CSE 548: Analysis of Algorithms

Lecture 31
(Analyzing I/O and Cache Performance)

Rezaul A. Chowdhury

Department of Computer Science
SUNY Stony Brook
Spring 2015

Iterative Mairix-Multiply Variants

double Z| n|[n], X[n]|[n], YIn][n];

FJ-K

FK-J

for (int i=0; i< n; i++)
for (int j=0; j< n; j++)
for (int k=0; k< n; kt+)

Zil[jl+=X il k]* Y[k][Jj];

for (int i=0; i< n; i++)
for (int k=0; k< n; kt+)
for (int j=0; j< n; j++)

Zi][jl+=Xil[k]* Y k][Jj];

J-LFK

J-K-1

for (int j=0; j< n; j++)
for (int i1=0; i< n; i++)
for (int k=0; k< n; kt+)

Zi)l[jl+=X il k]* Y[k][Jj];

for (int j=0; j< n; j++)
for (int k=0; k< n; kt+)
for (int i=0; i< n; t++)

Zi)[jl+=Xil[k]* Y k][Jj];

K-I-J

K-J-1

for (int k=0; k< n; kt+)
for (int i1=0; i< n; i++)
for (int j=0; j < n; j++)

Zi)[jl+=X il k]* Y k][Jj];

for (int k=0; k< n; kt++)
for (int j=0; j< n; j++)
for (int i1=0; i< n; t++)

Zi)[jl+=X il k]* Y k][Jj];

Performance of lterative Matrix-Multiply Variants

[
N

10

time (sec)

8
6
4
2
0

4096

2048

L1 misses (x 106)
log scale
-
N w o
v - N
le2} N S~

-
N
[

64

512

256

-
2w N
a N » ®

L2 misses (x 10°)

<3

4

Processor: 2.7 GHz Intel Xeon E5-2680 (used only one core)

Caches & RAM: private 32KB L1, private 256KB L2, shared 20MB L3, 32 GB RAM
Optimizations: none (icc 13.0 with —00)

n = 2000

Running Times

n = 1000

Running Times

J-K J-K-1

loop order

L1 Cache Misses

1-K-J

JHK Ikl
L2 Cache Misses

loop order

I-J-K 1-K-J J-kK J-K-1
loop order

K-I-J K-J-1

K-1-J K-J-1

K-I-J

L1 misses (x 106)

L2 misses (x 106)

time (sec)
=

N A O ®
©O o o o o

32768
16384
8192

2048
1024

log scale

32768
16384
8192

log scale

=N
S
5 ®

1-K-J

J-HK J-K-1
loop order

L1 Cache Misses

J-kK J-K-1

loop order

L2 Cache Misses

I-K-J

J-kK J-K-1
loop order

K-I-J

K-I-J

0

131072

65536

32768

log scale
=
a
w
R

8192

L1 misses (x 106)

409

a

204

3

1024

131072
65536
32768
16384

8192
4096
2048
1024
512
256
128

L2 misses (x 10°)
log scale

-K

n = 3000

Running Times

1-K-J

J-HK J-K-1
loop order

L1 Cache Misses

J-HK J-K-1

loop order

L2 Cache Misses

1-K-J

J-kK J-K-1

loop order

K-I-J

K-I-J

Memory: Fast, Large & Cheap!

For efficient computation we need

— fast processors

- fast and large (but not so expensive) memory

But memory cannot be cheap, large and fast at the same time,

because of
- finite signal speed

- lack of space to put enough connecting wires

A reasonable compromise is to use a memory hierarchy.

The Memory Hierarchy

Faster

Slower

CPU

Registers
On Chip Cache

[

On Board Cache

[

Main Memory

N

T l Block Transfer

Disk

Tape

Smaller

Larger

A memory hierarchy is

almost as fast as its fastest level
almost as large as its largest level

inexpensive

The Memory Hierarchy

CPU

Faster Smaller

A Registers
On Chip Cache

[

On Board Cache

Main Memory \

T l Block Transfer

Disk A

T

Tape

Slower Larger

To perform well on a memory hierarchy algorithms must
have high locality in their memory access patterns.

