
ALGORITHMS OF BEST PATHS

Yonghui Wu

Stony Brook University

yhwu@fudan.edu.cn

� Given a weighted, directed graph G=(V, E),

each edge is with a real-valued weight. The

weight of path P=(v0, v1,……, vk) is the sum of

weights of its constituent edges:

� The weight of the shortest-path (longest-

path) from vertex u to vertex v is defined as

follow.

� Warshall algorithm

� is used to get the transitive closure for a graph;

� Floyed-Warshall algorithm

� is used to get all-pairs best paths in a graph;

� Dijkstra algorithm, Bellman-Ford algorithm

and SPFA algorithm

� are used to get single-source shortest paths in a

graph.

Warshall Algorithm and Floyed-

Warshall Algorithm
� Warshall algorithm is used to compute the transitive

closure of a relation for a graph.

� Suppose relation R is represented by digraph G. All
vertices in G are v1,v2,…,vn. The graph G’ for the
transitive closure t(R) can be gotten from G as follow. If
there exists a path from vertex vi to vertex vj in G, then
an arc from vi to vj is added in G’. The adjacency matrix A
for G’ is defined as follow. If there exists a path from
vertex vi to vertex vj, then A[i][j]=1, and vertex vj is
reachable from vertex vi; otherwise A[i][j]=0, and vertex
vj isn’t reachable from vertex vi. That is to say,
computing the transitive closure of a relation is to
determine whether every pair of vertices are reachable
or not. It is a problem of transitive closure for a graph.

� Suppose there is a sequence of square

matrices order n A(0), …, A(n), where each

element in square matrices is 0 or 1. A(0) is the

adjacency matrix for digraph G. For 1≤k≤n,
A(k)[i][j]=1 represents there exists paths from

vi to vj passing just v1,…,vk, and A(k)[i][j]=0

represents there is no such a path.

� Warshall algorithm is as follow.

� A(0) is the adjacency matrix for digraph G.

� for (k=1; k<=n; k++)

� for (i=1; i<=n; i++)

� for (j=1; j<=n; j++)

� A(k)[i][j]= =(A(k-1)[i][k] & A(k-1)[k][j]) | A(k-1)[i][j];

� Warshall algorithm can be not only used to

compute the transitive closure of a graph, but

also used to solve the problem that there

exits length limit for arcs in a graph.

Frogger

� Source: Ulm Local 1997

� IDs for Online Judge: POJ 2253, ZOJ 1942,

UVA 534

� Freddy Frog is sitting on a stone in the middle of a lake. Suddenly
he notices Fiona Frog who is sitting on another stone. He plans to
visit her, but since the water is dirty and full of tourists' sunscreen,
he wants to avoid swimming and instead reach her by jumping.
Unfortunately Fiona's stone is out of his jump range. Therefore
Freddy considers to use other stones as intermediate stops and
reach her by a sequence of several small jumps. To execute a
given sequence of jumps, a frog's jump range obviously must be
at least as long as the longest jump occuring in the sequence. The
frog distance (humans also call it minimax distance) between two
stones therefore is defined as the minimum necessary jump
range over all possible paths between the two stones.

� You are given the coordinates of Freddy's stone, Fiona's stone
and all other stones in the lake. Your job is to compute the frog
distance between Freddy's and Fiona's stone.

� Input

� The input will contain one or more test cases.

The first line of each test case will contain the

number of stones n (2≤n≤200). The next n lines

each contain two integers xi, yi (0≤xi, yi≤1000)

representing the coordinates of stone #i. Stone

#1 is Freddy's stone, stone #2 is Fiona's stone,

the other n-2 stones are unoccupied. There's a

blank line following each test case. Input is

terminated by a value of zero (0) for n.

� Output

� For each test case, print a line saying

"Scenario #x" and a line saying "Frog

Distance = y" where x is replaced by the test

case number (they are numbered from 1) and

y is replaced by the appropriate real number,

printed to three decimals. Put a blank line

after each test case, even after the last one.

