
CSE 638: Advanced Algorithms

Lectures 18 & 19

(Cache-efficient Searching and Sorting)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Spring 2013

Searching

(Static B-Trees)

� A perfectly balanced binary search tree

� Height of the tree, � � Θ log� �

(((())))2
Θ==== logh n

degree: 2

� Static: no insertions or deletions

A Static Search Tree

(((())))2
Θ==== logh n

a search path

� A search path visits O � nodes, and incurs O � � O log� � I/Os

A Static Search Tree

� A perfectly balanced binary search tree

� Height of the tree, � � Θ log� �� Static: no insertions or deletions

B + 1

� Each node stores B keys, and has degree B + 1

� Height of the tree, � � Θ log
 �

(((())))logBh nΘ====

I/O-Efficient Static B-Trees

(((())))logBh nΘ====

B + 1

a search path

� Each node stores B keys, and has degree B + 1

� Height of the tree, � � Θ log
 �
� A search path visits O � nodes, and incurs O � � O log
 � I/Os

I/O-Efficient Static B-Trees

Cache-Oblivious Static B-Trees?

h

a binary search tree

van Emde Boas Layout

h

 h / 2 

 h / 2 

A

B1 Bk

A B1 B2 Bk

each subtree contains Θ 2�/� � Θ � nodes,

If the tree contains � nodes,

and � � Θ � .

a binary search tree

van Emde Boas Layout

h

 h / 2 

 h / 2 

A

B1 Bk

Recursive Subdivision

van Emde Boas Layout

A B1 B2 Bk

each subtree contains Θ 2�/� � Θ � nodes,

If the tree contains � nodes,

and � � Θ � .

a binary search tree

h

 h / 2 

 h / 2 

A

B1 Bk

Recursive Subdivision

van Emde Boas Layout

A B1 B2 Bk

each subtree contains Θ 2�/� � Θ � nodes,

If the tree contains � nodes,

and � � Θ � .

a binary search tree

h

 h / 2 

 h / 2 

A

B1 Bk

Recursive Subdivision

van Emde Boas Layout

A B1 B2 Bk

each subtree contains Θ 2�/� � Θ � nodes,

If the tree contains � nodes,

and � � Θ � .

a binary search tree

h

 h / 2 

 h / 2 

A

B1 Bk

Recursive Subdivision

van Emde Boas Layout

A B1 B2 Bk

each subtree contains Θ 2�/� � Θ � nodes,

If the tree contains � nodes,

and � � Θ � .

a binary search tree

� Each has height between
�� log� & log�.

� The height of the tree is log �
� Each spans at most 2 blocks of size �.

I/O-Complexity of a Search

� p = number of ‘s visited by a search path

� Then � � ��� ����
 � log
 �, and � � ��� ������
 � 2log
 �
� The number of blocks transferred is � 2 � 2 log
 � � 4 log
 �

a search path

I/O-Complexity of a Search

� Each has height between
�� log� & log�.

� The height of the tree is log �
� Each spans at most 2 blocks of size �.

Sorting

(Mergesort)

Merge-Sort (A, p, r) { sort the elements in A[p … r] }

1. if p < r then

3. Merge-Sort (A, p, q)

4. Merge-Sort (A, q + 1, r)

2. q ←  (p + r) / 2 

5. Merge (A, p, q, r)

Merge Sort

Merging k Sorted Sequences

‒ � � 2 sorted sequences ��, ��, … , �� stored in external memory

‒ � � � for 1 � " � �
‒ � � �� # �� # ⋯# �� is the length of the merged sequence �
‒ � (initially empty) will be stored in external memory

‒ Cache must be large enough to store

• one block from each �
• one block from �

Thus % � � # 1 �

Merging k Sorted Sequences

‒ Let Bi be the cache block associated with � , and let B be the

block associated with � (initially all empty)

‒ Whenever a Bi is empty fill it up with the next block from �
‒ Keep transferring the next smallest element among all Bis to B

‒ Whenever B becomes full, empty it by appending it to �
‒ In the Ideal Cache Model the block emptying and replacements

will happen automatically ⇒ cache-oblivious merging

I/O Complexity

‒ Reading � : #block transfers � 2 # �&

‒ Writing �: #block transfers � 1 # �

‒ Total #block transfers � 1 # �
 # ∑ 2 # �&
�((� � O � # �

Merge-Sort (A, p, r) { sort the elements in A[p … r] }

1. if p < r then

3. Merge-Sort (A, p, q)

4. Merge-Sort (A, q + 1, r)

2. q ←  (p + r) / 2 

5. Merge (A, p, q, r)

Cache-Oblivious 2-Way Merge Sort

) � � Ο 1 # �� , 															"+	� � %,
2) �2 # Ο 1 # �� , 		,-�./0"1..

