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Iterative Matrix-Multiply Variants

I-J-K

for ( int i = 0; i < n; i++ )

for ( int j = 0; j < n; j++ )

for ( int k = 0; k < n; k++ )

Z[ i ][ j ] += X[ i ][ k ] * Y[ k ][ j ];

I-K-J

for ( int i = 0; i < n; i++ )

for ( int k = 0; k < n; k++ )

for ( int j = 0; j < n; j++ )

Z[ i ][ j ] += X[ i ][ k ] * Y[ k ][ j ];

J-I-K

for ( int j = 0; j < n; j++ )

for ( int i = 0; i < n; i++ )

for ( int k = 0; k < n; k++ )

Z[ i ][ j ] += X[ i ][ k ] * Y[ k ][ j ];

J-K-I

for ( int j = 0; j < n; j++ )

for ( int k = 0; k < n; k++ )

for ( int i = 0; i < n; i++ )

Z[ i ][ j ] += X[ i ][ k ] * Y[ k ][ j ];

K-I-J

for ( int k = 0; k < n; k++ )

for ( int i = 0; i < n; i++ )

for ( int j = 0; j < n; j++ )

Z[ i ][ j ] += X[ i ][ k ] * Y[ k ][ j ];

K-J-I

for ( int k = 0; k < n; k++ )

for ( int j = 0; j < n; j++ )

for ( int i = 0; i < n; i++ )

Z[ i ][ j ] += X[ i ][ k ] * Y[ k ][ j ];

double Z[ n ][ n ], X[ n ][ n ], Y[ n ][ n ];



Performance of Iterative Matrix-Multiply Variants

� � 1000 � � 2000 � � 3000
Processor: 2.7 GHz Intel Xeon E5-2680 ( used only one core )

Caches & RAM: private 32KB L1, private 256KB L2, shared 20MB L3, 32 GB RAM 

Optimizations: none ( icc 13.0 with –O0 ) 



For efficient computation we need

− fast processors

− fast and large ( but not so expensive ) memory

But memory cannot be cheap, large and fast at the same time, 

because of

− finite signal speed

− lack of space to put enough connecting wires

A reasonable compromise is to use a memory hierarchy.

Memory: Fast, Large & Cheap!



Tape

Disk

Main Memory

On Board Cache

Registers

On Chip Cache

Larger

Smaller

Slower

Faster

Block Transfer

CPU

A memory hierarchy is

− almost as fast as its fastest level

− almost as large as its largest level

− inexpensive

The Memory Hierarchy



To perform well on a memory hierarchy algorithms must 

have high locality in their memory access patterns.

The Memory Hierarchy
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Locality of Reference

Spatial Locality: When a block of data is brought into the cache it 

should contain as much useful data as possible.

Temporal Locality: Once a data point is in the cache as much useful 

work as possible should be done on it before evicting it from the 

cache.



CPU-bound vs. Memory-bound Algorithms

The Op-Space Ratio: Ratio of the number of operations performed 

by an algorithm to the amount of space ( input + output ) it uses.

Intuitively, this gives an upper bound on the average number of 

operations performed for every memory location accessed.

CPU-bound Algorithm:

‒ high op-space ratio

‒ more time spent in computing than transferring data

‒ a faster CPU results in a faster running time

Memory-bound Algorithm:

‒ low op-space ratio

‒ more time spent in transferring data than computing

‒ a faster memory system leads to a faster running time



The two-level I/O model [ Aggarwal 

& Vitter, CACM’88 ] consists of:

− an internal memory of size M

− an arbitrarily large external

memory partitioned into blocks 

of size B.

I/O complexity of an algorithm 

= number of blocks transferred between these two levels

Basic I/O complexities: ��	� 
 � Θ �
 and ���� 
 � Θ �
 log�� �

Algorithms often crucially depend on the knowledge of M and B

⇒ algorithms do not adapt well when M or B changes

block transfer 
(size = B) 

Cache Lines

internal memory

external memory

(size = M)

Cache Misses

CPU

The Two-level I/O Model



The ideal-cache model [ Frigo et al., 

FOCS’99 ] is an extension of the I/O

model with the following constraint:

algorithms are not allowed to 

use knowledge of M and B. 

