Lecture 8

Yonghui Wu

Stony Brook University, Fudan University
vhwu@fudan.edu.cn

» Connectivity of Undirected Graphs
» Maximum Matching in Bipartite Graphs

Connectivity of Undirected Graphs

» Connectivity of Undirected Graphs

> Let G(V, £) be a connected graph.

- A cut vertex of Gis a vertex whose removal disconnects
G.

- A bridge (or a cut edge) of Gis an edge whose removal
disconnects G.

- The vertex-connectivity of a graph is the minimum
number k of vertices that must be removed to disconnect
the graph.

- The edge-connectivity of a graph is the minimum
number k of edges that must be removed to disconnect
the graph.

- The vertex-connectivity and the edge-connectivity of
a graph show connectivity of a graph.

‘‘‘‘‘‘‘‘‘
\\\\\\\\\\\\

» Connected component & Biconnected
component

> A connected component of a graph G'is a
connected subgraph of G that is not a
proper subgraph of another connected
subgraph of G.

> In an unconnected graph, connected
components without a cut vertex are
called biconnected components. A
connected subgraph without a cut vertex
is also called a block.

» Function /owis used to get cut vertices and
oridges of a connected graph, and
viconnected components of a graph.

» Suppose pre[V] is the sequence number of
vertex vin DFS traversal. That is, pre[V] is the
time that vertex vis visited. Function /fomu] is
the pre[v] of vertex vwhich is the earliest
visited ancestor of v and s descendants.

) /OM/[L/] - mm {p?é{u] [011{5] p?e{lt]}

» where sis a ch|Id of v, and (v, W) is a back
edge.

» In DFS, edges can be classified into four types:

- Branch edge 7: Edge (v, v) is a branch edge, if it is the
first time that vis visited in DFS.

- Back edge B: Edge (v, V) is a back edge, if vis a
descendant of v, and v has been visited, but all
descendants of vhaven’t been visited.

- Forward edge F. Edge (v, v) is a forward edge, if vis a
descendant of v, all descendants of v have been visited
and pre[ul<pre[V.

> Cross edge C: all other edges (v, v). That is, v and v has
no ancestor-descendant relationship in a DFS tree, or u
and vare in different DFS trees. All descendants of v

have been visited and pre[ul> pre[V.

Function /owis used to get cut
vertices in a connected graph

U's ancestors

chosen root
hosen U

for the forest
r.ﬁ(o\c: 52

a subtree whose @ subtree whose

root is s; root is s2
s2' descendendants
Property 1 Property 2
(a) (b)

P

» Property 1: If vertex visn’t a root, vis a cut
vertex if and only if these exists a child s of ¢,
lows]=prelu]. That is to say, there is no back
edge from s and its descendants to «’s
ancestors.

» In Figure (a), although in the subtree whose
root is s1 there is a back edge to ¢'s ancestor,
there is no back edge to ¢'s ancestor from s2
or s2’s descendants. If vis removed, the
graph is not connected.

» In an undirected graph, there are only branch
edges and back edges. We can calculate /ow and
pre through DFS, and find whether Property 1
holds or not. The process is as follow.

» If (v, w) is a branch edge 7 (pre[w]==-1), and if
there is no back edge from wor ws descendants

to Vs ancestors (/omwl=pre[V]), then vertex vis a
cut vertex, and fomvi=mir{lom V], lov]wmi}.

» If (v, w) is a back edge B (pre[w]'=-1), then
fomvi= mir{lom V], pre[wi}.

» Property 2: If uvis selected as the root, then v
is a cut vertex if and only if it has more than
one child (Figure (b)).

» In Figure (b), root v has two subtrees whose
roots are s1 and s2 respectively, and there is
no cross edge C between the two trees (in an
undirected graph, there is no cross edge ().
Therefore the graph isn’t connected after
vertex v is deleted, and vertex v is a cut

vertex.

» Based on above two properties, the algorithm
calculating cut vertices is as follow.

» for(/i=0; 7 < m 7++) / /Initialization

y pre[l] =-1;

» lowsl=pre[s]=d=0; // vertex s: start vertex

» p=0; // the number of children for vertex s
» for (each we ad/(s]) p++;

v if (p>1)

» Sis a cut vertex and exit; //Property 2

v fund_cut_point(s); /| Property 1

Function /owis used to get the
bridge in a connected graph

» In an undirected graph, edge (v, V) is a bridge
if and only if (¢, V) is not in any simple circuit.

» The method determining whether an edge is
a bridge or not is as follow. Edge (¢, v) is a
branch edge discovered by DFS. If there is no
back edge connecting vand its descendants
to «'s ancestors:; that is, lom{ V> pre[u] or
lomV]==pre[V]; then deleting (v, V) leads u
and varen’t connected. Therefore edge (v, V)
is a bridge.

» In Figure (a), DFS is used, a DFS tree is gotten
as Figure (b), and pre and /ow for all vertices
are showed in Figure (c). Obviously for v, v,
and v;,, lom==pre[v], and (v,,), (v, V),
and (v;,, v;,) satisty Jlom{ > pre[u] for edge (v,
V. These edges are bridges in (a).

L]
,?\f"& Note

s 1 _;__.4:\3 : Qcmssedge C O\ElamardedgeF

QggnchT Q%ﬂc edge B

undirected grapth DFS tree
() (b)

ncde number ol 1 (2l]a)s]al7 |2

16 | 1k 12

e[S TR AP0 0] bk 12

=

wls] 4

Lew]v] S Ol Lo uE| Q|18 |2] &

The nodes of the pre value and low value

(c)

» In an undirected graph there are only branch
edges and back edges. DFS can be used to
calculate /Jow and pre for vertices (initial values
for pre[] are -1), and calculate bridges in the
undirected graph. The method is as follow.

