CSE 638: Advanced Algorithms

Lectures 16 & 17
(Analyzing I/O and Cache Performance)

Rezaul A. Chowdhury

Department of Computer Science
SUNY Stony Brook
Spring 2013

Memory: Fast, Large & Cheap!

For efficient computation we need

— fast processors

- fast and large (but not so expensive) memory

But memory cannot be cheap, large and fast at the same time,

because of
- finite signal speed

- lack of space to put enough connecting wires

A reasonable compromise is to use a memory hierarchy.

The Memory Hierarchy

Faster

Slower

CPU

Registers
On Chip Cache

[

On Board Cache

[

Main Memory

N

T l Block Transfer

Disk

Tape

Smaller

Larger

A memory hierarchy is

almost as fast as its fastest level
almost as large as its largest level

inexpensive

The Memory Hierarchy

CPU

Faster Smaller

A Registers
On Chip Cache

[

On Board Cache

Main Memory \

T l Block Transfer

Disk A

T

Tape

Slower Larger

To perform well on a memory hierarchy algorithms must
have high locality in their memory access patterns.

Locality of Reference

Spatial Locality: When a block of data is brought into the cache it
should contain as much useful data as possible.

Temporal Locality: Once a data point is in the cache as much useful
work as possible should be done on it before evicting it from the
cache.

CPU-bound vs. Memory-bound Algorithms

The Op-Space Ratio: Ratio of the number of operations performed
by an algorithm to the amount of space (input + output) it uses.

Intuitively, this gives an upper bound on the average number of
operations performed for every memory location accessed.

CPU-bound Algorithm:
- high op-space ratio
- more time spent in computing than transferring data
— a faster CPU results in a faster running time

Memory-bound Algorithm:
- low op-space ratio
- more time spent in transferring data than computing

- a faster memory system leads to a faster running time

The Two-level |/O Model

The two-level |/O model [Aggarwal
& Vitter, CACM’88] consists of: I ,
Cache Lines
- aninternal memory of size M ‘ internal memory
]] (size = M)

— an arbitrarily large external

memory partitioned into blocks Cache MisseSﬁbkﬁikzginE)fer

of size B. o e e

N external memory v,

I/O complexity of an algorithm b—

= number of blocks transferred between these two levels
. - N N N
Basic I/0O complexities: scan(N) = 0 (E) and sort(N) = 0 (ElogM E)
B
Algorithms often crucially depend on the knowledge of M and B
—> algorithms do not adapt well when M or B changes

The Ideal-Cache Model

The ideal-cache model [Frigo et al.,
FOCS’99] is an extension of the |/O
model with the following constraint:

algorithms are not allowed to

use knowledge of M and B.

Consequences of this extension

I Cache Lines

internal memory
(size = M)

Cache Misses

block transfer

(size = B)

external memory

L 4
llllllllll

— algorithms can simultaneously adapt to all levels of a multi-

level memory hierarchy

— algorithms become more flexible and portable

Algorithms for this model are known as cache-oblivious algorithms.

The Ideal-Cache Model: Assumptions

The model makes the following assumptions:
d Optimal offline cache replacement policy

d Exactly two levels of memory

d Automatic replacement & full associativity

The Ideal-Cache Model: Assumptions

The model makes the following assumptions:

d Optimal offline cache replacement policy
— LRU & FIFO allow for a constant factor approximation of
optimal [Sleator & Tarjan, JACM’85 |

The Ideal-Cache Model: Assumptions

The model makes the following assumptions:

d Exactly two levels of memory

— can be effectively removed by making several reasonable
assumptions about the memory hierarchy [Frigo et al.,
FOCS'99 |

The Ideal-Cache Model: Assumptions

The model makes the following assumptions:

d Automatic replacement & full associativity

— in practice, cache replacement is automatic
(by OS or hardware)

— fully associative LRU caches can be simulated in software
with only a constant factor loss in expected performance
[Frigo et al., FOCS’99]

The Ideal-Cache Model: Assumptions

The model makes the following assumptions:
d Optimal offline cache replacement policy

d Exactly two levels of memory

d Automatic replacement & full associativity

Often makes the following assumption, too:

Q M=Q(B?) i.e. the cacheis tall

The Ideal-Cache Model: Assumptions

The model makes the following assumptions:
d Optimal offline cache replacement policy

d Exactly two levels of memory

d Automatic replacement & full associativity

Often makes the following assumption, too:

Q M=Q(B?) i.e. the cacheis tall

— most practical caches are tall

The ldeal-Cache Model: I/O Bounds

Cache-oblivious vs. cache-aware bounds:

d Basic I/O bounds (same as the cache-aware bounds):

— scan(N) =0 (%)

N N
— sort(N) =0 (Elog% E)
O Most cache-oblivious results match the 1I/0 bounds of

their cache-aware counterparts

[There are few exceptions; e.g., no cache-oblivious
solution to the permutation problem can match cache-
aware 1/0 bounds [Brodal & Fagerberg, STOC’03]

Some Known Cache Aware / Oblivious Resulis

Problem

Cache-Aware Results

Cache-Oblivious Results

Array Scanning (scan(N))

