
Yonghui Wu
Stony Brook University, Fudan University

yhwu@fudan.edu.cn

� Connectivity of Undirected Graphs

� Maximum Matching in Bipartite Graphs

� Connectivity of Undirected Graphs
◦ Let G(V, E) be a connected graph.
� A cut vertex of G is a vertex whose removal disconnects

G.

� A bridge (or a cut edge) of G is an edge whose removal
disconnects G.

� The vertex-connectivity of a graph is the minimum
number k of vertices that must be removed to disconnect
the graph.

� The edge-connectivity of a graph is the minimum
number k of edges that must be removed to disconnect
the graph.

◦ The vertex-connectivity and the edge-connectivity of
a graph show connectivity of a graph.

� Connected component & Biconnected
component

◦ A connected component of a graph G is a
connected subgraph of G that is not a
proper subgraph of another connected
subgraph of G.

◦ In an unconnected graph, connected
components without a cut vertex are
called biconnected components. A
connected subgraph without a cut vertex
is also called a block.

� Function low is used to get cut vertices and
bridges of a connected graph, and
biconnected components of a graph.

� Suppose pre[v] is the sequence number of
vertex v in DFS traversal. That is, pre[v] is the
time that vertex v is visited. Function low[u] is
the pre[v] of vertex v which is the earliest
visited ancestor of u and u’s descendants.

� low[u]＝
� where s is a child of u, and (u, w) is a back

edge.

� In DFS, edges can be classified into four types:
◦ Branch edge T: Edge (u, v) is a branch edge, if it is the

first time that v is visited in DFS.

◦ Back edge B: Edge (u, v) is a back edge, if u is a
descendant of v, and v has been visited, but all
descendants of v haven’t been visited.

◦ Forward edge F: Edge (u, v) is a forward edge, if v is a
descendant of u, all descendants of v have been visited
and pre[u]<pre[v].

◦ Cross edge C: all other edges (u, v). That is, u and v has
no ancestor-descendant relationship in a DFS tree, or u
and v are in different DFS trees. All descendants of v
have been visited and pre[u]>pre[v].

� Property 1: Property 1: Property 1: Property 1: If vertex u isn’t a root, u is a cut
vertex if and only if these exists a child s of u,
low[s]≥pre[u]. That is to say, there is no back
edge from s and its descendants to u’s
ancestors.

� In Figure (a), although in the subtree whose
root is s1 there is a back edge to u’s ancestor,
there is no back edge to u’s ancestor from s2
or s2’s descendants. If u is removed, the
graph is not connected.

� In an undirected graph, there are only branch
edges and back edges. We can calculate low and
pre through DFS, and find whether Property 1Property 1Property 1Property 1
holds or not. The process is as follow.

� If (v, w) is a branch edge T (pre[w]==-1), and if
there is no back edge from w or w’s descendants

to v’s ancestors (low[w]≥pre[v]), then vertex v is a
cut vertex, and low[v]=min{low[v], low[w]}.

� If (v, w) is a back edge B (pre[w]!=-1), then
low[v]=min{low[v], pre[w]}.

� Property 2: Property 2: Property 2: Property 2: If u is selected as the root, then u
is a cut vertex if and only if it has more than

one child (Figure (ｂ)).

� In Figure (b), root u has two subtrees whose
roots are s1 and s2 respectively, and there is
no cross edge C between the two trees (in an
undirected graph, there is no cross edge C).
Therefore the graph isn’t connected after
vertex u is deleted, and vertex u is a cut
vertex.

� Based on above two properties, the algorithm
calculating cut vertices is as follow.

� for(i = 0; i < n; i ++) //Initialization
� pre[i] =-1;
� low[s]=pre[s]=d=0; // vertex s: start vertex
� p=0; // the number of children for vertex s
� for (each w∈adj[s]) p++;
� if (p>1)
� s is a cut vertex and exit; //Property 2
� fund_cut_point(s); // Property 1

� In an undirected graph, edge (u, v) is a bridge
if and only if (u, v) is not in any simple circuit.

� The method determining whether an edge is
a bridge or not is as follow. Edge (u, v) is a
branch edge discovered by DFS. If there is no
back edge connecting v and its descendants
to u’s ancestors; that is, low[v]>pre[u] or
low[v]==pre[v]; then deleting (u, v) leads u
and v aren’t connected. Therefore edge (u, v)
is a bridge.

� In Figure (a), DFS is used, a DFS tree is gotten
as Figure (b), and pre and low for all vertices
are showed in Figure (c). Obviously for v5, v7,
and v12, low[v]==pre[v], and (v0, v5), (v6, v7),
and (v11, v12) satisfy low[v]>pre[u] for edge (u,
v). These edges are bridges in (a).

� In an undirected graph there are only branch
edges and back edges. DFS can be used to
calculate low and pre for vertices (initial values
for pre[] are -1), and calculate bridges in the
undirected graph. The method is as follow.

� If (v, w) is a branch edge (pre[w]==-1), and if
there is no back edge from w or w’s descendants
to u’s ancestors,
((low[w]==pre[w])||(low[w]>pre[v])), then (v, w) is
a bridge, and low[v]=min{low[v], low[w]}.

� If (v, w) is a back edge (pre[w]!=-1), then
low[v]=min{low[v], pre[w]}.

