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� Connectivity of Undirected Graphs

� Maximum Matching in Bipartite Graphs



� Connectivity of Undirected Graphs
◦ Let G(V, E) be a connected graph. 
� A cut vertex of G is a vertex whose removal disconnects 

G. 

� A bridge (or a cut edge) of G is an edge whose removal 
disconnects G. 

� The vertex-connectivity of a graph is the minimum 
number k of vertices that must be removed to disconnect 
the graph. 

� The edge-connectivity of a graph is the minimum 
number k of edges that must be removed to disconnect 
the graph. 

◦ The vertex-connectivity and the edge-connectivity of 
a graph show connectivity of a graph.



� Connected component & Biconnected
component

◦ A connected component of a graph G is a 
connected subgraph of G that is not a 
proper subgraph of another connected 
subgraph of G.

◦ In an unconnected graph, connected 
components without a cut vertex are 
called biconnected components. A 
connected subgraph without a cut vertex 
is also called a block.



� Function low is used to get cut vertices and 
bridges of a connected graph, and 
biconnected components of a graph. 

� Suppose pre[v] is the sequence number of 
vertex v in DFS traversal. That is, pre[v] is the 
time that vertex v is visited. Function low[u] is 
the pre[v] of vertex v which is the earliest 
visited ancestor of u and u’s descendants.

� low[u]＝
� where s is a child of u, and (u, w) is a back 

edge.



� In DFS, edges can be classified into four types:
◦ Branch edge T: Edge (u, v) is a branch edge, if it is the 

first time that v is visited in DFS.

◦ Back edge B: Edge (u, v) is a back edge, if u is a 
descendant of v, and v has been visited, but all 
descendants of v haven’t been visited.

◦ Forward edge F: Edge (u, v) is a forward edge, if v is a 
descendant of u, all descendants of v have been visited 
and pre[u]<pre[v].

◦ Cross edge C: all other edges (u, v). That is, u and v has 
no ancestor-descendant relationship in a DFS tree, or u
and v are in different DFS trees. All descendants of v 
have been visited and pre[u]>pre[v].





� Property 1: Property 1: Property 1: Property 1: If vertex u isn’t a root, u is a cut 
vertex if and only if these exists a child s of u, 
low[s]≥pre[u]. That is to say, there is no back 
edge from s and its descendants to u’s 
ancestors.

� In Figure (a), although in the subtree whose 
root is s1 there is a back edge to u’s ancestor, 
there is no back edge to u’s ancestor from s2 
or s2’s descendants. If u is removed, the 
graph is not connected.



� In an undirected graph, there are only branch 
edges and back edges. We can calculate low and 
pre through DFS, and find whether Property 1Property 1Property 1Property 1
holds or not. The process is as follow.

� If (v, w) is a branch edge T (pre[w]==-1), and if 
there is no back edge from w or w’s descendants 

to v’s ancestors (low[w]≥pre[v]), then vertex v is a 
cut vertex, and low[v]=min{low[v], low[w]}.

� If (v, w) is a back edge B (pre[w]!=-1), then
low[v]=min{low[v], pre[w]}.



� Property 2: Property 2: Property 2: Property 2: If u is selected as the root, then u
is a cut vertex if and only if it has more than 

one child (Figure (ｂ)).

� In Figure (b), root u has two subtrees whose 
roots are s1 and s2 respectively, and there is 
no cross edge C between the two trees (in an 
undirected graph, there is no cross edge C). 
Therefore the graph isn’t connected after 
vertex u is deleted, and vertex u is a cut 
vertex.



� Based on above two properties, the algorithm 
calculating cut vertices is as follow.

� for(i = 0; i < n; i ++)        //Initialization
� pre[i] =-1; 
� low[s]=pre[s]=d=0;  // vertex s: start vertex
� p=0;     // the number of children for vertex s
� for (each w∈adj[s])  p++; 
� if (p>1)
� s is a cut vertex and exit;     //Property 2
� fund_cut_point(s);        // Property 1



� In an undirected graph, edge (u, v) is a bridge 
if and only if (u, v) is not in any simple circuit.

� The method determining whether an edge is 
a bridge or not is as follow. Edge (u, v) is a 
branch edge discovered by DFS. If there is no 
back edge connecting v and its descendants 
to u’s ancestors; that is, low[v]>pre[u] or 
low[v]==pre[v]; then deleting (u, v) leads u
and v aren’t connected. Therefore edge (u, v) 
is a bridge.



� In Figure (a), DFS is used, a DFS tree is gotten 
as Figure (b), and pre and low for all vertices 
are showed in Figure (c). Obviously for v5, v7, 
and v12, low[v]==pre[v], and (v0, v5), (v6, v7), 
and (v11, v12) satisfy low[v]>pre[u] for edge (u, 
v). These edges are bridges in (a).





� In an undirected graph there are only branch 
edges and back edges. DFS can be used to 
calculate low and pre for vertices ( initial values 
for pre[ ] are -1), and calculate bridges in the 
undirected graph. The method is as follow.

� If (v, w) is a branch edge (pre[w]==-1), and if 
there is no back edge from w or w’s descendants 
to u’s ancestors, 
((low[w]==pre[w])||(low[w]>pre[v])), then (v, w) is 
a bridge, and low[v]=min{low[v], low[w]}.

� If (v, w) is a back edge (pre[w]!=-1), then 
low[v]=min{low[v], pre[w]}.



� void fund_bridge (v);            // DFS to find bridges from vertex v
� { int w;  
� low[v]= pre[v]=++d; 
� for (each w∈ the set of adjacent vertices for v) &(w!=v)  // 

Search edge(v, w)
� { if (pre[w]==-1)                // if (v, w) is a branch edge
� { fund_bridge (w);
� if ((low[w]== pre[w])||( low[w]> pre[v]))
� (v, w) is a branch edge;
� low[v]=min{ low[v], low[w]};
� }; 
� else low[v]=min{ low[v], pre[w]};  // if (v, w) is a back edge
� }
� }



� A biconnected component is a connected 
component without a cut vertex. Biconnected
components of a graph are partitions of edges of 
the graph, that is, every edge must be in a block, 
and two different blocks don’t contain common 
edges. 

� In Figure 11.6, vertex b is a common vertex for 
block 3 and block 4, vertex c is a common vertex 
for block 3 and block 1, and vertex e is a 
common vertex for block 2 and block 4. The 
three vertices are cut vertices for the graph. The 
graph isn’t connected when one of the three 
vertices is deleted.





� The key to finding a block in an undirected graph 
is to find a cut vertex. DFS is used to get low and 
pre (initial values for pre[ ] are -1) and calculate 
blocks in the undirected graph. The process is as 
follow. 

� For vertex v, u is the parent for v: if u is the root, 
(u, v) is the first edge for the block; else suppose 
f is u’s parent. If u is deleted, v and f aren’t 
connected, then {f, u, v} isn’t biconnected, (u, v) 
is the first edge for the new block; else (u, v) and 
(f, u) is in a same block. A stack is used to store 
vertices in the current block.
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� A bipartite graph is a graph that its vertex set 
can be divided into two disjoint subsets such that 
each edge connects a vertex in one of the two 
subsets to a vertex in the other subset.

� Given a bipartite graph G(V, E), a matching is a 

subset of edges M⊆E, if there is no common 
vertex for any two edges in M.

� A maximum matching is a matching of maximum 
cardinality, that is, a matching M is called a 
maximum matching, if for any other matching M’, 
|M|≥|M’|. 



� finding a maximum matching in a bipartite 
graph



� A perfect matching is a matching which 
matches all vertices of the graph. That is, 
every vertex of the graph is incident to 
exactly one edge of the matching. Every 
perfect matching must be a maximum 
matching.



� For a bipartite graph, Hungarian algorithm is 
used to find a maximum matching or a 
perfect matching.



� Hungarian algorithm is the foundation for all 
algorithms for bipartite matching.

� Given a bipartite graph G(V, E) and a matching M, 
the set of vertices with which edges in M are 
incident is called a cover. For matching M, an 
alternating path is a path which the edges belong 
alternatively to M and not to M, and an 
augmenting path is an alternating path that 
starts from and ends on unmatched vertices. 
Matching M is the maximum matching in G, if 
there is no other matching M’ in G such that 
|M’|>|M|. 



� Hungarian algorithm
◦ [1] Initially matching M is empty;

◦ [2] Finding an augmenting path p for M, and M←M
⊕p;

◦ [3] Repeat [2] until there is no any augmenting path 
in G. Matching M is a maximum matching for G.



� DFS algorithm can be used to find an 
augmenting path. DFS algorithm takes an 
unmatched vertex as the starting vertex, and 
it produces an augmenting path p in which 
the edges belong alternatively to M and not 
to M.



� DFS algorithm is as follow.
� bool dfs(int i){     // Determine whether there is an augmenting 

path starting from vertex i in X
� for (int j=1; j<=m; j++) 
� if ((!v[j])&&(a[i][j])){       // Search all unvisited vertices which are 

adjacent to vertex i
� v[j]=1;                      // visit vertex j
� if (pre[j]==0||dfs(pre[j])){       //If the precursor for j is 

unmatched or there exists an augmenting path starting from the 
precursor for j, then edge (i, j) is in matching, and return true

� pre[j]=i;
� return 1;
� }
� }
� return 0;                                   //return false
� }



� If dfs(i) returns true, then vertex i is matched. 
Obviously, for every vertex i, dfs(i) is called, 
and a maximum matching in a bipartite graph 
is gotten. Therefore Hungarian algorithm is 
as follow.

� int ans=0;                              //Initialization
� for (int i=1; i<=n; 

i++){                    //Enumeration
� memset(v, 0, sizeof(v));  
� if (dfs(i)) ans++; 
� }



� Suppose there are e edges in a bipartite 
graph G, vertices in G are divided into two 
disjoint sets X and Y such that |X|=|Y|=n, 
and M is a matching in G. The time 
complexity of finding an augmenting path is 
O(e). In order to get a maximum matching, at 
most n augmenting paths are required to 
calculate. Therefore the time complexity of 
Hungarian algorithm is O(n*e).



� SourceSourceSourceSource: Bulgarian Online Contest September : Bulgarian Online Contest September : Bulgarian Online Contest September : Bulgarian Online Contest September 
2001200120012001

� IDs for Online JudgeIDs for Online JudgeIDs for Online JudgeIDs for Online Judge: Ural 1109: Ural 1109: Ural 1109: Ural 1109