Sorting ; ﬁlogMﬁ O(ElogM ﬁj
(sort(N)) B °T B B 4B
Selection O (scan(N)) O (scan(N))

B-Trees [Am] 0(log3 N) 0(10g3 N j

(Insert, Delete) B B
Priority Queue [Am]
Log, Y 0| L1og, X

(Insert, Weak Delete, 0 E"’ggg B g% B

Delete-Min)

. T N’ N?
Matrix Multiplication O(ij O(ij

Sequence Alignment

()

(o)

Single Source
Shortest Paths

o((mg).mgz g]

o V+£ -log7K
B "B

Minimum Spanning Forest

O(min(sort (E)log,log,V, V + SO”t(E)))

o (min (sort (E)log, log, %, V +sort (E))]

Table 1: N = #elements, V = #vertices, E = #edges, Am = Amortized.

Matrix
Multiplication

Iterative Matrix Multiplication

n
Z; = Z XY
k=1

Z, X Xy, 0 X, Yo Yo 0 Y
Z,, — Xy Xy o Xy, X Yu Y - Yo
znn xnl xnj o xnn yn] ynf e yrrn

Iter-MM(X, Y, Z, n)
for i< 1 to n do
for j«<1 to n do

1.
2.
3. for k<1 to n do
4.

Zjj & Zjj + Xj X Yy

Iterative Matrix Multiplication

lter-MM (X, Y, Z, n)

1. for i< 1 to n do

2. for j«<1 to n do
3. for k<1 to n do
4.

Zij < Zj; + Xy X Yy

store in store in

row-major order row-major order

no £ In Xy, Xp o X, Yu Yo o Yia
Z, |Zy - Z,, — Xy Xy o Xy, x Yoo Yoo o ¥You
znl an T znn xnl xni T xnn yn] yni T ynn

Each iteration of the for loop in line 3 incurs O(n) cache misses.

|/O-complexity of Iter-MM, Q(n) = 0(n3)

Iterative Matrix Multiplication

[ter-MM(X, Y, Z, n)

for j«<1 to n do

1.
2.
3. for k<1 to n do
4.

Zij < Zj; + Xy X Yy

11 Z, - Z,
21 Zy| 2n
znl an znn

store in
row-major order

ln

2n

for i< 1 to n do
xl] x]i
xii XZZ
xnl xni

nn

X

store in

column-major order

yn]

Y
Y»

ynl

yln
y?n

yﬂﬂ'

Each iteration of the for loop in line 3 incurs O (1 + g) cache misses.

3
|/O-complexity of Iter-MM,Q(n) = O (nz (1 + %)) =0 (% + nz)

Block Matrix Multiplication

cache (size =M)

M/I3 ' M/3 ' M/3

lm

M/3 T

M/3

- 3
= 3
= 3

M/3 T

S
1
—— 3 —»
X
= |

—— n —> [—— n —> —— n —>

Block-MM(X, Y, Z, n)
1. for i< 1 to n/ m do
2. for j«<1 to n/ m do
3. for k<1 to n/ m do

4. Iter-MM (Xy, Yij» Z;;)

Block Matrix Multiplication

j=m)
I Block-MM (X, Y, Z, n)
4 .
1. for i< 1 to n/ m do
n 2. for j<1 to n/ m do
3. for k<1 to n/ m do
4. Iter-MM (Xy, Yy Z;;)

e—— n —»
Choose m = /M /3, so that X;, Y,; and Z; just fit into the cache.

Then line 4 incurs ® (m (1 + %)) cache misses.

|/O-complexity of Block-MM [assuming a tall cache, i.e., M = Q(B?)]

-0((2) (n+3) o+) -0+) =0 (2

(Optimal: Hong & Kung, STOC’81)

Cha

The

Block Matrix Multiplication

j=m)
I Block-MM (X, Y, Z, n)
4 .
1. for i< 1 to n/ m do
n 2. for j<1 to n/ m do
3. for k<1 to n/ m do
4. Iter-MM (Xy, Yy Z;;)

—— n —»

[AL/
Optimal for any algorithm that performs
the operations given by the following

 fit into the cache.

definition of matrix multiplication: pes-
n
Z; = ; XikY k; ache, i.e., M = Q(B?)]

“57w) = ©)

‘ (Optimal: Hong & Kung, STOC’81) ‘

Multiple Levels of Cache

< n
¢ — S —>

I Block-MM(X, Y, Z, n)

for i<1 to n/s do

for j«<1 to n/s do

1.
2.
3. for k<1 to n/s do
4.

s)

1

ij’

Multiple Levels of Cache

—
=t)

S

n

——»

Block-MM(X, Y, Z, n)

1.
2
3
4.
5
6
7

for i;<1 to n/s do
for j,«<1 to n/s do
for k, <1 to n/s do
for i< 1 to s/t do
for j,«<1 to s/t do
for k, <1 to s/t do
[ter-MM ((Xi.k)ik (Yigi ko (

X.

1

o

t)

Multiple Levels of Cache

—
=t)

S

n

——»

‘ One Parameter Per Caching Level!

