
CSE 548: Analysis of Algorithms

Lecture 5

(Divide-and-Conquer Algorithms:

Polynomial Multiplication (Continued))

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Spring 2015

Faster Polynomial Multiplication?
(in Coefficient Form)

� � � �� � ��� � ⋯� �	
��	
�� � � �� � ��� �⋯� �	
��	
�
 � � �� � ��� � ⋯� ��	
���	
�

� ��	� , � ��	�� ��	� , � ��	�⋮� ��	�	
� , � ��	�	
�

 ��	�
 ��	�⋮
 ��	�	
�

ordinary

multiplication

Time Θ ��

pointwise

multiplication

Time Θ �

fo
rw

a
rd

 F
F

T

T
im

e
 Θ
�log

�

in
te

rp
o

la
ti

o
n

T
im

e
?

Point-Value Form ⇒⇒⇒⇒ Coefficient Form

Given: 1 1 1 ⋯ 11 �	 �	 � ⋯ �	 	
�1 �	� �	� � ⋯ �	� 	
�· · · ⋯ ·· · · ⋯ ·1 �		
� �		
� � ⋯ �		
� 	
�� ����	��� !	��	#�$�%&

������··�	
��'
�

(�(�(�··(
�)'
⇒	* �	 · �' � ('

We want to solve: �' � * �	
� · ('
It turns out that: * �	
� � 1�* 1�	
That means * �	
� looks almost similar to * �	 !

We want to show that ,

where +	 is the � , � identity matrix.

Point-Value Form ⇒⇒⇒⇒ Coefficient Form

Show that: * �	
� � 1�* 1�	
Let - �	 � 1�* 1�	 - �	 * �	 � +	
Observe that for 0 / 0, 1 / � 2 1, the 0, 1 $3 entries are: - �	 45 � 1��	
45* �	 45 � �	45 and

Then entry 6, 7 of - �	 * �	 ,
- �	 * �	 89 � : - �	 85

	
�
5;� * �	 59 � 1�:�	5 9
8	
�

5;�

Point-Value Form ⇒⇒⇒⇒ Coefficient Form

- �	 * �	 89 � 1�:�	5 9
8	
�
5;�

CASE 6 � 7:
- �	 * �	 89 � 1�:�	�	
�

5;� � 1�:1	
�
5;� � 1� , � � 1

CASE 6 = 7:
- �	 * �	 89 � 1�: �	9
8 5	
�

5;� � 1� , �	
9
8 	 2 1�	9
8 2 1

																																										� 1� , �		 9
8 2 1�	9
8 2 1 � 1� , 1 9
8 2 1�	9
8 2 1 � 0
Hence - �	 * �	 � +	

Point-Value Form ⇒⇒⇒⇒ Coefficient Form

We need to compute the following matrix-vector product:

������··�	
��'
� 1� ,

1 1 1 ⋯ 1
1 1�	 1�	

� ⋯ 1�	
	
�

1 1�	� 1�	�
� ⋯ 1�	�

	
�
· · · ⋯ ·· · · ⋯ ·
1 1�		
� 1�		
�

� ⋯ 1�		
�
	
�

� �� >?

(�(�(�··(
�)'
This inverse problem is almost similar to the forward problem,

and can be solved in Θ � log � 	time using the same algorithm as

the forward FFT with only minor modifications!

Faster Polynomial Multiplication?
(in Coefficient Form)

� � � �� � ��� � ⋯� �	
��	
�� � � �� � ��� �⋯� �	
��	
�
 � � �� � ��� � ⋯� ��	
���	
�

� ��	� , � ��	�� ��	� , � ��	�⋮� ��	�	
� , � ��	�	
�

 ��	�
 ��	�⋮
 ��	�	
�

ordinary

multiplication

Time Θ ��

pointwise

multiplication

Time Θ �

fo
rw

a
rd

 F
F

T

T
im

e
 Θ
�log

�

in
ve

rs
e

 F
F

T

T
im

e
Θ
�log

�

Two polynomials of degree bound � given in the coefficient form

can be multiplied in Θ � log � time!

Some Applications of Fourier Transform and FFT

• Signal processing

• Image processing

• Noise reduction

• Data compression

• Solving partial differential equation

• Multiplication of large integers

• Polynomial multiplication

• Molecular docking

Some Applications of Fourier Transform and FFT

Jean Baptiste Joseph Fourier

Any periodic signal can be represented as a sum of a series of

sinusoidal (sine & cosine) waves. [1807]

Spatial (Time) Domain ⇔⇔⇔⇔ Frequency Domain

Spatial (Time) Domain

Frequency Domain

Source: The Scientist and Engineer’s Guide to Digital Signal Processing by Steven W. Smith

Spatial (Time) Domain ⇔⇔⇔⇔ Frequency Domain

Source: http://en.wikipedia.org/wiki/Fourier_series#mediaviewer/File:Fourier_series_and_transform.gif (uploaded by Bob K.)

Function s(x) (in red) is a sum of six sine functions of different amplitudes and

harmonically related frequencies. The Fourier transform, S(f) (in blue), which

depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

Spatial (Time) Domain ⇔⇔⇔⇔ Frequency Domain

Source: http://en.wikipedia.org/wiki/Fourier_series#mediaviewer/File:Fourier_series_and_transform.gif (uploaded by Bob K.)

Function s(x) (in red) is a sum of six sine functions of different amplitudes and

harmonically related frequencies. The Fourier transform, S(f) (in blue), which

depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

Spatial (Time) Domain ⇔⇔⇔⇔ Frequency Domain

Source: http://en.wikipedia.org/wiki/Fourier_series#mediaviewer/File:Fourier_series_and_transform.gif (uploaded by Bob K.)

Function s(x) (in red) is a sum of six sine functions of different amplitudes and

harmonically related frequencies. The Fourier transform, S(f) (in blue), which

depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

Spatial (Time) Domain ⇔⇔⇔⇔ Frequency Domain

Source: http://en.wikipedia.org/wiki/Fourier_series#mediaviewer/File:Fourier_series_and_transform.gif (uploaded by Bob K.)

Function s(x) (in red) is a sum of six sine functions of different amplitudes and

harmonically related frequencies. The Fourier transform, S(f) (in blue), which

depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

Spatial (Time) Domain ⇔⇔⇔⇔ Frequency Domain

Source: http://en.wikipedia.org/wiki/Fourier_series#mediaviewer/File:Fourier_series_and_transform.gif (uploaded by Bob K.)

Function s(x) (in red) is a sum of six sine functions of different amplitudes and

harmonically related frequencies. The Fourier transform, S(f) (in blue), which

depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

Spatial (Time) Domain ⇔⇔⇔⇔ Frequency Domain

(Fourier Transforms)

@ A � B C D · E
�F%G$H

H ID

C D � B @ A · E�F%G$H

H IA

Let C D be a signal specified in the time domain.

The strength of C D at frequency A is given by:

Now C D can be retrieved by summing up the signal strengths

at all possible frequencies:

Evaluating this integral for all values of A gives the frequency

domain function.

�J K C D · E
�F%G$J
J ID � 1 � LMN OFGJOFGJ , if	A � R,
LMN �F 3
G J�F 3
G J � LMN �F 3SG J�F 3SG J , otherwise.

Let’s try to get a little intuition behind why the transforms work.

We will look at a very simple example.

Suppose: C D � cos 2]R ⋅ D

Why do the Transforms Work?

⇒	 limJ→H 1aB C D · E
�F%G$J

J ID � b1, if	A � R,

0, otherwise.
So, the transform can detect if A � R!

Noise Reduction

Source: http://www.mediacy.com/index.aspx?page=AH_FFTExample

FFT
inverse FFT

remove
noise

Data Compression

− Discrete Cosine Transforms (DCT) are used for lossy data

compression (e.g., MP3, JPEG, MPEG)

− DCT is a Fourier-related transform similar to DFT (Discrete

Fourier Transform) but uses only real data (uses cosine waves

only instead of both cosine and sine waves)

− Forward DCT transforms data from spatial to frequency domain

− Each frequency component is represented using a fewer

number of bits (i.e., truncated / quantized)

− Low amplitude high frequency components are also removed

− Inverse DCT then transforms the data back to spatial domain

− The resulting image compresses better

1aB C D · cos 2]ADJ

J ID �

1 � sin 4]Aa4]Aa , if	A � R,
sin 2] R 2 A a2] R 2 A a � sin 2] R � A a2] R � A a , otherwise.

Transformation to frequency domain using cosine transforms

work in the same way as the Fourier transform.

Suppose: C D � cos 2]R ⋅ D

Data Compression

⇒	 limJ→H 1aB C D · cos 2]ADJ

J ID � b1, if	A � R,

0, otherwise.
So, this transform can also detect if A � R.

Protein-Protein Docking

� Knowledge of complexes is used in

− Drug design

− Studying molecular assemblies

� Protein-Protein Docking: Given two proteins, find the best relative

transformation and conformations to obtain a stable complex.

� Docking is a hard problem

− Search space is huge (6D for rigid proteins)

− Protein flexibility adds to the difficulty

− Structure function analysis

− Protein interactions

Here e5 � is a Gaussian representation of atom 1, and f5 its weight.

Shape Complementarity
[Wang’91, Katchalski-Katzir et al.’92, Chen et al.’03]

To maximize skin-skin overlaps and minimize core-core overlaps

− assign positive real weights to skin atoms

− assign positive imaginary weights to core atoms

For P ∈ {A′, B} with MP atoms, affinity function: Ag � � ∑ f5 ⋅ e5 �#i5;�
Let A′ denote molecule A with the pseudo skin atoms.

For rotation j and translation D of molecule � (i.e., �$,�),

the interaction score, kl,m D, j � K Aln � Amo,p �& I�

For P ∈ {A′, B} with MP atoms, affinity function:

Let A′ denote molecule A with the pseudo skin atoms.

Ag � � ∑ f5 ⋅ e5 �#i5;�

Shape Complementarity
[Wang’91, Katchalski-Katzir et al.’92, Chen et al.’03]

For rotation j and translation D of molecule � (i.e., �$,�),

the interaction score, kl,m D, j � K Aln � Amo,p �& I�
qE kl,m D, j � skin-skin overlap score – core-core overlap score+r kl,m D, j � skin-core overlap score

Shape Complementarity
[Wang’91, Katchalski-Katzir et al.’92, Chen et al.’03]

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Forward

Translational Search using FFT

rotate

discretize

discretize

FFT

multiply frequency maps

MA’ atoms

MB atoms

(((()))) Ω∀ ∈∀ ∈∀ ∈∀ ∈z , zhForward

FFT

Inverse

FFT

co
m

p
le

x

co
n

ju
g

a
te

∀t ∈ Ω � 2�, � v, R t � B Aln � Amp t 2 � I�&∈Ω 		