Locality of Reference

Spatial Locality: When a block of data is brought into the cache it
should contain as much useful data as possible.

Temporal Locality: Once a data point is in the cache as much useful
work as possible should be done on it before evicting it from the
cache.

CPU-bound vs. Memory-bound Algorithms

The Op-Space Ratio: Ratio of the number of operations performed
by an algorithm to the amount of space (input + output) it uses.

Intuitively, this gives an upper bound on the average number of
operations performed for every memory location accessed.

CPU-bound Algorithm:
- high op-space ratio
- more time spent in computing than transferring data
— a faster CPU results in a faster running time

Memory-bound Algorithm:
- low op-space ratio
- more time spent in transferring data than computing

- a faster memory system leads to a faster running time

The Two-level |/O Model

The two-level |/O model [Aggarwal
& Vitter, CACM’88] consists of: I ,
Cache Lines
- aninternal memory of size M ‘ internal memory
]] (size = M)

— an arbitrarily large external

memory partitioned into blocks Cache MisseSﬁbkﬁikzginE)fer

of size B. o e e

N external memory v,

I/O complexity of an algorithm b—

= number of blocks transferred between these two levels
. - N N N
Basic I/0O complexities: scan(N) = 0 (E) and sort(N) = 0 (ElogM E)
B
Algorithms often crucially depend on the knowledge of M and B
—> algorithms do not adapt well when M or B changes

The Ideal-Cache Model

The ideal-cache model [Frigo et al.,
FOCS’99] is an extension of the |/O
model with the following constraint:

algorithms are not allowed to

use knowledge of M and B.

Consequences of this extension

I Cache Lines

internal memory
(size = M)

Cache Misses

block transfer

(size = B)

external memory

L 4
llllllllll

— algorithms can simultaneously adapt to all levels of a multi-

level memory hierarchy

— algorithms become more flexible and portable

Algorithms for this model are known as cache-oblivious algorithms.

The Ideal-Cache Model: Assumptions

The model makes the following assumptions:
d Optimal offline cache replacement policy

d Exactly two levels of memory

d Automatic replacement & full associativity

The Ideal-Cache Model: Assumptions

The model makes the following assumptions:

d Optimal offline cache replacement policy
— LRU & FIFO allow for a constant factor approximation of
optimal [Sleator & Tarjan, JACM’85 |

The Ideal-Cache Model: Assumptions

The model makes the following assumptions:

d Exactly two levels of memory

— can be effectively removed by making several reasonable
assumptions about the memory hierarchy [Frigo et al.,
FOCS'99 |

The Ideal-Cache Model: Assumptions

The model makes the following assumptions:

d Automatic replacement & full associativity

— in practice, cache replacement is automatic
(by OS or hardware)

— fully associative LRU caches can be simulated in software
with only a constant factor loss in expected performance
[Frigo et al., FOCS’99]

The Ideal-Cache Model: Assumptions

The model makes the following assumptions:
d Optimal offline cache replacement policy

d Exactly two levels of memory

d Automatic replacement & full associativity

Often makes the following assumption, too:

Q M=Q(B?) i.e. the cacheis tall

The Ideal-Cache Model: Assumptions

The model makes the following assumptions:
d Optimal offline cache replacement policy

d Exactly two levels of memory

d Automatic replacement & full associativity

Often makes the following assumption, too:

Q M=Q(B?) i.e. the cacheis tall

— most practical caches are tall

The ldeal-Cache Model: I/O Bounds

Cache-oblivious vs. cache-aware bounds:

d Basic I/O bounds (same as the cache-aware bounds):

— scan(N) =0 (%)

N N
— sort(N) =0 (Elog% E)
O Most cache-oblivious results match the 1I/0 bounds of

their cache-aware counterparts

[There are few exceptions; e.g., no cache-oblivious
solution to the permutation problem can match cache-
aware 1/0 bounds [Brodal & Fagerberg, STOC’03]

Some Known Cache Aware / Oblivious Resulis

Problem

Cache-Aware Results

Cache-Oblivious Results

Array Scanning (scan(N))

Sorting ; ﬁlogMﬁ O(ElogM ﬁj
(sort(N)) B °T B B 4B
Selection O (scan(N)) O (scan(N))

B-Trees [Am] 0(log3 N) 0(10g3 N j

(Insert, Delete) B B
Priority Queue [Am]
Log, Y 0| L1og, X

(Insert, Weak Delete, 0 E"’ggg B g% B

Delete-Min)

. T N’ N?
Matrix Multiplication O(ij O(ij

Sequence Alignment

()

(o)

Single Source
Shortest Paths

o((mg).mgz g]

o V+£ -log7K
B "B

Minimum Spanning Forest

O(min(sort (E)log,log,V, V + SO”t(E)))

o (min (sort (E)log, log, %, V +sort (E))]

Table 1: N = #elements, V = #vertices, E = #edges, Am = Amortized.

Matrix
Multiplication

Iterative Matrix Multiplication

n
Z; = Z XY
k=1

Z, X Xy, 0 X, Yo Yo 0 Y
Z,, — Xy Xy o Xy, X Yu Y - Yo
znn xnl xnj o xnn yn] ynf e yrrn

Iter-MM(X, Y, Z, n)
for i< 1 to n do
for j«<1 to n do

1.
2.
3. for k<1 to n do
4.

Zjj & Zjj + Xj X Yy

Iterative Matrix Multiplication

lter-MM (X, Y, Z, n)

1. for i< 1 to n do

2. for j«<1 to n do
3. for k<1 to n do
4.

Zij < Zj; + Xy X Yy

store in store in

row-major order row-major order

no £ In Xy, Xp o X, Yu Yo o Yia
Z, |Zy - Z,, — Xy Xy o Xy, x Yoo Yoo o ¥You
znl an T znn xnl xni T xnn yn] yni T ynn

Each iteration of the for loop in line 3 incurs O(n) cache misses.

|/O-complexity of Iter-MM, Q(n) = 0(n3)

Iterative Matrix Multiplication

[ter-MM(X, Y, Z, n)

for j«<1 to n do

1.
2.
3. for k<1 to n do
4.

Zij < Zj; + Xy X Yy

11 Z, - Z,
21 Zy| 2n
znl an znn

store in
row-major order

ln

2n

for i< 1 to n do
xl] x]i
xii XZZ
xnl xni

nn

X

store in

column-major order

yn]

Y
Y»

ynl

yln
y?n

yﬂﬂ'

Each iteration of the for loop in line 3 incurs O (1 + g) cache misses.

3
|/O-complexity of Iter-MM,Q(n) = O (nz (1 + %)) =0 (% + nz)

Block Matrix Multiplication

cache (size =M)

M/I3 ' M/3 ' M/3

lm

M/3 T

M/3

- 3
= 3
= 3

M/3 T

S
1
—— 3 —»
X
= |

—— n —> [—— n —> —— n —>

Block-MM(X, Y, Z, n)
1. for i< 1 to n/ m do
2. for j«<1 to n/ m do
3. for k<1 to n/ m do

4. Iter-MM (Xy, Yij» Z;;)

Block Matrix Multiplication

j=m)
I Block-MM (X, Y, Z, n)
4 .
1. for i< 1 to n/ m do
n 2. for j<1 to n/ m do
3. for k<1 to n/ m do
4. Iter-MM (Xy, Yy Z;;)

e—— n —»
Choose m = /M /3, so that X;, Y,; and Z; just fit into the cache.

Then line 4 incurs ® (m (1 + %)) cache misses.

|/O-complexity of Block-MM [assuming a tall cache, i.e., M = Q(B?)]

-0((2) (n+3) o+) -0+) =0 (2

(Optimal: Hong & Kung, STOC’81)

Cha

The

Block Matrix Multiplication

j=m)
I Block-MM (X, Y, Z, n)
4 .
1. for i< 1 to n/ m do
n 2. for j<1 to n/ m do
3. for k<1 to n/ m do
4. Iter-MM (Xy, Yy Z;;)

—— n —»

[AL/
Optimal for any algorithm that performs
the operations given by the following

 fit into the cache.

definition of matrix multiplication: pes-
n
Z; = ; XikY k; ache, i.e., M = Q(B?)]

“57w) = ©)

‘ (Optimal: Hong & Kung, STOC’81) ‘

Multiple Levels of Cache

< n
¢ — S —>

I Block-MM(X, Y, Z, n)

for i<1 to n/s do

for j«<1 to n/s do

1.
2.
3. for k<1 to n/s do
4.

s)

1

ij’

Multiple Levels of Cache

—
=t)

S

n

——»

Block-MM(X, Y, Z, n)

1.
2
3
4.
5
6
7

for i;<1 to n/s do
for j,«<1 to n/s do
for k, <1 to n/s do
for i< 1 to s/t do
for j,«<1 to s/t do
for k, <1 to s/t do
[ter-MM ((Xi.k)ik (Yigi ko (

X.

1

o

t)

Multiple Levels of Cache

—
=t)

S

n

——»

‘ One Parameter Per Caching Level!

Block-MM(X, Y, Z, n)

1.
2
3
4.
5
6
7

for i;«<1 to n/s do
for j,«<1 to n/s do
for k<1 to n/s do
for i< 1 to s/t do
for j,«<1 to s/t do
for k, <1 to s/t do

Iter-MM((Xi1k1)i2k2’ (Yk1j1)k2j2’ (Xi1j1)72j2’

t)

n/2

l—

Recursive Matrix Multiplication

V4
— n/Z2 |
Z11 Z12
ZZ1 222
e—— n —>

X Y
l— n/2 - = n/i2
T T
— i n X i n
X3 X322 l Y2 Y2 l
[—— n —p] l—— n ——p]
— 2 —]
T
2 | Xyg Y+ X2 Yo | X Yo+ X2 Yo
_—]

X1 Y91+ X2 Yo

X1 Y2+ X2 Yo

=

Recursive Matrix Multiplication

— n/2) — /2)
T T
n/2| 2y, Z,, 2 | Xyg Y+ X2 Y2 | X Yo+ X2 Yo
4 n — 4 n
Z,, Z,, l X1 Y v X2 Y | Xpq Y2+ X Yo l
[—— n —> |« n >

Rec-MM(Z, X, Y')

1. if Z=1x1matrixthenZ <« Z+X-Y

2. else
3 Rec-MM(Zy4, X4y, Y11), Rec-MM(Zyy, Xiz, Yyq)
4. Rec-MM(Zy5, X135, Y12), Rec-MM(2y, X135 Y2)
5 Rec-MM(Zy4, X1, Y11), Rec-MM(Zy4, X3, Y1)
6 Rec-MM(Zy5, X1, Y12), ReC-MM(Zy;, Xy3, Y2)

Recursive Matrix Multiplication

Rec-MM(Z, X, Y)

1. if Z=1x1matrix thenZ « Z+X-Y

2. else
3 Rec-MM(Zy4, Xy1, Y11), ReC-MM(Zyy, Xy35 Yoy)
4. Rec-MM(Z5, Xip, Y12), Rec-MM(Z5, Xi2, Yoy)
5 Rec-MM(Zyq, Xy1, Y11), Rec-MM(Zyq, Xp2, Yoy)
6 Rec-MM(Zy;, Xy1, Y12), Rec-MM(Zyy, Xp3, Yo)

(O(n+n£), if n* <aM
\8Q (g) + 0(1), otherwise

03 03 03 ,
O(M B\/_> (Bm>,whenM=Q(B)

|/O-complexity (foralln)= 0O (B | | 1) (why?)

|/O-complexity (forn > M), Q(n) =«

Recursive Matrix Multiplication with Z-Morion Layout

A

Recursive Matrix Multiplication with Z-Morion Layout

Recursive Matrix Multiplication with Z-Morion Layout

lell 21112 21121 21122 Zlle 21212 21221 21222 Zlel 22112 22121Z2122 22211 22212 22221Z2222

le ZZl

Recursive Matrix Multiplication with Z-Morion Layout

/

T

Source: wikipedia

Recursive Matrix Multiplication with Z-Morion Layout

Rec-MM(Z, X, Y)
1. if Z=1x1matrix thenZ « Z+X-Y
2. else
3. Rec-MM(Zyy, X4y, Y41), Rec-MM(Zyy, Xi3, Y1)
4 Rec-MM(Zyy, Xy, Y1), Rec-MM(Z3, X135 Y2)
5. Rec-MM(Z,y, Xo1, Y11), ReC-MM(Zy, X35, Yoy)
6 Rec-MM(Zy;, Xy1, Y12), Rec-MM(Zyy, Xp2, Yo)

(o(1+"§), if n2 < aM

1/O-complexity (forn > M), Q(n) =
80 (g) +0(1), otherwise

n3 n3 n3
=O<MN+BW>=O<Bm),whenM=Q(B)

n3

B\VM

nZ
|/O-complexity (foralln) = O(+ - + 1)

Recursive Matrix Multiplication with Z-Morion Layout

: I
X o 1 2 3 1 4 5 6 7
000 001 010 011 | 100 101 110 111
I
I
y: 020 000000 000001 ' 000100 000101 : 010000 010001 ' 010100 010101
I
I
0(1)1 000010 000011 ' 000110 000111:010010 010011 ' 010110 010111
|
|
2
o010 |001000 001001 | 001100 001101 ' 011000 011001 ' 011100 011101
I
I
3 I
o011 |©01010 001011 : 001110 001111011010 011011 : 011110 011111
I
S (e R | — e o o o e mm e em Em em em = e
a I
100 | 100000 100001 | 100100 100101 ! 110000 110001 : 110100 110101
I
I
5 I
o1 | 100010 100011 ;100110 100111110010 110011 : 110110 110111
I
]
6 1
110 | 101000 101001 ; 101100 101101 I 111000 111001 : 111100 111101
I
I
- I
111 | 101010 101011 101110 1011111111010 111011 111110 111111
I

Source: wikipedia

Searching
(Static B-Trees)

A Static Search Tree

h = ©(log, n) A

degree: 2

A 4 L i 11 ---=--- I |

A perfectly balanced binary search tree
J Static: no insertions or deletions
d Height of the tree, h = O(log, n)

A Static Search Tree

a search path

h = ©(log, n)

A 4 I Imm ------ CIC 1]

A perfectly balanced binary search tree

J Static: no insertions or deletions

d Height of the tree, h = O(log, n)

A search path visits O(h) nodes, and incurs O(h) = O(log, n) 1/Os

|/O-Efficient Static B-Trees

h = 0©(log, n)

(d Each node stores B keys, and has degree B+ 1
 Height of the tree, h = O(logg n)

|/O-Efficient Static B-Trees

a search path

h = 0©(log, n)

(d Each node stores B keys, and has degree B+ 1
 Height of the tree, h = O(logg n)
O A search path visits O(h) nodes, and incurs O(h) = O(logg n) 1/0s

Cache-Oblivious Static B-Trees?

van Emde Boas Layout

a binary search tree

van Emde Boas Layout

a binary search tree

A[B,[B,| - B,

If the tree contains n nodes,
each subtree contains @(Zh/z) = 0(x/n) nodes,

and k = 0(y/n).

van Emde Boas Layout

a binary search tree

A

B,

B,

Recursive Subdivision

If the tree contains n nodes,

each subtree contains @(Zh/z) = 0(x/n) nodes,

and k = 0(y/n).

van Emde Boas Layout

a binary search tree

A|[B,|B,| B, Recursive Subdivision

If the tree contains n nodes,
each subtree contains @(Zh/z) = 0(x/n) nodes,

and k = 0(y/n).

van Emde Boas Layout

a binary search tree

A|[B,|B,| B, Recursive Subdivision

If the tree contains n nodes,
each subtree contains @(Zh/z) = 0(x/n) nodes,

and k = 0(y/n).

van Emde Boas Layout

a binary search tree

A|[B,|B,| B, Recursive Subdivision

If the tree contains n nodes,
each subtree contains @(Zh/z) = 0(x/n) nodes,

and k = 0(y/n).

|/O-Complexity of a Search

d The height of the tree is logn
v J Each A has height between %logB & logB.

v v d Each A spans at most 2 blocks of size B.

|/O-Complexity of a Search

d The height of the tree is logn
J Each A has height between %logB & logB.

v d Each A spans at most 2 blocks of size B.

d p =number of A‘s visited by a search path

logn logn

d Thenp > losB loggn,and p < Tog 5 = 2loggn

(d The number of blocks transferred is < 2 X 2loggn = 4logg n

Sorting
(Mergesort)

Merge Sort

Merge-Sort (A, p, r) { sort the elements inA[p ...r]}

1. if p<rthen

2
3
4.
5

g—L(p+r)/2]
Merge-Sort (A, p, q)
Merge-Sort (A, g+1, r)
Merge (A, p, q,)

Merging k Sorted Sequences

k > 2 sorted sequences 54, S, ..., Sk stored in external memory
1S;]]=n;forl1 <i<k

n =nq +n, + -+ ng is the length of the merged sequence §
S (initially empty) will be stored in external memory

Cache must be large enough to store
* one block from each §;

e one block from S
ThusM > (k+ 1)B

Merging k Sorted Sequences

— Let B, be the cache block associated with S;, and let B be the
block associated with S (initially all empty)

— Whenever a B; is empty fill it up with the next block from S;

— Keep transferring the next smallest element among all Bs to B

— Whenever B becomes full, empty it by appending it to S

— In the Ideal Cache Model the block emptying and replacements
will happen automatically = cache-oblivious merging

/O Complexity

— Reading §;: #block transfers < 2 + %

— Writing S: #block transfers < 1 + g

n n; . n
— Total #block transfers < 1 + =t D1<i<k (2 + E) =0 (k +)

Cache-Oblivious 2-Way Merge Sort

Merge-Sort (A, p, r) { sort the elements inA[p ...r]}
. if p<rthen

qgL(p+r)s2]

1

2

3. Merge-Sort (A, p, q)

4 Merge-Sort (A, g+1, r)
5

Merge (A, p, q,)

(n

2Q<) (1 + B)' otherwise.

- o(2ist)

/O Complexity: Q(n) =«

How to improve this bound?

Cache-Oblivious k-Way Merge Sort

ifn<M,
/O Complexity: Q(n) =<

(o142
(+§)'
k (")+o(k+") therwi

\ Q . 5) otherwise.

How large can k be?

Recall that for k-way merging, we must ensure

M
MZ(k-l—l)B:)kSE—l

Cache-Aware (% — 1)-Way Merge Sori

(n
k (")+o(k+") therwi
\ Q 2 5) otnerwise.

/O Complexity: Q(n) =<

Using k = % — 1, we get:

Q) =0 ((% - 1),7\2 g losu (13)) -0 (glog% (%»

Sorting
(Funnelsort)

k = 2 sorted
input sequences

Memory layout of a k-merger:

k-Merger (k-Funnel)

Vk - mergers
(Vk of them)

R

Ly

B,

Vk linking buffers
3

(each of size 2kz)

one merged
output sequence

Vk - merger
(one)

k-Merger (k-Funnel)

----------------- g vk linking buffers

3
(each of size 2kz2)

|

---------------------- e

one merged
output sequence

k = 2 sorted
input sequences

......................

: (one)
e | Memory layout of a k-merger:

Vk - mergers
R|L|By|L,| B
(Vk of them) ! 1] ™)

e(1), if k <2,

Space usage of a k-merger: S(k) = (\/E + 1)5(\/%) + 0@(k?), otherwise.

= O(k?)

A k-merger occupies ®(k?) contiguous locations.

k-Merger (k-Funnel)

i ; Vk linking buffers
! | (each of size 2k2)
— """""""""""""" R
k = 2 sorted : one merged
input sequences o output sequence
- %— : (one)
e | Memory layout of a k-merger:

Vk - mergers
(VE of them) RI1Li|Bi|Lp) By L% |Byk

Each invocation of a k-merger
— produces a sorted sequence of length k?

k

k3 k3
—incurs O (1 + k + -+ ElogM (E)) cache misses provided M = Q(B?)

k-Merger (k-Funnel)

|

k = 2 sorted _
input sequences

......................

\/E- mergers
(Vk of them)
Cache-complexity:

(3
O(1+k+—),
Q'(k) = 1 B

\(Zk% + 2\/%)(2’(\/%) + 0(k?), otherwise.

0 (F 1oz (5)).

Vk linking buffers

3
(each of size 2kz2)

R

one merged
output sequence

(one)
Memory layout of a k-merger:

R

Ly

B,y

if k< aVM,

provided M = Q(B?)

k-Merger (k-Funnel)

Vk linking buffers

3
(each of size 2kz)
‘ R
‘ Lygifi : T
Vk - merger
_ (one)

Vk - mergers
(Vk of them)

k = 2 sorted _
input sequences

1]

3
k < avM: Q'(k)=0<1+k+%>

one merged
output sequence

Memory layout of a k-merger:

R|L |B|L,| B,

Cache-complexity:

r

_

(1+4+5)
Oll1+k+—|,
Q'(k) = B

~

if k <aVM,

(Zk% + 2\/1;)()'(\/’1;) + ®(k?), otherwise.

- o108 (5)

provided M = Q(B?)

— Let r; be #items extracted the i-th input queue. Then Y%, r; = O(k?).

— Sincek < avM and M = Q(B?), at Ieast% = (k) cache blocks are available

for the input buffers.

— Hence, #icache-misses for accessing the input queues (assuming circular

buffers) = 2., 0 (1+2) = o

4

k-Merger (k-Funnel)

Vk linking buffers

3
(each of size 2kz)

k = 2 sorted \Q
input sequences 7 L] Il
””””””””””””” VE - merger
— (one)
t
Vk - mergers
(Vk of them)
k3
k< aVM: Q'(k) = o<1 +k+E>

one merged
output sequence

Memory layout of a k-merger:

R|L|B|L|B) L% |Byk
Cache-complexity:
4 s)
O(1+k+§>’ if k <avM,
Q' (k) = ,
(2kz + 2\/I;)Q'(\/’l;) + ®(k?), otherwise.
_ k3 k : _ 2
\ = O(B logy, (3))’ provided M = Q(B*)

3
— #icache-misses for accessing the input queues = O (k + %)

— #cache-misses for writing the output queue = O (

1+"§)

: : : k?
— #icache-misses for touching the internal data structures = O (1 + ?)

3
— Hence, total #cache-misses = O (1 + k + %)

k-Merger (k-Funnel)

Vk linking buffers

3
(each of size 2kz)
‘ R
‘ Lygifi : T
Vk - merger
_ (one)

Vk - mergers
(Vk of them)

k = 2sorted _|
input sequences

1]

one merged
output sequence

Memory layout of a k-merger:

R|L |B|L,| B,

Cache-complexity:

r

_

~

if k <aVM,

(Zk% + ZJI;)Q'(\/’.’;) + ®(k?), otherwise.

(1+4+5)
Oll1+k+—|,
Q'(k) = B

- o108 (5)

provided M = Q(B?)

[k > aVM: Q') = (22 + 2VK) Q' (VE) + @(kz)]

3

— Each call to R outputs k2 items. So, #itimes merger R is called =

N|wW

=k

P |K‘
Nw] w

3
— Eachcall to an L; puts kz items into B;. Since k3 items are output, and the

3 3
buffer space is Vk x 2kz = 2k?, #itimes the L;’s are called < kz + 2Vk

— Before each call to R, the merger must check each L; for emptiness, and thus

3
incurring O(\/l;) cache-misses. So, #such cache-misses = kz X O(\/lz) = 0(k?)

Funnelsori

1

— Split the input sequence A of length n into n3 contiguous
2

subsequences A4, A5, ..., A 1 of length n3 each
n3

— Recursively sort each subsequence
1 1
— Merge the n3 sorted subsequences using a n3-merger

Cache-complexity: / n
O<1+—>, ifn<M,
Q(n) =5 b
1 2 1
\nSQ(nB) + Q'(nB), otherwise.
(n
O(1+§), lleSM,

1 2 n n
nSQ(nS) + O (—logM (—)), otherwise.
\ B B

= O(l + %logM n)