Consequences of this extension

− algorithms can simultaneously adapt to all levels of a multi-

level memory hierarchy

− algorithms become more flexible and portable

Algorithms for this model are known as cache-oblivious algorithms.

The Ideal-Cache Model

block transfer 
(size = B) 

Cache Lines

internal memory

external memory

(size = M)

Cache Misses

CPU



� Optimal offline cache replacement policy

� Exactly two levels of memory

� Automatic replacement & full associativity

The model makes the following assumptions:

The Ideal-Cache Model: Assumptions



� Optimal offline cache replacement policy

� Exactly two levels of memory

� Automatic replacement & full associativity

The model makes the following assumptions:

− LRU & FIFO allow for a constant factor approximation of 

optimal [ Sleator & Tarjan, JACM’85 ]

The Ideal-Cache Model: Assumptions



� Optimal offline cache replacement policy

� Exactly two levels of memory

� Automatic replacement & full associativity

The model makes the following assumptions:

− can be effectively removed by making several reasonable 

assumptions about the memory hierarchy [ Frigo et al., 

FOCS’99 ]

The Ideal-Cache Model: Assumptions



� Optimal offline cache replacement policy

� Exactly two levels of memory

� Automatic replacement & full associativity

The model makes the following assumptions:

− in practice, cache replacement is automatic 

( by OS or hardware ) 

− fully associative LRU caches can be simulated in software 

with only a constant factor loss in expected performance 

[ Frigo et al., FOCS’99 ]

The Ideal-Cache Model: Assumptions



� Optimal offline cache replacement policy

� Exactly two levels of memory

� Automatic replacement & full associativity

The model makes the following assumptions:

� , i.e., the cache is tall

Often makes the following assumption, too:

(((( ))))Ω====
2M B

The Ideal-Cache Model: Assumptions



� Optimal offline cache replacement policy

� Exactly two levels of memory

� Automatic replacement & full associativity

The model makes the following assumptions:

� , i.e., the cache is tall

Often makes the following assumption, too:

(((( ))))Ω====
2M B

− most practical caches are tall

The Ideal-Cache Model: Assumptions



� Basic I/O bounds ( same as the cache-aware bounds ):

� Most cache-oblivious results match the I/O bounds of 

their cache-aware counterparts

� There are few exceptions; e.g., no cache-oblivious 

solution to the permutation problem can match cache-

aware I/O bounds [ Brodal & Fagerberg, STOC’03 ]

Cache-oblivious vs. cache-aware bounds:

− ��	� 
 � Θ �

− ���� 
 � Θ �
 log�� �


The Ideal-Cache Model: I/O Bounds



Some Known Cache Aware / Oblivious Results

Problem Cache-Aware Results Cache-Oblivious Results

Array Scanning (scan(N))

Sorting 

(sort(N))

Selection

B-Trees [Am]

(Insert, Delete)

Priority Queue [Am]

(Insert, Weak Delete, 
Delete-Min)

Matrix Multiplication

Sequence Alignment

Single Source 

Shortest Paths

Minimum Spanning Forest
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Table 1: N = #elements, V = #vertices, E = #edges, Am = Amortized. 
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Matrix 

Multiplication
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==== ××××

Iter-MM ( X, Y, Z, n )

1.   for i ← 1  to n  do

2.         for j ← 1  to n  do

3.               for k ← 1  to n  do

4.                      zij ← zij + xik × ykj

Iterative Matrix Multiplication



row-major order
store in

Each iteration of the for loop in line 3 incurs O � cache misses.

I/O-complexity of Iter-MM, Q � � O ��

row-major order
store in

Iter-MM ( X, Y, Z, n )

1.   for i ← 1  to n  do

2.         for j ← 1  to n  do

3.               for k ← 1  to n  do

4.                      zij ← zij + xik × ykj

Iterative Matrix Multiplication



Each iteration of the for loop in line 3 incurs � 1 � �
 cache misses.

