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� Fundamental Programming Skills

� (1)  Computing

� (2)  Simulation

� (3)  Recursion

� Calculation of High Precision Numbers



Compting

� Off-line Method

� Precision of Real Numbers & Improving 

Time Complexity by Dichotomy



Sum of Consecutive Prime NumbersSum of Consecutive Prime NumbersSum of Consecutive Prime NumbersSum of Consecutive Prime Numbers

� Source: ACM Japan 2005

� IDs for Online Judge: POJ 2739, UVA 3399



� Some positive integers can be represented by a sum of
one or more consecutive prime numbers. How many
such representations does a given positive integer have?
For example, the integer 53 has two representations 5 +
7 + 11 + 13 + 17 and 53. The integer 41 has three
representations 2 + 3 + 5 + 7 + 11 + 13 , 11 + 13 + 17 ,
and 41 . The integer 3 has only one representation,
which is 3. The integer 20 has no such representations.
Note that summands must be consecutive prime
numbers, so neither 7 + 13 nor 3 + 5 + 5 + 7 is a valid
representation for the integer 20. Your mission is to
write a program that reports the number of
representations for the given positive integer.



� Input

� The input is a sequence of positive integers 

each in a separate line. The integers are 

between 2 and 10000, inclusive. The end of 

the input is indicated by a zero.



� Output

� The output should be composed of lines 

each corresponding to an input line except 

the last zero. An output line includes the 

number of representations for the input 

integer as the sum of one or more 

consecutive prime numbers. No other 

characters should be inserted in the output.



� Sample Input

� 2

� 3

� 17

� 41

� 20

� 666

� 12

� 53

� 0



� Sample Output

� 1

� 1

� 2

� 3

� 0

� 0

� 1

� 2



� Analysis

� Because the program need to deal with 

consecutive prime numbers in each test case, 

and the upper limit of prime numbers is 

10000, off-line method can be used to solve 

the problem. 



� Firstly, all prime numbers less than 10001 

are gotten, and these prime numbers are 

stored in array prime[1.. total] in ascending 

order.



� Then we deal with test cases one by one: 
� Suppose the input number is n; the sum of consecutive 

prime numbers is cnt; the number of representations 
for cnt=n is ans.

� A double loop is used to get the number of 
representations for n:

� The outer loop i: for (int i=0; n>=prime[i]; i++) enumerates all 
possible minimum prime[i];

� The inner loop j: for (int j=i; j < total && cnt<n; j++) cnt += 
prime[j]; to calculate the sum of consecutive prime numbers. If 
cnt≥n, then the loop ends; and if cnt==n, then the number of 
representations ans++.

� When the outer loop ends, ans is the solution to the test 
case.



HangoverHangoverHangoverHangover

� Source: ACM Mid-Central USA 2001

� IDs for Online Judge: POJ 1003, UVA 2294



� How far can you make a stack of cards overhang a table?
If you have one card, you can create a maximum
overhang of half a card length. (We're assuming that the
cards must be perpendicular to the table.) With two
cards you can make the top card overhang the bottom
one by half a card length, and the bottom one overhang
the table by a third of a card length, for a total maximum
overhang of 1/2 + 1/3 = 5/6 card lengths. In general you
can make n cards overhang by 1/2 + 1/3 + 1/4 + ... +
1/(n + 1) card lengths, where the top card overhangs the
second by 1/2, the second overhangs tha third by 1/3,
the third overhangs the fourth by 1/4, etc., and the
bottom card overhangs the table by 1/(n + 1).



� This is illustrated in the figure below.

�



� Input

� The input consists of one or more test cases,

followed by a line containing the number

0.00 that signals the end of the input. Each

test case is a single line containing a positive

floating-point number c whose value is at

least 0.01 and at most 5.20; c will contain

exactly three digits.



� Output

� For each test case, output the minimum

number of cards necessary to achieve an

overhang of at least c card lengths. Use the

exact output format shown in the examples.



� Sample Input

� 1.00 

� 3.71 

� 0.04 

� 5.19 

� 0.00



� Sample Output

� 3 card(s) 

� 61 card(s) 

� 1 card(s)

� 273 card(s)



� Analysis

� The problem’s data area is little. Therefore

firstly lengths that cards achieve are

calculated, and the length is at most 5.20

card lengths. Suppose total is the number of

cards, len[i] is the length that i cards achieve.

That is, len[i] = len[i - 1] + 1/(i+1). Obviously

array len is in ascending order.



� Because elements of len and x are real

numbers, the accuracy error must be

controlled. Suppose delta=1e-8, and

function zero(x) marks x is a positive real

number, a negative real number, or a zero,

and is defined as follow:
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� Initially len[0]=0. Array len can be gotten 

through the following loop:

� for(total=1; zero(len[total-1]-5.20)<0; 

total++) 

� len[total]=len[total-1]+1.0/double(total+1);



� After array len is gotten, the program inputs 

the first test data x and enters the loop of 

while (zero(x)). In each loop dichotomy is 

used to get the minimum number of cards 

necessary to achieve an overhang of at least 

x card lengths, and then the next test data x

is inputted. The loop terminates when 

x=0 .00.



� The procedure of dichotomy is as follow:

� The initial interval [l, r]=[1, total] and 

� If zero(len[mid] - x) < 0, then search the 

right half (l=mid); otherwise search the left 

half (r=mid). Repeat above steps in interval 

[l, r] until l+1≥r. And r is the minimum 

number of cards.

min
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Calculation of High Precision 

Numbers

� For programming languages, range and
precision for integer and real are usually
limited. If problem requires high precision
more than the ranges, we can only solve such
high precision problems by programming. For
high precision number, there are two
fundamental problems:

� Representation of high precision numbers;

� Fundamental calculations of high precision
numbers;



Representation of high precision 

numbers

� A high precision number can be represented 

by an array: Numbers are separated by 

decimal digits, and each decimal digit is 

sequentially stored into an array. In the 

program implementation, firstly a string is 

used to store a number data, and a character 

stores a digit. Then the string is conversed 

to the corresponding decimal number and 

stored into an array.



� For a long positive integer, the program is as follow:

� int a[100]={0};          // Array a is used to store a long positive 
integer, one digit is stored in one element. Initial values are 0.

� int n;                  // n is the number of digits for the long integer

� string s;               // String s is used to receive the integer

� cin>>s;               // Input the integer into s

� n=s.length( );           // Calculate the number of digits

� for (i=0; i<n; i++)   // Array a stores the integer from right 
to left, and one element stores one digit.

� a[i]=s[n-i-1]-'0';



Fundamental calculations of high 

precision numbers

� Fundamental calculations of high precision 

numbers are ‘+’, ‘-‘, ‘*’, and ‘/’.



� Addition and Subtraction of High Precision

Numbers

� Rules for addition and subtraction of high

precision numbers are the same as rules of

arithmetic addition and subtraction. In

programs, addition of high precision numbers

needs to carry, and subtraction of high precision

numbers needs to borrow.



� Suppose x and y are two non-negative high precision integers, 
and n1 is the number of digits of x, and n2 is the number of digits 
of y. x and y are stored in array a and array b in above format. 
The program segment for addition of x and y is as follow:

� for (i=0; i<( n1>n2 ? n1 : n2 ); i++ ){  Addition of two integers 
whose numbers of digits are n1 and n2 respectively

� a[i]=a[i]+b[i];           // Bitwise addition       

� if ( a[i]>9 ) {            //  Carry

� a[i]=a[i]-10;

� a[i+1]++;

� }

� }



� Suppose x and y are two non-negative high precision integers 
(x>y), and n is the number of digits of x. x and y are stored in 
array a and array b in above format. If x<y, then a and b
exchange each other, and take a negative after the subtraction. 
The program segment subtraction is as follow:

� for (i=0; i<n; i++) {

� if (a[i]>=b[i])

� a[i]= a[i]- b[i];

� else                // Borrow

� { a[i]= a[i]+10-b[i]; 

� a[i+1]--;

� }

� }



� Multiplication and Division of High 

Precision Numbers

� Based on addition and subtraction of high 

precision numbers, algorithms for 

multiplication and division of high precision 

numbers are given.



Adding Reversed Numbers

� Source: ACM Central Europe 1998

� IDs for Online Judge: POJ 1504, ZOJ 2001, 

UVA 713



� The Antique Comedians of Malidinesia prefer 
comedies to tragedies. Unfortunately, most of 
the ancient plays are tragedies. Therefore the 
dramatic advisor of ACM has decided to 
transfigure some tragedies into comedies. 
Obviously, this work is very hard because the 
basic sense of the play must be kept intact, 
although all the things change to their 
opposites. For example the numbers: if any 
number appears in the tragedy, it must be 
converted to its reversed form before being 
accepted into the comedy play.



� Reversed number is a number written in arabic
numerals but the order of digits is reversed. 
The first digit becomes last and vice versa. For 
example, if the main hero had 1245 
strawberries in the tragedy, he has 5421 of 
them now. Note that all the leading zeros are 
omitted. That means if the number ends with a 
zero, the zero is lost by reversing (e.g. 1200 
gives 21). Also note that the reversed number 
never has any trailing zeros.



� ACM needs to calculate with reversed 
numbers. Your task is to add two reversed 
numbers and output their reversed sum. Of 
course, the result is not unique because any 
particular number is a reversed form of 
several numbers (e.g. 21 could be 12, 120 or 
1200 before reversing). Thus we must 
assume that no zeros were lost by reversing 
(e.g. assume that the original number was 
12).



� Input

� The input consists of N cases. The first line 

of the input contains only positive integer N. 

Then follow the cases. Each case consists of 

exactly one line with two positive integers 

separated by space. These are the reversed 

numbers you are to add.



� Output

� For each case, print exactly one line 

containing only one integer - the reversed 

sum of two reversed numbers. Omit any 

leading zeros in the output.



� Sample Input

� 3

� 24 1

� 4358 754

� 305 794



� Sample Output

� 34

� 1998

� 1



� Analysis

� Suppose

� Num[0][0] stores the length of the first addend, and 

the first addend is stoted in Num[0][1..Num[0][0]];

� Num[1][0] stores the length of the second addend, 

and the second addend is stored in 

Num[1][1..Num[1][0]];

� Num[2][0] stores the length of the sum; and the sum 

is stored in Num[2][1..Num[2][0]].



� The algorithm is as follow.

� Firstly, input the first addend and the second 
addend, delete zeros which numbers end with. 
The two addends are stored into Num[0] and 
Num[1]. Then chang them into reversed 
numbers.

� Secondly, two reversed numbers Num[0] and 
Num[1] are added. Then their reversed sum 
Num[2] are outputed. Note that the reversed 
number never has any trailing zeros.