� void fund_bridge (v); // DFS to find bridges from vertex v
� { int w;
� low[v]= pre[v]=++d;
� for (each w∈ the set of adjacent vertices for v) &(w!=v) //

Search edge(v, w)
� { if (pre[w]==-1) // if (v, w) is a branch edge
� { fund_bridge (w);
� if ((low[w]== pre[w])||(low[w]> pre[v]))
� (v, w) is a branch edge;
� low[v]=min{ low[v], low[w]};
� };
� else low[v]=min{ low[v], pre[w]}; // if (v, w) is a back edge
� }
� }

� A biconnected component is a connected
component without a cut vertex. Biconnected
components of a graph are partitions of edges of
the graph, that is, every edge must be in a block,
and two different blocks don’t contain common
edges.

� In Figure 11.6, vertex b is a common vertex for
block 3 and block 4, vertex c is a common vertex
for block 3 and block 1, and vertex e is a
common vertex for block 2 and block 4. The
three vertices are cut vertices for the graph. The
graph isn’t connected when one of the three
vertices is deleted.

� The key to finding a block in an undirected graph
is to find a cut vertex. DFS is used to get low and
pre (initial values for pre[] are -1) and calculate
blocks in the undirected graph. The process is as
follow.

� For vertex v, u is the parent for v: if u is the root,
(u, v) is the first edge for the block; else suppose
f is u’s parent. If u is deleted, v and f aren’t
connected, then {f, u, v} isn’t biconnected, (u, v)
is the first edge for the new block; else (u, v) and
(f, u) is in a same block. A stack is used to store
vertices in the current block.

� Source: ACM Central Europe 2005Source: ACM Central Europe 2005Source: ACM Central Europe 2005Source: ACM Central Europe 2005

� IDs for Online Judge: POJ 2942, UVA 3523IDs for Online Judge: POJ 2942, UVA 3523IDs for Online Judge: POJ 2942, UVA 3523IDs for Online Judge: POJ 2942, UVA 3523

� A bipartite graph is a graph that its vertex set
can be divided into two disjoint subsets such that
each edge connects a vertex in one of the two
subsets to a vertex in the other subset.

� Given a bipartite graph G(V, E), a matching is a

subset of edges M⊆E, if there is no common
vertex for any two edges in M.

� A maximum matching is a matching of maximum
cardinality, that is, a matching M is called a
maximum matching, if for any other matching M’,
|M|≥|M’|.

� finding a maximum matching in a bipartite
graph

� A perfect matching is a matching which
matches all vertices of the graph. That is,
every vertex of the graph is incident to
exactly one edge of the matching. Every
perfect matching must be a maximum
matching.

� For a bipartite graph, Hungarian algorithm is
used to find a maximum matching or a
perfect matching.

� Hungarian algorithm is the foundation for all
algorithms for bipartite matching.

� Given a bipartite graph G(V, E) and a matching M,
the set of vertices with which edges in M are
incident is called a cover. For matching M, an
alternating path is a path which the edges belong
alternatively to M and not to M, and an
augmenting path is an alternating path that
starts from and ends on unmatched vertices.
Matching M is the maximum matching in G, if
there is no other matching M’ in G such that
|M’|>|M|.

� Hungarian algorithm
◦ [1] Initially matching M is empty;

◦ [2] Finding an augmenting path p for M, and M←M
⊕p;

◦ [3] Repeat [2] until there is no any augmenting path
in G. Matching M is a maximum matching for G.

� DFS algorithm can be used to find an
augmenting path. DFS algorithm takes an
unmatched vertex as the starting vertex, and
it produces an augmenting path p in which
the edges belong alternatively to M and not
to M.

� DFS algorithm is as follow.
� bool dfs(int i){ // Determine whether there is an augmenting

path starting from vertex i in X
� for (int j=1; j<=m; j++)
� if ((!v[j])&&(a[i][j])){ // Search all unvisited vertices which are

adjacent to vertex i
� v[j]=1; // visit vertex j
� if (pre[j]==0||dfs(pre[j])){ //If the precursor for j is

unmatched or there exists an augmenting path starting from the
precursor for j, then edge (i, j) is in matching, and return true

� pre[j]=i;
� return 1;
� }
� }
� return 0; //return false
� }

� If dfs(i) returns true, then vertex i is matched.
Obviously, for every vertex i, dfs(i) is called,
and a maximum matching in a bipartite graph
is gotten. Therefore Hungarian algorithm is
as follow.

� int ans=0; //Initialization
� for (int i=1; i<=n;

i++){ //Enumeration
� memset(v, 0, sizeof(v));
� if (dfs(i)) ans++;
� }

� Suppose there are e edges in a bipartite
graph G, vertices in G are divided into two
disjoint sets X and Y such that |X|=|Y|=n,
and M is a matching in G. The time
complexity of finding an augmenting path is
O(e). In order to get a maximum matching, at
most n augmenting paths are required to
calculate. Therefore the time complexity of
Hungarian algorithm is O(n*e).

� SourceSourceSourceSource: Bulgarian Online Contest September : Bulgarian Online Contest September : Bulgarian Online Contest September : Bulgarian Online Contest September
2001200120012001

� IDs for Online JudgeIDs for Online JudgeIDs for Online JudgeIDs for Online Judge: Ural 1109: Ural 1109: Ural 1109: Ural 1109