I/O-complexity of Iter-MM,� � � � �� 1 � �
 � � ��
 � ��

row-major order
store in

column-major order
store in

Iter-MM ( X, Y, Z, n )

1.   for i ← 1  to n  do

2.         for j ← 1  to n  do

3.               for k ← 1  to n  do

4.                      zij ← zij + xik × ykj

Iterative Matrix Multiplication



Block Matrix Multiplication

Block-MM ( X, Y, Z, n )

1.   for i ← 1  to n / m  do

2.         for j ← 1  to n / m  do

3.               for k ← 1  to n / m  do

4.                      Iter-MM ( Xik, Ykj, Zij )

==== ××××

n

n

m

m

n

n

m

m

n

n

m

m

Z X Y

M/3 M/3 M/3

cache ( size = M )

M/3 M/3 M/3



Block-MM ( X, Y, Z, n )

1.   for i ← 1  to n / m  do

2.         for j ← 1  to n / m  do

3.               for k ← 1  to n / m  do

4.                      Iter-MM ( Xik, Ykj, Zij )

n

n

m

m

Choose � �  3⁄ , so that Xik, Ykj and Zij just fit into the cache.

Then line 4 incurs Θ � 1 � "
 cache misses.

I/O-complexity of Block-MM [assuming a tall cache, i.e.,  � Ω #� ]

( Optimal: Hong & Kung, STOC’81 )

� Θ
�" � � � "$
 � Θ

��"$ � ��
" � Θ
��% � ��
 % � Θ

��
 %

Block Matrix Multiplication



Block-MM ( X, Y, Z, n )

1.   for i ← 1  to n / m  do

2.         for j ← 1  to n / m  do

3.               for k ← 1  to n / m  do

4.                      Iter-MM ( Xik, Ykj, Zij )

n

n

m

m

Choose � �  3⁄ , so that Xik, Ykj and Zij just fit into the cache.

Then line 4 incurs Θ � 1 � "
 cache misses.

I/O-complexity of Block-MM [assuming a tall cache, i.e.,  � Ω #� ]

� Θ
�" � � � "$
 � Θ

��"$ � ��
" � Θ
��% � ��
 % � Θ

��
 %

Optimal for any algorithm that performs 

the operations given by the following 

definition of matrix multiplication:

1

n

ij ik kj
k

z x y
====

==== ∑∑∑∑

( Optimal: Hong & Kung, STOC’81 )

Block Matrix Multiplication



n

n
s

s

Block-MM ( X, Y, Z, n )

1.   for i ← 1  to n / s  do

2.         for j ← 1  to n / s  do

3.               for k ← 1  to n / s  do

4.                      Iter-MM ( Xik, Ykj, Zij, s )

Multiple Levels of Cache



n

n
s

s

t

t

Block-MM ( X, Y, Z, n )

1.   for i1 ← 1  to n / s  do

2.         for j1 ← 1  to n / s  do

3.               for k1 ← 1  to n / s  do

7.                                          Iter-MM ( (Xi1k1
)i2k2

, (Yk1j1
)k2j2

, (Xi1j1
)i2j2

, t )

4.                      for i2 ← 1  to s / t  do

5.                            for j2 ← 1  to s / t  do

6.                                   for k2 ← 1  to s / t  do

Multiple Levels of Cache



n

n
s

s

t

t

One Parameter Per Caching Level!

Multiple Levels of Cache

Block-MM ( X, Y, Z, n )

1.   for i1 ← 1  to n / s  do

2.         for j1 ← 1  to n / s  do

3.               for k1 ← 1  to n / s  do

7.                                          Iter-MM ( (Xi1k1
)i2k2

, (Yk1j1
)k2j2

, (Xi1j1
)i2j2

, t )

4.                      for i2 ← 1  to s / t  do

5.                            for j2 ← 1  to s / t  do

6.                                   for k2 ← 1  to s / t  do



==== ××××

Z X Y
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n

n

n/2

n/2 X11 Y11 + X12 Y21

X21 Y11 + X22 Y21

X11 Y12 + X12 Y22

X21 Y12 + X22 Y22

Recursive Matrix Multiplication



n

n

n/2

n/2 Z11

Z21

Z12

Z22

====

n

n

n/2

n/2 X11 Y11 + X12 Y21

X21 Y11 + X22 Y21

X11 Y12 + X12 Y22

X21 Y12 + X22 Y22

Rec-MM ( Z, X, Y )

1.  if Z ≡ 1 × 1 matrix then Z ← Z + X ·Y

2.  else

3.       Rec-MM ( Z11, X11, Y11 ), Rec-MM ( Z11, X12, Y21 )

4.       Rec-MM ( Z12, X12, Y12 ), Rec-MM ( Z12, X12, Y22 )

5.       Rec-MM ( Z21, X21, Y11 ), Rec-MM ( Z21, X22, Y21 )

6.       Rec-MM ( Z22, X21, Y12 ), Rec-MM ( Z22, X22, Y22 )

Recursive Matrix Multiplication



I/O-complexity ( for � &  ), � � � 'O � � �$
 , 							*+	�� , - 8� �� � O 1 , 		��/0�1*�0
			� O �� � ��#  � O ��#  ,1/0�	 � Ω #�

Recursive Matrix Multiplication

Rec-MM ( Z, X, Y )

1.  if Z ≡ 1 × 1 matrix then Z ← Z + X ·Y

2.  else

3.       Rec-MM ( Z11, X11, Y11 ), Rec-MM ( Z11, X12, Y21 )

4.       Rec-MM ( Z12, X12, Y12 ), Rec-MM ( Z12, X12, Y22 )

5.       Rec-MM ( Z21, X21, Y11 ), Rec-MM ( Z21, X22, Y21 )

6.       Rec-MM ( Z22, X21, Y12 ), Rec-MM ( Z22, X22, Y22 )

I/O-complexity ( for all � )� O ��
 % � �$
 � 1 ( why? )



Recursive Matrix Multiplication with Z-Morton Layout

3



Recursive Matrix Multiplication with Z-Morton Layout

344 34� 3�4 3��3



Recursive Matrix Multiplication with Z-Morton Layout
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Recursive Matrix Multiplication with Z-Morton Layout

Source: wikipedia



I/O-complexity ( for � &  ), � � � 'O 1 � �$
 , 							*+	�� , - 8� �� � O 1 , 		��/0�1*�0
			� O ��  � ��#  � O ��#  ,1/0�	 � Ω #

Rec-MM ( Z, X, Y )

1.  if Z ≡ 1 × 1 matrix then Z ← Z + X ·Y

2.  else

3.       Rec-MM ( Z11, X11, Y11 ), Rec-MM ( Z11, X12, Y21 )

4.       Rec-MM ( Z12, X12, Y12 ), Rec-MM ( Z12, X12, Y22 )

5.       Rec-MM ( Z21, X21, Y11 ), Rec-MM ( Z21, X22, Y21 )

6.       Rec-MM ( Z22, X21, Y12 ), Rec-MM ( Z22, X22, Y22 )

Recursive Matrix Multiplication with Z-Morton Layout

I/O-complexity ( for all � ) � O ��
 % � �$
 � 1



Recursive Matrix Multiplication with Z-Morton Layout

Source: wikipedia



Searching

( Static B-Trees )



� A perfectly balanced binary search tree

� Height of the tree, / � Θ log� �

(((( ))))2
Θ==== logh n

degree: 2 

� Static: no insertions or deletions

A Static Search Tree



(((( ))))2
Θ==== logh n

a search path

� A search path visits O / nodes, and incurs O / � O log� � I/Os

A Static Search Tree

� A perfectly balanced binary search tree

� Height of the tree, / � Θ log� �� Static: no insertions or deletions



B + 1

� Each node stores B keys, and has degree B + 1

� Height of the tree, / � Θ log
 �

(((( ))))logBh nΘ====

I/O-Efficient Static B-Trees



(((( ))))logBh nΘ====

B + 1

a search path

� Each node stores B keys, and has degree B + 1

� Height of the tree, / � Θ log
 �
� A search path visits O / nodes, and incurs O / � O log
 � I/Os