Block-MM(X, Y, Z, n)

1.
2
3
4.
5
6
7

for i;«<1 to n/s do
for j,«<1 to n/s do
for k<1 to n/s do
for i< 1 to s/t do
for j,«<1 to s/t do
for k, <1 to s/t do

Iter-MM((Xi1k1)i2k2’ (Yk1j1)k2j2’ (Xi1j1)72j2’

t)

n/2

l—

Recursive Matrix Multiplication

V4
— n/Z2 |
Z11 Z12
ZZ1 222
e—— n —>

X Y
l— n/2 - = n/i2
T T
— i n X i n
X3 X322 l Y2 Y2 l
[—— n —p] l—— n ——p]
— 2 —]
T
2 | Xyg Y+ X2 Yo | X Yo+ X2 Yo
_—]

X1 Y91+ X2 Yo

X1 Y2+ X2 Yo

=

Recursive Matrix Multiplication

— n/2) — /2)
T T
n/2| 2y, Z,, 2 | Xyg Y+ X2 Y2 | X Yo+ X2 Yo
4 n — 4 n
Z,, Z,, l X1 Y v X2 Y | Xpq Y2+ X Yo l
[—— n —> |« n >

Rec-MM(Z, X, Y')

1. if Z=1x1matrixthenZ <« Z+X-Y

2. else
3 Rec-MM(Zy4, X4y, Y11), Rec-MM(Zyy, Xiz, Yyq)
4. Rec-MM(Zy5, X135, Y12), Rec-MM(2y, X135 Y2)
5 Rec-MM(Zy4, X1, Y11), Rec-MM(Zy4, X3, Y1)
6 Rec-MM(Zy5, X1, Y12), ReC-MM(Zy;, Xy3, Y2)

Recursive Matrix Multiplication

Rec-MM(Z, X, Y)

1. if Z=1x1matrix thenZ « Z+X-Y

2. else
3 Rec-MM(Zy4, Xy1, Y11), ReC-MM(Zyy, Xy35 Yoy)
4. Rec-MM(Z5, Xip, Y12), Rec-MM(Z5, Xi2, Yoy)
5 Rec-MM(Zyq, Xy1, Y11), Rec-MM(Zyq, Xp2, Yoy)
6 Rec-MM(Zy;, Xy1, Y12), Rec-MM(Zyy, Xp3, Yo)

(O(n+n£), if n* <aM
\8Q (g) + 0(1), otherwise

03 03 03 ,
O(M B\/_> (Bm>,whenM=Q(B)

|/O-complexity (foralln)= 0O (B | | 1) (why?)

|/O-complexity (forn > M), Q(n) =«

Recursive Matrix Multiplication with Z-Morion Layout

A

Recursive Matrix Multiplication with Z-Morion Layout

Recursive Matrix Multiplication with Z-Morion Layout

lell 21112 21121 21122 Zlle 21212 21221 21222 Zlel 22112 22121Z2122 22211 22212 22221Z2222

le ZZl

Recursive Matrix Multiplication with Z-Morion Layout

/

T

Source: wikipedia

Recursive Matrix Multiplication with Z-Morion Layout

Rec-MM(Z, X, Y)
1. if Z=1x1matrix thenZ « Z+X-Y
2. else
3. Rec-MM(Zyy, X4y, Y41), Rec-MM(Zyy, Xi3, Y1)
4 Rec-MM(Zyy, Xy, Y1), Rec-MM(Z3, X135 Y2)
5. Rec-MM(Z,y, Xo1, Y11), ReC-MM(Zy, X35, Yoy)
6 Rec-MM(Zy;, Xy1, Y12), Rec-MM(Zyy, Xp2, Yo)

(o(1+"§), if n2 < aM

1/O-complexity (forn > M), Q(n) =
80 (g) +0(1), otherwise

n3 n3 n3
=O<MN+BW>=O<Bm),whenM=Q(B)

n3

B\VM

nZ
|/O-complexity (foralln) = O(+ - + 1)

Recursive Matrix Multiplication with Z-Morion Layout

: I
X o 1 2 3 1 4 5 6 7
000 001 010 011 | 100 101 110 111
I
I
y: 020 000000 000001 ' 000100 000101 : 010000 010001 ' 010100 010101
I
I
0(1)1 000010 000011 ' 000110 000111:010010 010011 ' 010110 010111
|
|
2
o010 |001000 001001 | 001100 001101 ' 011000 011001 ' 011100 011101
I
I
3 I
o011 |©01010 001011 : 001110 001111011010 011011 : 011110 011111
I
S (e R | — e o o o e mm e em Em em em = e
a I
100 | 100000 100001 | 100100 100101 ! 110000 110001 : 110100 110101
I
I
5 I
o1 | 100010 100011 ;100110 100111110010 110011 : 110110 110111
I
]
6 1
110 | 101000 101001 ; 101100 101101 I 111000 111001 : 111100 111101
I
I
- I
111 | 101010 101011 101110 1011111111010 111011 111110 111111
I

Source: wikipedia

