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Faster Polynomial Multiplication?
( in Coefficient Form )
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We want to show that                                    , 

where +	 is the � , � identity matrix.

Point-Value Form ⇒⇒⇒⇒ Coefficient Form

Show that: * �	 
� � 1�* 1�	
Let - �	 � 1�* 1�	 - �	 * �	 � +	
Observe that for  0 / 0, 1 / � 2 1, the 0, 1 $3 entries are: - �	 45 � 1��	
45* �	 45 � �	45 and

Then entry 6, 7 of - �	 * �	 ,
- �	 * �	 89 � : - �	 85

	
�
5;� * �	 59 � 1�:�	5 9
8	
�

5;�



Point-Value Form ⇒⇒⇒⇒ Coefficient Form
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Point-Value Form ⇒⇒⇒⇒ Coefficient Form

We need to compute the following matrix-vector product:
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This inverse problem is almost similar to the forward problem, 

and can be solved in Θ � log � 	time using the same algorithm as 

the forward FFT with only minor modifications!



Faster Polynomial Multiplication?
( in Coefficient Form )

� � � �� � ��� � ⋯� �	
��	
�� � � �� � ��� �⋯� �	
��	
� 
 � � �� � ��� � ⋯� ��	
���	
�

� ��	� , � ��	�� ��	� , � ��	�⋮� ��	�	
� , � ��	�	
�

 ��	�
 ��	�⋮
 ��	�	
�

ordinary

multiplication

Time Θ ��

pointwise

multiplication

Time Θ �

fo
rw

a
rd

 F
F

T

T
im

e
 Θ
�log

�

in
ve

rs
e

 F
F

T

T
im

e
Θ
�log

�

Two polynomials of degree bound � given in the coefficient form 

can be multiplied in Θ � log � time!



Some Applications of Fourier Transform and FFT

• Signal processing

• Image processing

• Noise reduction

• Data compression

• Solving partial differential equation

• Multiplication of large integers

• Polynomial multiplication

• Molecular docking



Some Applications of Fourier Transform and FFT

Jean Baptiste Joseph Fourier

Any periodic signal can be represented as a sum of a series of 

sinusoidal ( sine & cosine ) waves. [ 1807 ]



Spatial ( Time ) Domain ⇔⇔⇔⇔ Frequency Domain

Spatial ( Time ) Domain

Frequency Domain

Source: The Scientist and Engineer’s Guide to Digital Signal Processing by Steven W. Smith



Spatial ( Time ) Domain ⇔⇔⇔⇔ Frequency Domain

Source: http://en.wikipedia.org/wiki/Fourier_series#mediaviewer/File:Fourier_series_and_transform.gif (uploaded by Bob K.)

Function s(x) (in red) is a sum of six sine functions of different amplitudes and

harmonically related frequencies. The Fourier transform, S(f) (in blue), which

depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.
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Spatial ( Time ) Domain ⇔⇔⇔⇔ Frequency Domain

( Fourier Transforms )

@ A � B C D · E
�F%G$H

H ID

C D � B @ A · E�F%G$H

H IA

Let C D be a signal specified in the time domain.

The strength of C D at frequency A is given by:

Now C D can be retrieved by summing up the signal strengths 

at all possible frequencies:

Evaluating this integral for all values of A gives the frequency 

domain function.



�J K C D · E
�F%G$J
J ID � 1 � LMN OFGJOFGJ , if	A � R,
LMN �F 3
G J�F 3
G J � LMN �F 3SG J�F 3SG J , otherwise.

Let’s try to get a little intuition behind why the transforms work.

We will look at a very simple example.

Suppose: C D � cos 2]R ⋅ D

Why do the Transforms Work?

⇒	 limJ→H 1aB C D · E
�F%G$J

J ID � b1, if	A � R,

0, otherwise.
So, the transform can detect if A � R!



Noise Reduction

Source: http://www.mediacy.com/index.aspx?page=AH_FFTExample

FFT
inverse FFT

remove 
noise



Data Compression

− Discrete Cosine Transforms ( DCT ) are used for lossy data 

compression ( e.g., MP3, JPEG, MPEG )

− DCT is a Fourier-related transform similar to DFT ( Discrete 

Fourier Transform ) but uses only real data ( uses cosine waves 

only instead of both cosine and sine waves )

− Forward DCT transforms data from spatial to frequency domain

− Each frequency component is represented using a fewer 

number of bits ( i.e., truncated / quantized)

− Low amplitude high frequency components are also removed

− Inverse DCT then transforms the data back to spatial domain

− The resulting image compresses better



1aB C D · cos 2]ADJ

J ID �

1 � sin 4]Aa4]Aa , if	A � R,
sin 2] R 2 A a2] R 2 A a � sin 2] R � A a2] R � A a , otherwise.

Transformation to frequency domain using cosine transforms 

work in the same way as the Fourier transform.

Suppose: C D � cos 2]R ⋅ D

Data Compression

⇒	 limJ→H 1aB C D · cos 2]ADJ

J ID � b1, if	A � R,

0, otherwise.
So, this transform can also detect if A � R.



Protein-Protein Docking

� Knowledge of complexes is used in

− Drug design

− Studying molecular assemblies

� Protein-Protein Docking: Given two proteins, find the best relative 

transformation and conformations to obtain a stable complex.

� Docking is a hard problem

− Search space is huge ( 6D for rigid proteins )

− Protein flexibility adds to the difficulty

− Structure function analysis

− Protein interactions



Here e5 � is a Gaussian representation of atom 1, and f5 its weight.

Shape Complementarity
[ Wang’91, Katchalski-Katzir et al.’92, Chen et al.’03 ]

To maximize skin-skin overlaps and minimize core-core overlaps

− assign positive real weights to skin atoms

− assign positive imaginary weights to core atoms

For P ∈ {A′, B} with MP atoms, affinity function: Ag � � ∑ f5 ⋅ e5 �#i5;�
Let A′ denote molecule A with the pseudo skin atoms.



For rotation j and translation D of molecule � ( i.e., �$,� ), 

the interaction score, kl,m D, j � K Aln � Amo,p �& I�

For P ∈ {A′, B} with MP atoms, affinity function:

Let A′ denote molecule A with the pseudo skin atoms.

Ag � � ∑ f5 ⋅ e5 �#i5;�

Shape Complementarity
[ Wang’91, Katchalski-Katzir et al.’92, Chen et al.’03 ]



For rotation j and translation D of molecule � ( i.e., �$,� ), 

the interaction score, kl,m D, j � K Aln � Amo,p �& I�
qE kl,m D, j � skin-skin overlap score  – core-core overlap score+r kl,m D, j � skin-core overlap score

Shape Complementarity
[ Wang’91, Katchalski-Katzir et al.’92, Chen et al.’03 ]



Docking: Rotational & Translational Search
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Forward

Translational Search using FFT

rotate

discretize

discretize

FFT

multiply frequency maps

MA’ atoms

MB atoms
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