I/O-Efficient Static B-Trees



Cache-Oblivious Static B-Trees?



h

a binary search tree

van Emde Boas Layout
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A

B1 Bk

A B1 B2 Bk

each subtree contains Θ 25/� � Θ � nodes,

If the tree contains � nodes,

and 7 � Θ � .

a binary search tree

van Emde Boas Layout
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Recursive Subdivision

van Emde Boas Layout

A B1 B2 Bk

each subtree contains Θ 25/� � Θ � nodes,

If the tree contains � nodes,

and 7 � Θ � .

a binary search tree
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Recursive Subdivision

van Emde Boas Layout

A B1 B2 Bk

each subtree contains Θ 25/� � Θ � nodes,

If the tree contains � nodes,

and 7 � Θ � .

a binary search tree
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A
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Recursive Subdivision

van Emde Boas Layout

A B1 B2 Bk

each subtree contains Θ 25/� � Θ � nodes,

If the tree contains � nodes,

and 7 � Θ � .

a binary search tree



h

 h / 2 

 h / 2 

A

B1 Bk

Recursive Subdivision

van Emde Boas Layout

A B1 B2 Bk

each subtree contains Θ 25/� � Θ � nodes,

If the tree contains � nodes,

and 7 � Θ � .

a binary search tree



� Each          has height between 
4� log# & log#.

� The height of the tree is log �
� Each          spans at most 2 blocks of size #.

I/O-Complexity of a Search



� p = number of         ‘s  visited by a search path

� Then 8 9 :;< �:;< 
 � log
 �, and 8 , :;< �=$:;< 
 � 2log
 �
� The number of blocks transferred is , 2 > 2 log
 � � 4 log
 �

a search path

I/O-Complexity of a Search

� Each          has height between 
4� log# & log#.

� The height of the tree is log �
� Each          spans at most 2 blocks of size #.



Sorting 

( Mergesort )



Merge-Sort ( A, p, r )         { sort the elements in A[ p … r ] }

1.  if p < r then

3.       Merge-Sort (  A,  p,  q )

4. Merge-Sort (  A,  q + 1,  r )

2.       q ←  ( p + r ) / 2 

5.       Merge (  A,  p,  q, r )

Merge Sort



Merging k Sorted Sequences

‒ 7 9 2 sorted sequences @4, @�, … , @B stored in external memory

‒ @C � �C for 1 , * , 7
‒ � � �4 � �� �⋯� �B is the length of the merged sequence @
‒ @ ( initially empty ) will be stored in external memory

‒ Cache must be large enough to store 

• one block from each @C
• one block from @

Thus  9 7 � 1 #



Merging k Sorted Sequences

‒ Let Bi be the cache block associated with @C, and let B be the 

block associated with @ ( initially all empty )

‒ Whenever a Bi is empty fill it up with the next block from @C
‒ Keep transferring the next smallest element among all Bis to B

‒ Whenever B becomes full, empty it by appending it to @
‒ In the Ideal Cache Model the block emptying and replacements 

will happen automatically ⇒ cache-oblivious merging

I/O Complexity

‒ Reading @C: #block transfers , 2 � �E

‒ Writing @: #block transfers , 1 � �

‒ Total #block transfers , 1 � �
 � ∑ 2 � �E
4GCGB � O 7 � �




Merge-Sort ( A, p, r )         { sort the elements in A[ p … r ] }

1.  if p < r then

3.       Merge-Sort (  A,  p,  q )

4. Merge-Sort (  A,  q + 1,  r )

2.       q ←  ( p + r ) / 2 

5.       Merge (  A,  p,  q, r )

Cache-Oblivious 2-Way Merge Sort

� � � Ο 1 � �# , 															*+	� ,  ,
2� �2 � Ο 1 � �# , 		��/0�1*�0.

� Ο
�
 log �%

I/O Complexity:

How to improve this bound?



