |A|<1return A
else p<« Alrand(|A])]
return QSort({xe A:x<p})

H{p}#
QSort({xe A:x>p})

— Assuming that A is split in the middle everytime, and the two
recursive calls can be made in parallel, how long will this
algorithm take?

Parallel Algorithms Warm-up (3)

Now consider quicksort:

QSort(A)
if |A|<1return A
else p<« Alrand(|A])]
return QSort({xe A:x<p})

H{p}#
QSort({xe A:x>p})

— Assuming that A is split in the middle everytime, and the two
recursive calls can be made in parallel, how long will this
algorithm take?

— O(log? n) (if partitioning takes logarithmic time)
— O(logn) (butcan be partitioned in constant time)