� Ο
�
 log �3

I/O Complexity:

How to improve this bound?

Cache-Oblivious k-Way Merge Sort

) � � Ο 1 # �� , 															"+	� � %,
� ⋅) �� # Ο � # �� , 		,-�./0"1..

� Ο � ⋅ �3 # �
 log� �3

I/O Complexity:

How large can � be?

Recall that for �-way merging, we must ensure

% � � # 1 � ⇒ � � %� 6 1

Cache-Aware
78 6 9 -Way Merge Sort

) � � Ο 1 # �� , 															"+	� � %,
� ⋅) �� # Ο � # �� , 		,-�./0"1..

� Ο � ⋅ �3 # �
 log� �3

I/O Complexity:

Using � � 3
 6 1, we get:

) � � Ο
%� 6 1 �% # �� log3

�% � Ο
�� log3

�%

Sorting

(Funnelsort)

k-Merger (k-Funnel)

� � 2 sorted

input sequences

one merged

output sequence

� - mergers

(� of them)

� - merger

(one)

� linking buffers

(each of size 2�:�)

��

� �

;� ; ��� ;� �� � �<
Memory layout of a �-merger:

k-Merger (k-Funnel)

Space usage of a �-merger: � � � = Θ 1 , 																															"+	� � 2,� # 1 � � # Θ �� , 		,-�./0"1..
� Θ ��

A �-merger occupies Θ �� contiguous locations.

k-Merger (k-Funnel)

Each invocation of a �-merger

‒ produces a sorted sequence of length �>
‒ incurs Ο 1 # � # �:
 # �:
 log3 �
 cache misses provided % � Ω ��

k-Merger (k-Funnel)

)′ � � Ο 1 # � # �>� , 																			"+	� A B %,
2�>� # 2 �)′ � # Θ �� , 						,-�./0"1..

� Ο
�:
 log3 �
 , provided % � ΩC��D

Cache-complexity:

k-Merger (k-Funnel)

� A B %:)′ � � Ο 1 # � # �>�
‒ Let / be #items extracted the "-th input queue. Then ∑ / � F� � Ο �> .

‒ Since � A B % and % � Ω �� , at least
3
 � Ω � cache blocks are available

for the input buffers.

‒ Hence, #cache-misses for accessing the input queues (assuming circular

buffers) � ∑ Ο 1 # G&
 � Ο � # �:
� F�

k-Merger (k-Funnel)

� A B %:)′ � � Ο 1 # � # �>�
‒ #cache-misses for accessing the input queues � Ο � # �:

‒ #cache-misses for writing the output queue � Ο 1 # �:

‒ #cache-misses for touching the internal data structures � Ο 1 # ��

‒ Hence, total #cache-misses � Ο 1 # � # �:

k-Merger (k-Funnel)

� � B %:)H � � 2�>� # 2 �)H � # Θ ��
‒ Each call to < outputs �:� items. So, #times merger < is called � �:

�:� � �:�
‒ Each call to an ; puts �:� items into � . Since �> items are output, and the

buffer space is � � 2�:� � 2��, #times the ; ’s are called � �:� # 2 �
‒ Before each call to <, the merger must check each ; for emptiness, and thus

incurring Ο � cache-misses. So, #such cache-misses � �:� � Ο � � Ο ��

Funnelsort

‒ Split the input sequence I of length � into ��: contiguous

subsequences I�, I�, … , I��: of length ��: each

‒ Recursively sort each subsequence

‒ Merge the ��: sorted subsequences using a ��:-merger

) � � JΟ 1 # �� , 																														"+	� � %,
��>) ��> #)′ ��> , 																					,-�./0"1..

										� Ο 1 # �� , 																															"+	� � %,
��>) ��> # Ο

�� log3 �� , 		,-�./0"1..
� Ο 1 # �
 log3 �

Cache-complexity:

Sorting

(Distribution Sort)

Step 1: Partition, and recursively sort partitions.