» If (v, w) is a branch edge (pre[w]==-1), and if
there is no back edge from wor w's descendants
to ¢'s ancestors,

(lomwl==prelw))||(lomw]> pre[V])), then (v, W) is
a bridge, and /om{il=min{/om v, lom|m}.

» If (v, w) is a back edge (pre[w]!'=-1), then

lomV]=min{/om V], pre[wi}.

void fund_bridge (v); // DFS to find bridges from vertex v
{int w,
lomvi= prelvi=++d,

for (each ne the set of adjacent vertices for v) &wi=v) //
Search edge(v, w)

{if (pre[W]==-1) /] if (v, w) is a branch edge
{ fund_bridge (w);
it ((lomwml== pre[m)||(lomw]> pre[V]))
(v, w) is a branch edge;
lom{I=min{ lom{ V], lovfwi};

v Vv vV Vv

}.

| else Jom{vi=min{ lom{ V], pre[wl}; /] if (v, w) is a back edge
}
}

vV VvV VvV VvV VvV VvV VvV Vv v

Function /owis used to get

biconnected components

» A biconnected component is a connected
component without a cut vertex. Biconnected
components of a graph are partitions of edges of
the graph, that is, every edge must be in a block,
agd two different blocks don’t contain common
edges.

» In Figure 11.6, vertex bis a common vertex for
block 3 and block 4, vertex cis a common vertex
for block 3 and block 1, and vertex eis a
common vertex for block 2 and block 4. The
three vertices are cut vertices for the graph. The
graph isn’t connected when one of the three
vertices is deleted.

block3™, Blockad\

(=) T

block1- =, block2
QXX O

——

cut vertices b,c.e are common vertices for two blocks

» The key to finding a block in an undirected graph
is to find a cut vertex. DFS is used to get /ow and
pre (initial values for pre[] are -1) and calculate
blocks in the undirected graph. The process is as
follow.

» For vertex v, uis the parent for v. if vis the root,
(u, v) is the first edge for the block; else suppose
fis u's parent. If vis deleted, vand faren’t
connected, then {f, v, vV} isn’t biconnected, (v, V)
is the first edge for the new block; else (v, v) and
(f, u)is in a same block. A stack is used to store
vertices in the current block.

Knights of the Round Table

» Source: ACM Central Europe 2005
» IDs for Online Judge: POJ 2942, UVA 3523

Maximum Matching in Bipartite
Graphs

» A bipartite graph is a graph that its vertex set
can be divided into two disjoint subsets such that
each edge connects a vertex in one of the two
subsets to a vertex in the other subset.

» Given a bipartite graph G(V, £), a matching is a
subset of edges McE, if there is no common
vertex for any two edges in M.

» A maximum matching is a matching of maximum
cardinality, that is, a matching Mis called a
maximum matching, if for any other matching M/,
| M|=| M.

» finding a maximum matching in a bipartite
graph

P

» A perfect matching is a matching which
matches all vertices of the graph. That is,
every vertex of the graph is incident to
exactly one edge of the matching. Every
perfect matching must be a maximum
matching.

» For a bipartite graph, Hungarian algorithm is
used to find a maximum matching or a
perfect matching.

Hungarian algorithm used to find a
maximum matching

4

>

Hungarian algorithm is the foundation for all
algorithms for bipartite matching.

Given a bipartite graph G(V, £) and a matching M,
the set of vertices with which edges in M are
incident is called a cover. For matching M, an
alternating path is a path which the edges belong
alternatively to M and not to M, and an
augmenting path is an alternating path that
starts from and ends on unmatched vertices.
Matching Mis the maximum matching in G, if
there is no other matching M in G such that
M| > M.

» Hungarian algorithm
> [1] Initially matching Mis empty;
- [2] Finding an augmenting path p for M, and MM
Dp;
> [3] Repeat [2] until there is ho any augmenting path
in G. Matching Mis a maximum matching for G.

» DFS algorithm can be used to find an
augmenting path. DFS algorithm takes an
unmatched vertex as the starting vertex, and
it produces an augmenting path pin which
the edges belong alternatively to M and not
to M.

4
4
4
>
>
>

DFS algorithm is as follow.

bool dfs(int){ // Determine whether there is an augmenting
path starting from vertex 7in X

for (int j=1; j<=m; j++)
if (MD&&(alA/DA // Search all unvisited vertices which are
adjacent to vertex /
Ul=1; /] visit vertex j
it (prelj]==0||dfs(prelj)) / /1f the precursor for jis
unmatched or there exists an a_ug_menting_path starting from the
precursor for j, then edge (/,) is in matching, and return true
prelj1=1
return 1;
}
}

return O; / /return false

v If dfs(/) returns true, then vertex 7is matched.
Obviously, for every vertex 7, dfs()) is called,
and a maximum matching in a bipartite graph
is gotten. Therefore Hungarian algorithm is
as follow.

» int ans=0; / /Initialization
» for (int /=1; i<=n;
/++){ / /Enumeration

b memset(v, 0, sizeofV)):
) if (dfs())) ans++;

» Suppose there are e edges in a bipartite
graph G, vertices in G are divided into two
disjoint sets Xand Ysuch that | X]|=|Y=n,
and Mis a matching in G. The time
complexity of finding an augmenting path is
O(e). In order to get a maximum matching, at
most 7 augmenting paths are required to
calculate. Therefore the time complexity of
Hungarian algorithm is O(7* e).

Conference

» Source: Bulgarian Online Contest September
2001

» IDs for Online Judge: Ural 1109

