Applications of Graph Traversal

Yonghui Wu
Stony Brook University
vhwu@fudan.edu.cn

Applications of Graph Traversal

» All vertices in a graph need to be visited
exactly once. Such a process is called graph
traversal.

» BFS and DFS are bases for many graph-
related algorithms. Then based on BFS and
DFS, topological sort and connectivity of
undirected graphs are introduced.

Contents

» Breadth-First Search (BFS)

» Depth-First Search (DFS)

» topological sort

» connectivity of undirected graphs

BFS Algorithm

» Given a graph G(V, E) and a source vertex s
in G, Breadth-First Search (BFS) visits all
vertices that can be reached from s layer by
layer, and calculate distances from s to all
vertices (that is, numbers of edges from s to
these vertices).

» The distance from s to vertex v d|v] is as
follow, ve V:

. -} i § and v are not connected
apvj= : . .
the ength of the shortest path fom sto v otherwise

» Initially d|s]=0; and for ve V-{s}, d|v]=-1.
The process for Breadth-First Search (BFS)
is as follow.

» Every visited vertex u is processed in order:
for every vertex v that is adjacent to u and is
not visited, thatis (u, v)e E, and d|v]|=-1, v
will be visited. Because u is the parent or the
precursor for v, d|v]=d|u]+1.

» A queue Q is used to store visited vertices:
Initially source vertex s is added into queue
0, and d|s]=0. Then, vertex u which is the
front is deleted from queue Q; vertices
which aren’t visited and are adjacent to u,
that is, for such a vertex v, (u, v)e E, and
d|v]=-1, are visited in order: d|v|=d|u]+1;
and vertex v is added into queue Q. The
process repeats until queue Q is empty.

+» BFS traversal starts from source s, visits all
connected vertices, and forms a BFS
traversal tree whose root is s.

© © & & O O & o o @

void BFS(VLink G[], intv) // BFS algorithm starting from source vin G

{int w;
visit v;
d[v]=0; // distance d[v]
ADDQ(Q, v); // vis added into queue @

while (IEMPTYQ(Q)) // while queue Q is not empty, visit other vertices

{ v=DELQ(Q); // the front is deleted from queue Q

Get the first adjacent vertex w for vertex v (if there is no adjacent vertex for v,
w=-1);

while (w = -1)
{if (d[w] ==-1) // if vertex w hasn’t been visited
{ visit w;

ADDQ(Q,w); // adjacentvertex w is added into queue Q
d[w] =d[v]+1; // distance d[w]
}
Get the next adjacent vertex w for vertex v;
}
}
}

® & & & & O o 9

BFS(G, v) can visit all vertices that can be reached from v
in G, that is, vertices in the connected component

containing v. The algorithm of graph traversal based on
BFS is as follow.

void TRAVEL_BFS (VLink G|], int d|], int n)
{inti;
for (i=0;i<n;i++) // Initialization
dli] =-1;
for (i=0;i<n;i++) // BFSfor all unvisited vertices
if (d[i] ==-1)
BFS(G, i);
}

Prime Path

» Source: ACM Northwestern Europe 2006
» IDs for Online Judge: POJ 3126

Analysis

» Every number is a four-digit number. There are
10 possible values for each digit (|0..9]), and
the first digit must be nonzero.

» The problem is represented by a graph: the
initial prime and all primes gotten by changing
a digit are vertices. If prime a can be changed
into prime b by changing a digit, there is an arc
(a, b) whose length is 1 connecting two vertices
corresponding to a and b respectively.

» Obviously, if there is a path from initial
prime x to goal prime y, then the number of
arcs in the path is the cost; else there is no
solution.

» Therefore, solving the problem is to
calculate the shortest path from initial
prime x to goal prime y, and BFS is used to
find the shortest path.

» Firstly sieve method is used to calculate all
primes between 2 and 9999, and all primes
are put into array p. Only the minimal cost is
required to calculate for the problem.
Therefore the directed graph needn’t to be
stored, and we only need focus on
calculating the shortest paths.

» The algorithm is as follow.

» Step 1: Initialization. The initial prime x is
added into queue h. Its path length is 0
(h[1].k=x; h|1].step=0;). The minimal cost
ans is initialized -1.

» Step 2: Front h|l] is operated as follow:

» Step 3: Output the result: If the goal prime is
ogotten (ans=0), then output the length of the
shortest path ans; else output “Impossible”.

® © O O O o & @& o o

DFS Algorithm

DFS algorithm starts from a vertex u. Firstly vertex u is visited. Then
unvisited vertices adjacent from u are selected one by one, and for each
vertex DFS is initiated. The algorithm is as follow.

void DFS(VLink G[],intv) // DFS starts from a vertex v

{int w;
visited|v] = 1; // Vertex v is visited.
Get a vertex w adjacent from v (If there is no such a vertex w, w=-1.);
while (w!=-1) // adjacent vertices are selected one by one

{if (visited|[w] == 0) //If vertex w hasn’t been visited
{ visited|w]=1;
DFES(G, w) ; //Recursion
}

Get the next vertex w adjacent from v (If there is no such a vertex w,
w=-1.);

}
}

® © @O @O 9@

DFES(G, v) visits the connected component containing
vertex v. DFS for a graph is as follow.

void TRAVEL DFS(VLink G|], int visited|], int n)
{int i
for (i=0;i<n;i++) //Initialization
visited|i]| = 0;
for(i=0;i<n;i++) //DFS for every unvisited
vertex

if (visited|i] == 0)
DES(G, i);

° }

» For a graph with n vertices and e edges, the
time complexity for DFS that initializes all
vertices’ marks is O(n), and the time
complexity for DFS is O(e). Therefore, if n<e,
the time complexity for DFS is O(e).

The House Of Santa Claus

» Source: ACM Scholastic Programming
Contest ETH Regional Contest 1994

» IDs for Online Judge: UVA 291

Analysis

» The House of Santa Claus is an undirected
ograph with 8 edges (Figure 11.2). A
symmetrical adjacency matrix map|][| is
used to represent the graph. In the diagonal
of the matrix, map|1][4], map[4]]1],
map|2]|[4], and map|[4]|2] are 0, and other
elements are 1. Because the graph is a
connected graph, DFS for the graph starting
from any vertex can visit all vertices and
edges.

L

[

» The problem requires you to implement
“drawing the house in a stretch without
liftting the pencil and not drawing a line
twice”. That is, the drawing must cover all 8
vertices exactly once. And the problem
requires to list all possibilities by increasing
order. Therefore DFS must visit all vertices
starting from vertex 1.

Topological Sort

» Sort for a linear list is to sort elements based
on keys’ ascending or descending order.
Topological Sort is different with sort for a
linear list. Topological Sort is to sort all vertices
in a Directed Acyclic Graph (DAG) into a linear
sequence. If there is an arc (u, v) in DAG, u
appears before v in the sequence.

» There are two methods to implement
Topological Sort: Deleting arcs, and Topological
Sort implemented by DFS.

» Deleting arcs

» Step 1: Select a vertex whose in-degree is 0,
and output the vertex;

» Step 2: Delete the vertex and arcs which start at
the vertex, that is, in-degrees for vertices at
which arcs end decrease 1;

» Repeat above steps. If all vertices are
outputted, the process of topological sort ends;
else there exists cycles in the graph, and there
is no topological sort in the graph.

» The time complexity for the algorithm is O(VE).

Following Orders

» Source: Duke Internet Programming
Contest 1993

» IDs for Online Judge: POJ 1270, UVA 124

Topological Sort implemented by
DFS

» Suppose x and y are vertices in a directed
graph, and (x, y) is an arc. If x is in the set of
vertices gotten by DFS(y), then arc (x, y) is a
back edge. And its time complexity is O(E).

» There is no cycle in a directed graph, if and
only if there is no back edge in the graph.

&

%

the algorithm of topological sort implemented by
DFS is as follow.

Suppose it takes one time unit to visit a vertex, the
end time when vertex u and its descendants are all
visited is flu]. And flu] can be calculated by DFS
algorithm as follow. Obviously, if there exists a
topological sort in the graph, there is no back edge
in DFS traversal for the graph. That is, for any arc (u,
v) in the graph, flv]< flu].

The topological sequence is stored in a stack topo. In
topo, array f| | for vertices are in descending order
from top to bottom.

» void DFS-visit (u); //DEFS traversal for
the subtree whose rootis u

» { Set a visited mark for u;
o time=time+1;

» for each arc (u, v)

» 1f (v hasn’t been visited)
o DFES-visit (v);

o flu]l=time;

» add u into stack topo;

o }

» Initially time=0, and set unvisited marks to all
vertices. For every unvisited vertex v, DFS-visit (v) is
called. Then stack topo and f] | can be gotten. If there
exists an arc (u, v) in the graph such that fl[v]|>flu],
then (u, v) is a back edge, and topological sort fails;
else all vertices from top to bottom in stack topo
constitute a topological sequence.

» The time complexity for DFS is O(E), and the time
complexity for adding all vertices into stack topo is
O(1). Therefore, the time complexity for topological

sort is O(E).

Sorting It All Out

» Source: ACM East Central North America
2001

» IDs for Online Judge: POJ 1094, Z0J 1060,
UVA 2355