Cache-Oblivious Distribution Sort

Step 2: Distribute partitions into buckets.

Step 3: Recursively sort buckets.

Step 1: Partition & Recursively Sort Partitions

sub-arraysn

elementsn

Partitioned Recursively Sorted

Order:

Figure Source: Adapted from figures drawn by Piyush Kumar (2003), FSU

Step 2: Distribute to Buckets

1
:A

elementsn

Recursively Sorted

2
:A

3
:A

:
n

A

1
:B

2
:B

3
:B

:qB

Distributed to Buckets

� Number of buckets, K � �
� Number of elements in � � � � 2 �
� max O O ∈ � � min O O ∈ � S�

Figure Source: Adapted from figures drawn by Piyush Kumar (2003), FSU

Step 3: Recursively Sort Buckets

Recursively Sort Each Bucket

1
:B

2
:B

3
:B

:qB

Done!

Figure Source: Adapted from figures drawn by Piyush Kumar (2003), FSU

Step 1: Partition, and recursively sort partitions.

Distribution Sort

Step 2: Distribute partitions into buckets.

Step 3: Recursively sort buckets.

Distribution Sort

Step 1: Partition, and recursively sort partitions.

Step 2: Distribute partitions into buckets.

Step 3: Recursively sort buckets.

The Distribution Step

1
A

Sorted Partitions

2
A

3
A

n
A

1
B

2
B

3
B

qB

Buckets

� We can take the partitions one by one, and distribute

all elements of current partition to buckets

� Has very poor cache performance: upto Θ � � � � Θ �
cache-misses

Figure Source: Adapted from figures drawn by Piyush Kumar (2003), FSU

Recursive Distribution
Sorted Partitions Buckets

1
A

2
A

3
A

n
A

1
B

2
B

3
B

n
B

Distribute (i, j, m)

1. if m = 1 then copy elements from Ai to Bj

2. else

3. Distribute (i, j, m / 2)

4. Distribute (i + m / 2, j, m / 2)

5. Distribute (i, j + m / 2, m / 2)

6. Distribute (i + m / 2, j + m / 2, m / 2)

[Ai, …, Ai + m – 1]

[Bj, …, Bj + m – 1]

may need

to split �
to maintain� � 2 �

Recursive Distribution

ignore

the cost of splits

for the time being

Distribute (i, j, m)

1. if m = 1 then copy elements from Ai to Bj

2. else

3. Distribute (i, j, m / 2)

4. Distribute (i + m / 2, j, m / 2)

5. Distribute (i, j + m / 2, m / 2)

6. Distribute (i + m / 2, j + m / 2, m / 2)

Let < T, U denote the cache misses incurred by Distribute (i, j, m)

that copies U elements from m partitions to T buckets. Then

< T, U � Ο � # U� , 																																							"+	� � B�,
V< T2 , U
W

 F� , 							,-�./0"1., 0�./.	U � VU
W

 F� .
						� Ο � # X�
 # Y
< �, � � Ο

��

Recursive Distribution

ignore

the cost of splits

for the time being

Distribute (i, j, m)

1. if m = 1 then copy elements from Ai to Bj

2. else

3. Distribute (i, j, m / 2)

4. Distribute (i + m / 2, j, m / 2)

5. Distribute (i, j + m / 2, m / 2)

6. Distribute (i + m / 2, j + m / 2, m / 2)

Recursive Distribution

#cache-misses

incurred by all splits

� � � Ο
��

� Ο
��

Distribute (i, j, m)

1. if m = 1 then copy elements from Ai to Bj

2. else

3. Distribute (i, j, m / 2)

4. Distribute (i + m / 2, j, m / 2)

5. Distribute (i, j + m / 2, m / 2)

6. Distribute (i + m / 2, j + m / 2, m / 2)

Cache-complexity of Distribute(1,1, �) is � < �, � # Ο
�
 � Ο

�

Step 1: Partition into � sub-arrays containing � elements each

and sort the sub-arrays recursively.

Cache-Complexity of Distribution Sort

Step 2: Distribute sub-arrays into buckets ��, ��, … , �Z.

Step 3: Recursively sort the buckets.

Cache-complexity of Distribution Sort:

) � � Ο 1 # �� , 																																										"+	� � B′%,
�) � # V) �

Z
 F� # Ο 1 # �� , 					,-�./0"1..

� Ο 1 # �� log3 � , 			0�.�	% � Ω ��

