CSE 638: Advanced Algorithms

Lectures 18 & 19
(Cache-efficient Searching and Sorting)

Rezaul A. Chowdhury

Department of Computer Science
SUNY Stony Brook
Spring 2013

Searching
(Static B-Trees)

A Static Search Tree

h = ©(log, n) A

degree: 2

A 4 L i 11 ---=--- I |

A perfectly balanced binary search tree
J Static: no insertions or deletions
d Height of the tree, h = O(log, n)

A Static Search Tree

a search path

h = ©(log, n)

A 4 I Imm ------ CIC 1]

A perfectly balanced binary search tree

J Static: no insertions or deletions

d Height of the tree, h = O(log, n)

A search path visits O(h) nodes, and incurs O(h) = O(log, n) 1/Os

|/O-Efficient Static B-Trees

h = 0©(log, n)

(d Each node stores B keys, and has degree B+ 1
 Height of the tree, h = O(logg n)

|/O-Efficient Static B-Trees

a search path

h = 0©(log, n)

(d Each node stores B keys, and has degree B+ 1
 Height of the tree, h = O(logg n)
O A search path visits O(h) nodes, and incurs O(h) = O(logg n) 1/0s

Cache-Oblivious Static B-Trees?

van Emde Boas Layout

a binary search tree

van Emde Boas Layout

a binary search tree

A[B,[B,| - B,

If the tree contains n nodes,
each subtree contains @(Zh/z) = 0(x/n) nodes,

and k = 0(y/n).

van Emde Boas Layout

a binary search tree

A

B,

B,

Recursive Subdivision

If the tree contains n nodes,

each subtree contains @(Zh/z) = 0(x/n) nodes,

and k = 0(y/n).

van Emde Boas Layout

a binary search tree

A|[B,|B,| B, Recursive Subdivision

If the tree contains n nodes,
each subtree contains @(Zh/z) = 0(x/n) nodes,

and k = 0(y/n).

van Emde Boas Layout

a binary search tree

A|[B,|B,| B, Recursive Subdivision

If the tree contains n nodes,
each subtree contains @(Zh/z) = 0(x/n) nodes,

and k = 0(y/n).

van Emde Boas Layout

a binary search tree

A|[B,|B,| B, Recursive Subdivision

If the tree contains n nodes,
each subtree contains @(Zh/z) = 0(x/n) nodes,

and k = 0(y/n).

|/O-Complexity of a Search

d The height of the tree is logn
v J Each A has height between %logB & logB.

v v d Each A spans at most 2 blocks of size B.

|/O-Complexity of a Search

d The height of the tree is logn
J Each A has height between %logB & logB.

v d Each A spans at most 2 blocks of size B.

d p =number of A‘s visited by a search path

logn logn

d Thenp > losB loggn,and p < Tog 5 = 2loggn

(d The number of blocks transferred is < 2 X 2loggn = 4logg n

Sorting
(Mergesort)

Merge Sort

Merge-Sort (A, p, r) { sort the elements inA[p ...r]}

1. if p<rthen

2
3
4.
5

g—L(p+r)/2]
Merge-Sort (A, p, q)
Merge-Sort (A, g+1, r)
Merge (A, p, q,)

Merging k Sorted Sequences

k > 2 sorted sequences 54, S, ..., Sk stored in external memory
1S;]]=n;forl1 <i<k

n =nq +n, + -+ ng is the length of the merged sequence §
S (initially empty) will be stored in external memory

Cache must be large enough to store
* one block from each §;

e one block from S
ThusM > (k+ 1)B

Merging k Sorted Sequences

— Let B, be the cache block associated with S;, and let B be the
block associated with S (initially all empty)

— Whenever a B; is empty fill it up with the next block from S;

— Keep transferring the next smallest element among all Bs to B

— Whenever B becomes full, empty it by appending it to S

— In the Ideal Cache Model the block emptying and replacements
will happen automatically = cache-oblivious merging

/O Complexity

— Reading §;: #block transfers < 2 + %

— Writing S: #block transfers < 1 + g

n n; . n
— Total #block transfers < 1 + =t D1<i<k (2 + E) =0 (k +)

Cache-Oblivious 2-Way Merge Sort

Merge-Sort (A, p, r) { sort the elements inA[p ...r]}
. if p<rthen

qgL(p+r)s2]

1

2

3. Merge-Sort (A, p, q)

4 Merge-Sort (A, g+1, r)
5

Merge (A, p, q,)

(n

2Q<) (1 + B)' otherwise.

- o(2ist)

/O Complexity: Q(n) =«

How to improve this bound?

Cache-Oblivious k-Way Merge Sort

ifn<M,
/O Complexity: Q(n) =<

(o142
(+§)'
k (")+o(k+") therwi

\ Q . 5) otherwise.

How large can k be?

Recall that for k-way merging, we must ensure

M
MZ(k-l—l)B:)kSE—l

Cache-Aware (% — 1)-Way Merge Sori

(n
k (")+o(k+") therwi
\ Q 2 5) otnerwise.

/O Complexity: Q(n) =<

Using k = % — 1, we get:

Q) =0 ((% - 1),7\2 g losu (13)) -0 (glog% (%»

Sorting
(Funnelsort)

k = 2 sorted
input sequences

Memory layout of a k-merger:

k-Merger (k-Funnel)

Vk - mergers
(Vk of them)

R

Ly

B,

Vk linking buffers
3

(each of size 2kz)

one merged
output sequence

Vk - merger
(one)

k-Merger (k-Funnel)

----------------- g vk linking buffers

3
(each of size 2kz2)

|

---------------------- e

one merged
output sequence

k = 2 sorted
input sequences

......................

: (one)
e | Memory layout of a k-merger:

Vk - mergers
R|L|By|L,| B
(Vk of them) ! 1] ™)

e(1), if k <2,

Space usage of a k-merger: S(k) = (\/E + 1)5(\/%) + 0@(k?), otherwise.

= O(k?)

A k-merger occupies ®(k?) contiguous locations.

k-Merger (k-Funnel)

i ; Vk linking buffers
! | (each of size 2k2)
— """""""""""""" R
k = 2 sorted : one merged
input sequences o output sequence
- %— : (one)
e | Memory layout of a k-merger:

Vk - mergers
(VE of them) RI1Li|Bi|Lp) By L% |Byk

Each invocation of a k-merger
— produces a sorted sequence of length k?

k

k3 k3
—incurs O (1 + k + -+ ElogM (E)) cache misses provided M = Q(B?)

k-Merger (k-Funnel)

|

k = 2 sorted _
input sequences

......................

\/E- mergers
(Vk of them)
Cache-complexity:

(3
O(1+k+—),
Q'(k) = 1 B

\(Zk% + 2\/%)(2’(\/%) + 0(k?), otherwise.

0 (F 1oz (5)).

Vk linking buffers

3
(each of size 2kz2)

R

one merged
output sequence

(one)
Memory layout of a k-merger:

R

Ly

B,y

if k< aVM,

provided M = Q(B?)

k-Merger (k-Funnel)

Vk linking buffers

3
(each of size 2kz)
‘ R
‘ Lygifi : T
Vk - merger
_ (one)

Vk - mergers
(Vk of them)

k = 2 sorted _
input sequences

1]

3
k < avM: Q'(k)=0<1+k+%>

one merged
output sequence

Memory layout of a k-merger:

R|L |B|L,| B,

Cache-complexity:

r

_

(1+4+5)
Oll1+k+—|,
Q'(k) = B

~

if k <aVM,

(Zk% + 2\/1;)()'(\/’1;) + ®(k?), otherwise.

- o108 (5)

provided M = Q(B?)

— Let r; be #items extracted the i-th input queue. Then Y%, r; = O(k?).

— Sincek < avM and M = Q(B?), at Ieast% = (k) cache blocks are available

for the input buffers.

— Hence, #icache-misses for accessing the input queues (assuming circular

buffers) = 2., 0 (1+2) = o

4

k-Merger (k-Funnel)

Vk linking buffers

3
(each of size 2kz)

k = 2 sorted \Q
input sequences 7 L] Il
””””””””””””” VE - merger
— (one)
t
Vk - mergers
(Vk of them)
k3
k< aVM: Q'(k) = o<1 +k+E>

one merged
output sequence

Memory layout of a k-merger:

R|L|B|L|B) L% |Byk
Cache-complexity:
4 s)
O(1+k+§>’ if k <avM,
Q' (k) = ,
(2kz + 2\/I;)Q'(\/’l;) + ®(k?), otherwise.
_ k3 k : _ 2
\ = O(B logy, (3))’ provided M = Q(B*)

3
— #icache-misses for accessing the input queues = O (k + %)

— #cache-misses for writing the output queue = O (

1+"§)

: : : k?
— #icache-misses for touching the internal data structures = O (1 + ?)

3
— Hence, total #cache-misses = O (1 + k + %)

k-Merger (k-Funnel)

Vk linking buffers

3
(each of size 2kz)
‘ R
‘ Lygifi : T
Vk - merger
_ (one)

Vk - mergers
(Vk of them)

k = 2sorted _|
input sequences

1]

one merged
output sequence

Memory layout of a k-merger:

R|L |B|L,| B,

Cache-complexity:

r

_

~

if k <aVM,

(Zk% + ZJI;)Q'(\/’.’;) + ®(k?), otherwise.

(1+4+5)
Oll1+k+—|,
Q'(k) = B

- o108 (5)

provided M = Q(B?)

[k > aVM: Q') = (22 + 2VK) Q' (VE) + @(kz)]

3

— Each call to R outputs k2 items. So, #itimes merger R is called =

N|wW

=k

P |K‘
Nw] w

3
— Eachcall to an L; puts kz items into B;. Since k3 items are output, and the

3 3
buffer space is Vk x 2kz = 2k?, #itimes the L;’s are called < kz + 2Vk

— Before each call to R, the merger must check each L; for emptiness, and thus

3
incurring O(\/l;) cache-misses. So, #such cache-misses = kz X O(\/lz) = 0(k?)

Funnelsori

1

— Split the input sequence A of length n into n3 contiguous
2

subsequences A4, A5, ..., A 1 of length n3 each
n3

— Recursively sort each subsequence
1 1
— Merge the n3 sorted subsequences using a n3-merger

Cache-complexity: / n
O<1+—>, ifn<M,
Q(n) =5 b
1 2 1
\nSQ(nB) + Q'(nB), otherwise.
(n
O(1+§), lleSM,

1 2 n n
nSQ(nS) + O (—logM (—)), otherwise.
\ B B

= O(l + %logM n)

Sorting
(Distribution Sort)

Cache-Oblivious Distribution Sori

Step 1: Partition, and recursively sort partitions.

Step 2: Distribute partitions into buckets.

Step 3: Recursively sort buckets.

Step 1: Partition & Recursively Sort Partitions

Partitioned Recursively Sorted

/rmmrﬂ'm [NI
Jld. NS B EaE
iy O EES N EER
H BN EESaE BN
RN dE. J. e

BET NN BT] o]] il

B TS TN TN BT

d HiE EE. EREEN BT T]

ﬁs”ba"ays< CRCT BT [T e | > EERT]

BEET 1

B FFT]

BT 7]

BT

J ol |

B BN W T T BT]

\E‘I‘IWTW'TIJ T

Jn elements

Order: BT T I T [T T [I
Figure Source: Adapted from figures drawn by Piyush Kumar (2003), FSU

Step 2: Distribute to Buckets

Recursively Sorted

™ | [
| I I aad |
BT "1 T TTT.
BT [T T T
BT 717011 T T .
BEEN T 11 1 T T
. _JESEEEEEES.
EREFETT "7 1T 1 T
BEENEET "7 [[17 .
N 1 11 T
BT 7T [[
. J

Y

5
D
)
3
)
- |
@

Distributed to Buckets

» * NI [N DT T T N T |

B, : (T[T T T T[T TT]

il il o il o T
DU | ™ ™

I 17 o 0 1 O

P 5 O A A

(DRI O 0™

il 5. |

L1l

N

O R o

il bl |

3 Number of buckets, g < \/n

3 Number of elementsin B; = n; < 24/n

d max{x|x € B;} < min{x|x € B;;{}
Figure Source: Adapted from figures drawn by Piyush Kumar (2003), FSU

Step 3: Recursively Sort Buckets

Recursively Sort Each Bucket

B, :
B, : ERFF NN EF N~

|

|

B, : NN IFTF N N = T T TN T T |
: [FFETE IR I I = T |
O 0 R T O |
P P 0 O 0 0 A |
5 5 O 0 A o |
[O™ O™ O™ ™ T 0 ™ |
FT FFT FEFTFSE N WEFET |
|

|

Figure Source: Adapted from figures drawn by Piyush Kumar (2003), FSU

Distribution Sori

Step 1: Partition, and recursively sort partitions.

Step 2: Distribute partitions into buckets.

Step 3: Recursively sort buckets.

Distribution Sori

Step 1: Partition, and recursively sort partitions.

Step 2: Distribute partitions into buckets.

Step 3: Recursively sort buckets.

The Disiribution Step

Sorted Partitions Buckets

EEEEE [[FEEE B,

ERCT 11 T e . T B,

I haEnEEEEEEES. |

L ddddiaEeEEn. | ‘)FFFFFFI‘IFHIII'THI'F'I' B,
i i 2 :

BRI || . FEFET FEEERT FEEEL EE]

T[T T CrEErEm

Tl 1 ILLIFE FrEr T EFF EEEEL T EErEEE]

EEEC [[T T CEEEN i i i

BT CTT T[T T [EE FrEER [EEEET EE

BEEE (1] [[T EhmN . : _

ST T e [Tl TR TR B BEr T TR

I EnEEEEEEES. . | (I T T I I T EEErEEEET FT LT

EFFErC T T 1 FrEm . o B A :

EECEL] [T e

BT T e JJJJld.)]0l 004l 04 d 34 04000 008

d We can take the partitions one by one, and distribute
all elements of current partition to buckets
@ Has very poor cache performance: upto ®(4n X yn) = O(n)

cache-misses
Figure Source: Adapted from figures drawn by Piyush Kumar (2003), FSU

Recursive Distribution

Sorted Partitions Buckets

A B,

A, B,

A, B,

e A VA1, VR

RN T T 1]
RN]
T 7T [(1]
BRRFET 771 11
BEEREFT 11
RN []

AﬁFFIIIIIIIIII’—Im'.J B

/
Distribute (i, j, m)

[A. .., A, 1 1. if m=1 then|copy elements from A; to B, » may need

y 2. else to split B;

4 L 3. D/.str/.bute(| i, j,. m/2) to maintain

[B, s Bjum. s] 4. Distribute (i+m /2, j, m/2) B. <7
5 Distribute (i, j+m/2, m/2) i = \/ﬁ
N 6 Distribute (i+m/2, j+m/2, m/2)

Recursive Distribution

Distribute (i, j, m)

1. if m=1 then|copy elements from A, to B; » ignore

2. else bute /2) the cost of splits
3. Distribute I, , m/2 . .

4 Distribute (i+m /2, j, m/2) for the time being
5. Distribute (i, j+m/2, m/2)

6 Distribute (i+m/2, j+m/2, m/2)

Let R(m, d) denote the cache misses incurred by Distribute (i, j, m)
that copies d elements from m partitions to m buckets. Then

(d
O(B+§), if n < aB,
R(m,d) =1 4 4
m
z R (? di), otherwise, where d = Z d; .
Li=1 i=1
— O m_2_|_g)
B B

Recursive Distribution

Distribute (i, j, m)

1. if m=1 then|copy elements from A, to B; » ignore

2. else bute /2) the cost of splits
3. Distribute I, , m/2 . .

4. Distribute (i+m /2, j, m/2) for the time being
5. Distribute (i, j+m/2, m/2)

6. Distribute (i+m/2, j+m/2, m/2)

Recursive Distribution

Distribute (i, j, m)

1. if m=1 then|copy elements from A, to B;

2. else

3. Distribute (i j, m/2)
4 Distribute (i+m /2, j, m/2)
5. Distribute (i, j+m/2, m/2)
6 Distribute (i+m/2, j+m/2, m/2)

Cache-complexity of Distribute(1,1,+/n) is = R(yn,n) + O (g) =0 (—)

» Hcache-misses
incurred by all splits

- ixo(%)
ofy

n
B

Cache-Complexity of Distribution Sort

Step 1: Partition into 4/n sub-arrays containing +/n elements each
and sort the sub-arrays recursively.

Step 2: Distribute sub-arrays into buckets B, B>, .., By.

Step 3: Recursively sort the buckets.

Cache-complexity of Distribution Sort:

(n
O(1+§), ifn<aM,

Q(n) =+

q
L\/ﬁQ(\/ﬁ) + Z Q(n;) + 0O (1 + %), otherwise.

n
=0 (1 + §108M n), when M = Q(B?)