Cache-Oblivious k-Way Merge Sort

� � � Ο 1 � �# , 															*+	� ,  ,
7 ⋅ � �7 � Ο 7 � �# , 		��/0�1*�0.

� Ο 7 ⋅ �% � �
 logB �%
I/O Complexity:

How large can 7 be?

Recall that for 7-way merging, we must ensure 

 9 7 � 1 # ⇒ 7 ,  # K 1



Cache-Aware 
LM K N -Way Merge Sort

� � � Ο 1 � �# , 															*+	� ,  ,
7 ⋅ � �7 � Ο 7 � �# , 		��/0�1*�0.

� Ο 7 ⋅ �% � �
 logB �%
I/O Complexity:

Using 7 � %
 K 1, we get:

� � � Ο
 # K 1 � � �# log%
 � � Ο

�# log%
 � 



Sorting 

( Funnelsort )



k-Merger ( k-Funnel )

7 9 2 sorted 

input sequences

one merged 

output sequence

7 - mergers

( 7 of them )

7 - merger

( one )

7 linking buffers

( each of size 27�$ )

#4

# B

O4 O B#4 O� #� # BP
Memory layout of a 7-merger:



k-Merger ( k-Funnel )

Space usage of a 7-merger: @ 7 � Q Θ 1 , 																															*+	7 , 2,7 � 1 @ 7 � Θ 7� , 		��/0�1*�0.
� Θ 7�

A 7-merger occupies Θ 7� contiguous locations.



k-Merger ( k-Funnel )

Each invocation of a 7-merger

‒ produces a sorted sequence of length  7�
‒ incurs Ο 1 � 7 � B�
 � B�
 log% B
 cache misses provided  � Ω #�



k-Merger ( k-Funnel )

�′ 7 � Ο 1 � 7 � 7�# , 																			*+	7 S -  ,
27�� � 2 7 �′ 7 � Θ 7� , 						��/0�1*�0.

� Ο
B�
 log% B
 ,               provided  � ΩT#�U

Cache-complexity:



k-Merger ( k-Funnel )

7 S -  : 	�′ 7 � Ο 1 � 7 � 7�#
‒ Let �C be #items extracted the *-th input queue. Then ∑ �CBCW4 � Ο 7� . 

‒ Since 7 S -  and  � Ω #� , at least 
%
 � Ω 7 cache blocks are available 

for the input buffers. 

‒ Hence, #cache-misses for accessing the input queues (assuming circular 

buffers) � ∑ Ο 1 � XE
 � Ο 7 � B�
BCW4



k-Merger ( k-Funnel )

7 S -  : 	�′ 7 � Ο 1 � 7 � 7�#
‒ #cache-misses for accessing the input queues � Ο 7 � B�

‒ #cache-misses for writing the output queue � Ο 1 � B�

‒ #cache-misses for touching the internal data structures � Ο 1 � B$

‒ Hence, total #cache-misses � Ο 1 � 7 � B�




k-Merger ( k-Funnel )

7 9 -  :	�Y B � 27�� � 2 7 �Y 7 � Θ 7�
‒ Each call to P outputs 7�$ items. So, #times merger P is called � B�B�$ � 7�$
‒ Each call to an OC puts 7�$ items into #C. Since 7� items are output, and the 

buffer space is 7 > 27�$ � 27�, #times the OC’s are called , 7�$ � 2 7
‒ Before each call to P, the merger must check each OC for emptiness, and thus 

incurring Ο 7 cache-misses. So, #such cache-misses � 7�$ > Ο 7 � Ο 7�



Funnelsort

‒ Split the input sequence Z of length � into �=� contiguous 

subsequences Z4, Z�, … , Z�=� of length �$� each

‒ Recursively sort each subsequence

‒ Merge the �=� sorted subsequences using a �=�-merger

� � � 'Ο 1 � �# , 																														*+	� ,  ,
�4�� ��� � �′ �4� , 																					��/0�1*�0.

										� Ο 1 � �# , 																															*+	� ,  ,
�4�� ��� � Ο

�# log% �# , 		��/0�1*�0.
� Ο 1 � �
 log% �

Cache-complexity:


