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Faster Polynomial Multiplication?
(in Coefficient Form )
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Point-Value Form = Coefficient Form

Given: 1 1 1 1 1r ao T B yo 7
1 w, (w)* - ()™ || as V1
1w @2 - @ [ a |_|
11 o™ (0f™)? (wp= )" lan—1l LYn-1.

V(wn) a y

Vandermonde Matrix

:>V(wn)°a:y

We want to solve: a = [V(w,)]™t ¥

1 1
It turns out that: [V(w )]t ==V (_)
n \w,

That means [V (w,,)] ! looks almost similar to V (w,,)!




Point-Value Form = Coefficient Form
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Point-Value Form = Coefficient Form
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Hence U(w,)V(w,) =1,



Point-Value Form = Coefficient Form

We need to compute the following matrix-vector product:
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This inverse problem is almost similar to the forward problem,

and can be solved in ®(nlogn) time using the same algorithm as
the forward FFT with only minor modifications!




Faster Polynomial Multiplication?
(in Coefficient Form )
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Two polynomials of degree bound n given in the coefficient form
can be multiplied in ®(nlogn) time!



Some Applications of Fourier Transform and FFT

e Signal processing

* Image processing

* Noise reduction

e Data compression

e Solving partial differential equation
 Multiplication of large integers

* Polynomial multiplication

 Molecular docking



Some Applications of Fourier Transform and FFT

Jean Baptiste Joseph Fourier

Any periodic signal can be represented as a sum of a series of
sinusoidal ( sine & cosine ) waves. [ 1807 ]



Spatial ( Time ) Domain & Frequency Domain

Frequency Domain
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Spatial ( Time ) Domain & Frequency Domain

sg(T)
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Function s(x) (in red) is a sum of six sine functions of different amplitudes and
harmonically related frequencies. The Fourier transform, S(f) (in blue), which
depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

Source: http://en.wikipedia.org/wiki/Fourier series#tmediaviewer/File:Fourier series and transform.gif (uploaded by Bob K.)




Spatial ( Time ) Domain & Frequency Domain
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Function s(x) (in red) is a sum of six sine functions of different amplitudes and
harmonically related frequencies. The Fourier transform, S(f) (in blue), which
depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

Source: http://en.wikipedia.org/wiki/Fourier series#tmediaviewer/File:Fourier series and transform.gif (uploaded by Bob K.)
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Spatial ( Time ) Domain & Frequency Domain
( Fourier Transforms )

Let s(t) be a signal specified in the time domain.
The strength of s(t) at frequency f is given by:

S(f) = foos(t) e 2Tt gt

Evaluating this integral for all values of f gives the frequency

domain function.

Now s(t) can be retrieved by summing up the signal strengths

at all possible frequencies:

5@ = | T S(p) - et g



Why do the Transforms Work?

Let’s try to get a little intuition behind why the transforms work.

We will look at a very simple example.

Suppose: s(t) = cos(2mh - t)

f 1+ Sin‘l-(;;r’]]‘CT) ) lff = h;
%f_TTS(t) e 2T gt = 4
sin(2e(h—f)T) . sin(2u(h+f)T) _
| 2n(h-P)T 2t )T otherwise.
1 r (1) lff —_ h,
— ’11111’1’1 (Tf S(t) . 3_27Tlft dt) —
- 0, otherwise.

So, the transform can detect if f = h!



Noise Reduction

inverse FFT

—

remove
noise

Source: http://www.mediacy.com/index.aspx?page=AH_FFTExample



Data Compression

Discrete Cosine Transforms ( DCT ) are used for lossy data
compression ( e.g., MP3, JPEG, MPEG )

DCT is a Fourier-related transform similar to DFT ( Discrete
Fourier Transform ) but uses only real data ( uses cosine waves
only instead of both cosine and sine waves )

Forward DCT transforms data from spatial to frequency domain

Each frequency component is represented using a fewer
number of bits (i.e., truncated / quantized)

Low amplitude high frequency components are also removed
Inverse DCT then transforms the data back to spatial domain

The resulting image compresses better



Data Compression

Transformation to frequency domain using cosine transforms
work in the same way as the Fourier transform.

Suppose: s(t) = cos(2mh - t)

( :
T 1+ sm4(i;£T), if f = h,
lj s(t) - cos(2rft) dt = <
T ) 7 sin(2e(h — f)T) sin(re(h + f)T) _
L Zﬂ(h — f)T T 277,'(]’1 + f)T otherwise.

1 (T 1, if f =nh,
— Tll_)n(}o (? j_TS(t) - cos(2mft) dt) =

0, otherwise.

So, this transform can also detect if f = h.



Protein-Protein Docking

J Knowledge of complexes is used in

— Drug design — Structure function analysis

— Studying molecular assemblies — Protein interactions

[ Protein-Protein Docking: Given two proteins, find the best relative
transformation and conformations to obtain a stable complex.

--------

T ’
-I_J‘J-~ ] :.

1 Docking is a hard problem
— Search space is huge ( 6D for rigid proteins )
— Protein flexibility adds to the difficulty



Shape Complementarity

[ Wang’'?1, Katchalski-Katzir et al.’92, Chen et al.’03 ]

Molecule A

skin

Molecule B

surface atom

a possible docking solution

To maximize skin-skin overlaps and minimize core-core overlaps

— assign positive real weights to skin atoms
— assign positive imaginary weights to core atoms

Let A~ denote molecule A with the pseudo skin atoms.
For P e {A’ B} with M, atoms, affinity function: fp(x) = Z’,?jl W * g (x)

Here g, (x) is a Gaussian representation of atom k, and wy, its weight.



Shape Complementarity

[ Wang’'?1, Katchalski-Katzir et al.’92, Chen et al.’03 ]

Molecule A

skin

Molecule B

surface atom

a possible docking solution

Let A~ denote molecule A with the pseudo skin atoms.

For P e {A’ B} with M, atoms, affinity function:
M
fp(x) = Zkfl Wi gi (x)
For rotation r and translation t of molecule B (i.e., B, ),

the interaction score, F, g(t,7) = fx far(x)fp, (x)dx



Shape Complementarity

[ Wang’'?1, Katchalski-Katzir et al.’92, Chen et al.’03 ]

Molecule A

skin

Molecule B

surface atom

a possible docking solution

For rotation r and translation t of molecule B (i.e., By, ),

the interaction score, F, g(t, 1) = fx fAr(x)th,r(x) dx

Re (FA,B (t, r)) = skin-skin overlap score — core-core overlap score

Im (FA,B (t, r)) = skin-core overlap score
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Translational Search using FFT
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