� Based on Warshall algorithm, Floyed-Warshall algorithm is
used to find the best paths between each pair of vertices in
a weighted graph. In Floyed-Warshall algorithm, Boolean
operator ‘&’ is changed into arithmetic operator ‘+’, and
boolean calculation ‘|’ is changed into comparing A(k-

1)[i][k]+A(k-1)[k][j] with A(k-1)[i][j]. That is, Floyed-Warshall
formula is as follow.

� A(0)[i][j]= adjacency matrix M;

� A(k)[i][j]= min(max){ A(k-1)[i][k]+A(k-1)[k][j], A(k-1)[i][j] } , where i,
j, k=1..n.

� That is, A(k)[i][j] is the length of the best path from vertex vi
to vj passing just v1,…,vk. A(n)[i][j] is the length of the best
paths from vertex vi to vj.

� Floyed-Warshall algorithm can be used to

compute best-paths for all-pairs in a graph.

Its time complexity is O(n3). If the shortest

path is required calculate, there must be no

negative weighted circuit. And if the longest

path is required to calculate, there must be no

positive weighted circuit. Otherwise it will

lead to endless loop.

Arbitrage

� Source: Ulm Local 1996

� IDs for Online Judge: POJ 2240, ZOJ 1092,

UVA 436

� Arbitrage is the use of discrepancies in currency
exchange rates to transform one unit of a currency
into more than one unit of the same currency. For
example, suppose that 1 US Dollar buys 0.5 British
pound, 1 British pound buys 10.0 French francs, and
1 French franc buys 0.21 US dollar. Then, by
converting currencies, a clever trader can start with 1
US dollar and buy 0.5 * 10.0 * 0.21 = 1.05 US dollars,
making a profit of 5 percent.

� Your job is to write a program that takes a list of
currency exchange rates as input and then
determines whether arbitrage is possible or not.

� Input

� The input will contain one or more test cases. Om the first
line of each test case there is an integer n (1≤n≤30),
representing the number of different currencies. The next n
lines each contain the name of one currency. Within a name
no spaces will appear. The next line contains one integer m,
representing the length of the table to follow. The last m
lines each contain the name ci of a source currency, a real
number rij which represents the exchange rate from ci to cj
and a name cj of the destination currency. Exchanges which
do not appear in the table are impossible.

� Test cases are separated from each other by a blank line.
Input is terminated by a value of zero (0) for n.

� Output

� For each test case, print one line telling

whether arbitrage is possible or not in the

format "Case case: Yes" respectively "Case

case: No".

Dijkstra’s Algorithm

� Dijkstra’s algorithm is used to solve the

single-source shortest-paths problem in a

weighted, directed graph G(V, E) for the case

in which all arcs’ weights are nonnegative.

That is, for each arc (u, v)∈E, w(u, v)≥0.

� Dijkstra’s algorithm is as follow.

� void Dijkstra(int r); //Dijkstra’s algorithm: shortest-paths from vertex r to other vertices

� { for (i=0; i<n; i++)

� dist[i]=∞;

� dist[r]=0; // the length for the shortest-paths for r is 0

� S=∅;

� Q is a min-priority queue used to store n vertices;

� while (Q≠∅) //if Q isn’t empty

� { u is a vertex not in S and dist[u] is minimal;

� S=S∪{u}; //u is added into the set of vertices S known the shortest paths

� for (all vertex v not in S)

� if (dist[u]+wuv<dist[v])

� dist[v]=dist[u]+ wuv;

� }

� }

� If the min-priority queue is implemented by

an array, the time complexity of Dijkstra’s

algorithm is O(V2+E)≈O(V2). If the min-

priority queue is implemented by a binary

min-heap, the time complexity of Dijkstra’s

algorithm is O((V+E)*lnV)≈O(E*lnV). If the

graph is a sparse graph, the min-priority

queue implemented by a binary min-heap is

suitable.

Toll

� Source: ACM World Finals - Beverly Hills -

2002/2003

� IDs for Online Judge: UVA 2730

� Sindbad the Sailor sold 66 silver spoons to the
Sultan of Samarkand. The selling was quite easy;
but delivering was complicated. The items were
transported over land, passing through several
towns and villages. Each town and village
demanded an entry toll. There were no tolls for
leaving. The toll for entering a village was simply
one item. The toll for entering a town was one
piece per 20 items carried. For example, to enter
a town carrying 70 items, you had to pay 4 items
as toll. The towns and villages were situated
strategically between rocks, swamps and rivers,
so you could not avoid them.

� Figure 13.1: To reach Samarkand with 66

spoons, traveling through a town followed by

two villages, you must start with 76 spoons.

� Figure 13.2 : The best route to reach X with 39 spoons,

starting from A, is A→b→c→X, shown with arrows in the
figure on the left. The best route to reach X with 10

spoons is A→D→X, shown in the figure on the right. The
figures display towns as squares and villages as circles.

� Predicting the tolls charged in each village or town is
quite simple, but finding the best route (the
cheapest route) is a real challenge. The best route
depends upon the number of items carried. For
numbers up to 20, villages and towns charge the
same. For large numbers of items, it makes sense to
avoid towns and travel through more villages, as
illustrated in Figure 13.2.

� You must write a program to solve Sindbad’s
problem. Given the number of items to be delivered
to a certain town or village and a road map, your
program must determine the total number of items
required at the beginning of the journey that uses a
cheapest route.

� Input

� The input consists of several test cases. Each test case consists

of two parts: the roadmap followed by the delivery details.

� The first line of the roadmap contains an integer n, which is

the number of roads in the map (0 ≤ n). Each of the next n lines

contains exactly two letters representing the two endpoints of

a road. A capital letter represents a town; a lower case letter

represents a village. Roads can be traveled in either direction.

� Following the roadmap is a single line for the delivery details.

This line consists of three things: an integer p (0 < p ≤ 1000) for

the number of items that must be delivered, a letter for the

starting place, and a letter for the place of delivery. The

roadmap is always such that the items can be delivered.

� The last test case is followed by a line containing the number -

1.

� Output

� The output consists of a single line for each

test case. Each line displays the case number

and the number of items required at the

beginning of the journey. Follow the output

format in the example given below.

Bellman-Ford Algorithm

� Bellman-Ford algorithm is used to calculate the
single-source shortest-paths in a weighted directed
graph in which edges’ weights may be negative.

� Like Dijkstra’s algorithm, Bellman-Ford algorithm
also uses relaxation. For each vertex v∈V, the
estimate dist[v] on the weight of a shortest path
from the source s to v is progressively decreased
until it achieves the actual shortest-path weight. If
there exists negative-weight cycles in the graph,
Bellman-Ford algorithm should report there aren’t
shortest paths.

� Bool Bellman_Ford(int s) //Bellman-Ford algorithm is used to compute the
shortest paths from source s to other vertices

� {

� for (i=0; i<n; i++) //Initialization

� { dist[i]=∞; [i]=nil ;}

� dist[s]=0;

� for (i=1; i<n; i++) // n-1 iterations

� for (each(u, v)∈E) // For each edge, relaxation is used

� if (dist[v] -wuv >dist[u])

� { dist[v]=dist[u]+ wuv; [v]=u; }

� for (each (u, v)∈E) //If there exists negative-weight cycle, return false

� if (dist[v] -wuv >dist[u]) return false;

� return true;

� }

� The reason why there are n-1 iterations in

Bellman-Ford Algorithm is that if there is a

shortest past between two vertices, each

vertex will appear at most one time in the

path, that is, there are at most n-1 edges in

the path.

� The time complexity for Bellman-Ford

Algorithm is O(VE).

Minimum Transport Cost

� Source: ACM 1996 Asia Regional Shanghai

� IDs for Online Judge: UVA 523

� There are N cities in Spring country. Between each
pair of cities there may be one transportation track
or none. Now there is some cargo that should be
delivered from one city to another. The
transportation fee consists of two parts:

� 1. the cost of the transportation on the path
between these cities, and

� 2. a certain tax which will be charged whenever any
cargo passing through one city, except for the source
and the destination cities.

� You must write a program to find the route which
has the minimum cost.

� Input

� The data of path cost, city tax, source and

destination cities are given in the input file,

which is of the form:
a11 a12 … a1n

a21 a22 … a2n

… … …

an1 an2 … ann

b1 b2 … bn

c d

e F

… …

g h

O

� where aij is the transport cost from city i to

city j, aij = -1 indicates there is no direct path

between city i and city j. bi represents the tax

of passing through city i. And the cargo is to

be delivered from city c to city d, city e to city

f, ..., and city g to city h.

� Output

� You must output the sequence of cities passed by and the
total cost, which is of the form:

� From c to d :

� Path: c->c1-> ->ck->d

� Total cost : …

�

� …

�

� From e to f :

� Path: e->e1-> ->ek->f

� Total cost : …

Shortest Path Faster Algorithm

(SPFA Algorithm)

� The Shortest Path Faster Algorithm (SPFA) is

an improvement of the Bellman–Ford

algorithm which computes single-source

shortest paths in a weighted directed graph.

SPFA is suitable for random sparse graphs

and graphs containing negative-weight edges.

� void spfa(int s) // SPFA is used to compute shortest paths from single-source s to other vertices

� {

� Oueue Q is empty;

� for (i=0; i<101; i++) //Initialization

� { dist[i] =∞; [i]=nil; }

� dist[s]=0;

� Add s into Queue Q;

� while (Q is not empty)

� {

� Delete the front element x from Q;

� for(i=1; i<=n; i++) // Relaxation

� if (dist[i]-wxi>dist[x])

� { dist[i]=dist[x]+wxi; [i]=x;

� if (Vertex i is not in Q)

� Vertex i is added into Q;

� }

� }

� }

� Q is a queue. The time complexity for deleting
element u from Q and visiting its adjacent
vertices is O(d), where d is the out-degree of
vertex u. The average out-degree for a vertex is
E/V. Therefore the time complexity of dealing
with a vertex is O(E/V). Suppose the number of
adding vertices to Q is h. And it is related to
edges’ weights. Suppose h=kV. Then the time
complexity of SPFA is T=O(h* E/V)=O(kE). In
general, k is a little constant. Therefore the time
complexity of SPFA is O(E).

Longest Paths

� IDs for Online Judge: UVA 10000

� It is a well known fact that some people do not have their social
abilities completely enabled. One example is the lack of talent for
calculating distances and intervals of time. This causes some
people to always choose the longest way to go from one place to
another, with the consequence that they are late to whatever
appointments they have, including weddings and programming
contests. This can be highly annoying for their friends.

� César has this kind of problem. When he has to go from one point
to another he realizes that he has to visit many people, and thus
always chooses the longest path. One of César's friends, Felipe,
has understood the nature of the problem. Felipe thinks that with
the help of a computer he might be able to calculate the time
that César is going to need to arrive to his destination. That way
he could spend his time in something more enjoyable than
waiting for César.

� Your goal is to help Felipe developing a
program that computes the length of the
longest path that can be constructed in a
given graph from a given starting point
(César's residence). You can assume that the
graph has no cycles (there is no path from any
node to itself), so César will reach his
destination in a finite time. In the same line of
reasoning, nodes are not considered directly
connected to themselves.

� Input

� The input consists of a number of cases. The first line on
each case contains a positive number n (1<n≤100) that
specifies the number of points that César might visit (i.e.,
the number of nodes in the graph).

� A value of n = 0 indicates the end of the input.

� After this, a second number s is provided, indicating the
starting point in César's journey (1≤s≤n). Then, you are
given a list of pairs of places p and q, one pair per line, with
the places on each line separated by white-space. The pair
“ p q” indicates that César can visit q after p.

� A pair of zeros (“0 0”) indicates the end of the case.

� As mentioned before, you can assume that the graphs
provided will not be cyclic.

� Output

� For each test case you have to find the length

of the longest path that begins at the starting

place. You also have to print the number of

the final place of such longest path. If there

are several paths of maximum length, print

the final place with smallest number.

� Print a new line after each test case.

