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Algorithms of Minimum Spanning 

Trees

• Kruskal Algorithm

• Prim Algorithm



• a minimum spanning tree

– a spanning tree that the sum of weights of edges 

of the tree is minimized in a weighted undirected 

connected graph



Kruskal Algorithm

• Initially, n vertices constitute a forest. Then, 

edge (u, v) connecting two distinct trees in the 

forest with the least-weight is regarded as the 

safe edge and is added into the forest. Repeat 

the process until the minimum spanning tree 

is gotten.



• Initialization

– Sort edges in ascending order of weight values;

– Suppose initially F is a forest consisting of n trees, 

and each tree corresponds to a vertex in graph G;

– Initially the sum of weights of edges of the 

minimum spanning tree ans=0;



• for ( int k=1; k≤m; k++ )  // Enumerate m edges in 
Graph G in the order

• { if ( the current edge (i, j) connects two distinct 
components)

• {  add edge (i, j) into the forest and combine the 
two components;

• ans+=the weight of edge (i, j);  }

• }

• Output ans;



• union-find set

– if a subtree is regarded as a set, and the root of 

the subtree is regarded as the representative of 

the set, then union-find set can be used to 

determine whether two vertices belong to one 

tree and combine two subtrees.



• The time complexity for Kruskal Algorithm is 

O(E*lnE). That is to say, its efficiency depends 

on the number of edges |E|. 

• Therefore Kruskal Algorithm is suitable for 

sparse graphs.



Constructing Roads

• Source: PKU Monthly, kicc

• IDs for Online Judge: POJ 2421



• There are N villages, which are numbered from 1 
to N, and you should build some roads such that 
every two villages can connect to each other. We 
say two villages A and B are connected, if and 
only if there is a road between A and B, or there 
exists a village C such that there is a road 
between A and C, and C and B are connected.

• We know that there are already some roads 
between some villages and your job is the build 
some roads such that all the villages are connect 
and the length of all the roads built is minimum.



• Input

• The first line is an integer N, (3≤N≤100), which is the 
number of villages. Then come N lines, the i-th of 
which contains N integers, and the j-th of these N
integers is the distance (the distance should be an 
integer within [1, 1000]) between village i and village j.

• Then there is an integer Q ( 0≤Q≤N*(N+1)/2  ). Then 
come Q lines, each line contains two integers a and b
(1≤a<b≤N), which means the road between village a
and village b has been built.



• Output

• You should output a line contains an integer, 

which is the length of all the roads to be built 

such that all the villages are connected, and 

this value is minimum.



• Analysis

• Villages and roads connecting villages are represented 
as a weighted graph, where villages are represented as 
vertices, roads are represented as edges, and the 
length of a road is the weight of an edge. Obviously, 
the problem requires to add edges to spanning trees 
(already built roads between some villages) to 
construct a minimum spanning tree. Because the 
number of added edges is less than N-1, Kruskal
Algorithm is suitable for the problem. In this problem, 
the length of all the roads to be built is required to be 
calculated.



• An adjacency matrix P is used to represent the 

weighted graph, an array Fa is used to store 

every vertex’s parent pointer pointing to its 

parent. By using parent pointers, the root of 

the subtree containing the vertex can be 

found: from vertex i, repeat using array Fa 

(Fa[Fa[…Fa[i]…]) until x==Fa[x]. x is the root of 

the subtree containing vertex i, that is, Fa[i]=x

(0≤i≤n-1).



• The algorithm is as follow.

• Initialization;

• Input a test case and construct an adjacency 
matrix P to represent the weighted graph;

• N vertices are represented as N distinct 
spanning trees ( Fa[i]=i, 0≤i≤n-1);

• Input Q built roads (a, b), Suppose Fa[b]=a
(1≤a<b≤N);

• Initialize the minimal length of all the roads to be 
built ans 0;



• Compute the minimal length of all the roads to be built
ans;

• Sort weights of edges k in ascending order (1≤k≤1000) 
and enumerate these edges:

• If the current enumerated edge (i, j) whose weight is 
k connects two distinct subtrees (P[i][j]==k && the root 
of the subtree containing vertex i != the root of the 
subtree containing vertex j, 0≤i<j≤n-1), then combine 
the subtree containing vertex i into the subtree 
containing vertex j (Fa[Fa[i]]=Fa[j]); and k is added into 
the length ans (ans += k);



• Output the length of all the roads to be built 

ans;



Prim Algorithm

• In Prim Algorithm, edges in set A make up a 

single minimum spanning tree. Initially A is 

empty. Repeatedly add edges to A so that at 

each step an added edge has only one vertex 

in the tree and contributes the minimum 

amount possible to the tree’s weight.



• Prim algorithm is as follow.

• Suppose r is the starting vertex; and d[i]=min{weight(j, i) | 
Vertex j is a vertex in the spanning tree, and vertex i isn’t in 
the spanning tree. };

• In the process of the algorithm, all vertices which aren’t in 
the tree are sorted in the ascending order of their values in 
array d and form a priority queue Q;

• Suppose f[u] is the parent of vertex u in the tree. In the 
process of the algorithm, the set of edges of the minimum 
spanning tree A satisfies A={(u, f[u])│u∈V-{r}-Q}.

• When the process of the algorithm ends, priority queue Q
is empty, and the set of edges of the minimum spanning 
tree A satisfies A={(u, f[u])│u∈V-{r}}, and ans=             .            



• for (each v∈G(V)) 

• { d[v]←∞; f[u]←nil };

• d[r]←0; Q←G(V);

• while (Q!=∅)

• { Get vertex u whose d[u] is the least in Q;  // Add vertex u into 
minimum spanning tree

• Q=Q-{u};

• if (u!=r) ans←ans+w[u,f[u]];   //If vertex u isn’t the root, then add the 
weight into ans

• for (each v∈ the set of vertices adjacent to vertex u)        // renew the 
value of d and parent pointer of vertex v which is adjacent to vertex u

• if (v∈Q)&&(w[u,v]<d[v]) 

• { f[v]←u; d[v]←w[u,v]; }

• };

• Output the weight of the minimum spanning tree ans;



• The time complexity for Prim Algorithm is 

O(V*ln V+E*ln V). 

• That is, the efficiency of Prim Algorithm 

depends on |V|. 

• Therefore Prim Algorithm is suitable for dense 

graphs.



Agri-Net

• Source: USACO

• IDs for Online Judge: POJ 1258



• Farmer John has been elected mayor of his town! One of his 
campaign promises was to bring internet connectivity to all farms in 
the area. He needs your help, of course.

• Farmer John ordered a high speed connection for his farm and is 
going to share his connectivity with the other farmers. To minimize 
cost, he wants to lay the minimum amount of optical fiber to 
connect his farm to all the other farms.

• Given a list of how much fiber it takes to connect each pair of farms, 
you must find the minimum amount of fiber needed to connect 
them all together. Each farm must connect to some other farm such 
that a packet can flow from any one farm to any other farm.

• The distance between any two farms will not exceed 100,000.



• Input

• The input includes several cases. For each case, the 
first line contains the number of farms, N (3≤N≤100). 
The following lines contain the N×N conectivity matrix, 
where each element shows the distance from one farm 
to another. Logically, they are N lines of N space-
separated integers. Physically, they are limited in length 
to 80 characters, so some lines continue onto others. 
Of course, the diagonal will be 0, since the distance 
from farm i to itself is not interesting for this problem.



• Output

• For each case, output a single integer length 

that is the sum of the minimum length of fiber 

required to connect the entire set of farms.



• Analysis

• Farms and fibers connecting farms are represented as a 
weighted graph, where farms are represented as 
vertices, John’s farm is represented as vertex 0; straight 
lines connecting farms are represented as edges; and 
distances between two farms are weights of 
corresponding edges. Finding the minimum amount of 
fiber needed to connect them all together is to 
calculate the minimum spanning tree of the graph. 
Because the upper limit of the number of vertices is 
100, Prim Algorithm is suitable for the problem.



• Suppose v is the adjacency matrix for the 
graph. Array dist is used to store a priority 
queue Q, where dist[i] is the distance between 
vertex i and the spanning tree. Initially 
dist[0]=∞, dist[i]=v[0][i]( 1≤i≤n-1). Array use is 
the flag that a vertex is in the spanning tree or 
not. Initially, only John’s farm is in the 
spanning tree (use[0]=true), and other 
vertices aren’t in the spanning tree 
(use[i]=false, 1≤i≤n-1). 



• n-1 edges are added into the spanning tree as follow.

• { find such a vertex tmp connecting the spanning tree 
that dist[tmp]= );

• The weight of the edge connecting vertex tmp and 
the spanning tree is accumulated (tot +=dist[tmp]); 

• Vertex tmp is added into the spanning tree 
( use[tmp]=true );

• Adjust array dist (dist[k]=min{dist[k], v[k][tmp] | 
use[k]=false },1≤k≤n-1);

• };

• Output the weight of the minimum spanning tree tot;


