CSE 638: Advanced Algorithms

Department of Computer Science
SUNY Stony Brook
Spring 2013

“For every complex problem, there is a solution
that is simple, neat, and wrong.”

— Henry Louis Mencken

Course Information

— Lecture Time: TuTh 2:30 pm - 3:50 pm
— Location: Melville Library E4540, West Campus

— Instructor: Rezaul A. Chowdhury
— Office Hours: TuTh 12:30 pm - 2:00 pm, 1421 Computer Science
— Email: rezaul@cs.stonybrook.edu

— TA: Vikas Ganjigunte Ashok
— TA Office Hours: Tu 4:00 pm - 5:00 pm, 2110 Computer Science
— TA Email: vganjiguntea@cs.stonybrook.edu

— Class Webpage: http://www.cs.sunysb.edu/~cse638

Prerequisites

— Required: Background in algorithms analysis (e.g., CSE 548)
— Required: Background in programming languages (C/ C++)

— Helpful but Not Required: Background in computer architecture

Topics to be Covered

Various topics from the following areas will be covered

— Parallel algorithms (most emphasis)

— Randomized algorithms

— External-memory and cache-efficient algorithms
— Streaming algorithms

— Resilient algorithms

Grading Policy

Homeworks (three: highest 15%, lowest 5%, other 10%): 30%

Exam (one): 25%

— Final (in-class): May 9

Group project (one): 30%
— Proposal: Feb 28
— Progress report (in-class): April 2 -4
— Final report: May 10

Scribe note (one lecture): 10%

Class participation & attendance: 5%

Programming Environment
This course is supported by educational grants from

— Extreme Science and Engineering Discovery Environment
(XSEDE): https://www.xsede.org

We have access to the following supercomputers

— Lonestar (Texas Advanced Computing Center): 1,800+ nodes with 12
cores (two Intel Westmere processors) per node

— Trestles (San Diego Supercomputer Center): 300+ nodes with 32 cores
(four AMD Magny Cours processors) per node

— Kraken (National Institute for Computational Sciences): 9,000+ nodes
with 12 cores (two AMD Opteron Istanbul processors) per node

— Keeneland KIDS (Georgia Tech): 120 nodes with 16 cores (two Intel
Sandy Bridge processors) and three NVIDIA Fermi GPU’s per node

Programming Environment

World’s Most Powerful Supercomputers in June, 2008
((www.top500.0rg)

DOEMNNSAMLANL Roadrunner - BladeCenter 122400 1026.0 13758 2345
United States Q522/L521 Cluster, PowerXCel

8i 3.2 Ghz / Opteron DC 1.8

(zHz, Voltaire Infiniband

IBM
DOE/MNNSALLNL BlueGenelL - eServer Blue 212992 4782 h96.4 2329
United States Gene Solution

|BM
Mational Institute for Kraken XT5- Cray XTS5 QC 2.3 66000 463.3 607.2
Computational GHz
Sciences/University of Cray Inc.

Tennesses
United States

Programming Environment

World’'s Most Powerful Supercomputers in November, 2012
(www.top500.0rg)

DOEfSC/Oak Ridge Titan - Cray XK7 , Opteron boDe40 175900 271125 8209
National Laboratory 6274 16C 2 200GHz, Cray
United States Gemini interconnect, NVIDIA

K20x

Cray Inc.
DOEMNSALLNL Sequoia - BlueGene/Q, Power 1572864 163248 201327 7890
United States BQC 16C 1.60 GHz, Custom

IBM

RIKEN Advanced Institute K computer, SPARCEB4 VIlifx 705024 105100 112804 12660
for Computational Science 2.0GHz, Tofu interconnect

(AICS) Fujitsu

Japan

National Institute for Kraken XT5 - Cray XT5-HE 112800 9191 1173.0 3050
Computational Opteron Six Core 2.6 GHz

Sciences/University of Cray Inc.

Tennesses

United States

Texas Advanced Lonestar 4 - Dell PowerbEdge 22656 2 2518 301.8
Computing Center/Univ. of M&10 Cluster, Xeon 5680
Texas 3.3Ghz, Infiniband QDR

United States Dell

Recommended Textbooks

A. Grama, G. Karypis, V. Kumar, and A. Gupta. Introduction to Parallel
Computing (2nd Edition), Addison Wesley, 2003.

J. JaJa. An Introduction to Parallel Algorithms (1st Edition), Addison
Wesley, 1992.

T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms
(3rd Edition), MIT Press, 2009.

R. Motwani and P. Raghavan. Randomized Algorithms (1st Edition),
Cambridge University Press, 1995.

J. Vitter. Algorithms and Data Structures for External Memory, Series on
Foundations and Trends in Theoretical Computer Science, Now Publishers,
Hanover, MA, 2008.

U. Meyer, P. Sanders, and J. Sibeyn (Editors). Algorithms for Memory
Hierarchies: Advanced Lectures (1st Edition), Lecture Notes in Computer
Science, Springer, 2003.

Why Parallelism?

Transistor count

2,600,000,000
1,000,000,000 -

100,000,000 -

10,000,000

1,000,000

100,000 -

10,000 -

2,300 -

Moore’s Law

16-Core SPARC T3
Sw-Core Core I7
Six-Cora Xeon 7400

1 @ 10-Corg Xaon Wastmaen-EX
Oual-Core harium2@ @
AMD KIO

‘4 e-oovn P(MER?
POIIERGO

ote mmum Yuivnxu
Itanum 2 with SM8 cache @ '\ Sx—Com Optaroﬂ 2400
AMD K‘O’ Core 17 (Owad)

rankum2e ‘E r #bw
/o AMD X8
Pantium 4 @ fann ® Arom
.:tg :;-m
curve shows transistor /AMO L
count doubling every Ll
two years pp——
@ Partium
845 @
203860
802660
00ee ® 80185
poss @ @Ees
aoes
. ® 6600
/ ez:0
20060 OMOS 652
40040 /pea 1802
[T T T |
1971 1980 1990 2000 2011

Date of introduction

Source: Wikipedia

Unicore Performance

@ intel 386
intel 486
intel pentium

X intel pentium?2 SpeCIntZOOO

10000.00 | ® intel pentium3

== intel pentium4

@& ntel itanium

W Alpha 21064

Alpha 21164 *—-""'I'
1000.00 Alpha 21264 =

Sparc of

Super Sparc d
Spar c64 <

100.00 | | P) AT

HP PA 'y
FPower PC -

AMD K&
AMD KT
& AMD x86-64

10.00

00 \ % _ O OO
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 0102 03 04 05 06 07

Source: Chung-Ta King, Department of Computer Science, National Tsing Hua University

Unicore Performance Has Hit a Wall!

Some Reasons

— Lack of additional ILP
(Instruction Level Hidden Parallelism)

— High power density
— Manufacturing issues
— Physical limits

— Memory speed

Unicore Performance: No Additional ILP
“Everything that can be invented has been invented.”

— Charles H. Duell
Commissioner, U.S. patent office, 1899

Exhausted all ideas to exploit hidden parallelism?
— Multiple simultaneous instructions
— Dynamic instruction scheduling
— Branch prediction
— Out-of-order instructions
— Speculative execution
— Pipelining

— Non-blocking caches, etc.

Unicore Performance: High Power Density
— Dynamic power, P, [1V?2fC

— V =supply voltage
— f=clock frequency
— C=capacitance

— ButVLf
— Thus P, L f3
10.000 Sun's Surface -
= Rocket Nozzle
E 1,000 ———, _
%‘, Nuclear Reactor
W -
E 100 Pentium®
] 8086
Plate
5 fiood 8085 N >,
8008 286 386
8080 486
1
70 ‘80 ‘a0 ‘00 10

Source: Patrick Gelsinger, Intel Developer Forum, Spring 2004 (Simon Floyd)

Unicore Performance: High Power Density

— Changing f by 20% changes performance by 13%
— So what happens if we overclock by 20%?

— And underclock by 20%?

' Performance

Power

1.00x

Design
Frequency

Source: Andrew A. Chien, Vice President of Research, Intel Corporation

Unicore Performance: High Power Density

— Changing f by 20% changes performance by 13%
— So what happens if we overclock by 20%?

— And underclock by 20%?

1.73x W Performance

Over-clocked Design
(+20%) Frequency

Source: Andrew A. Chien, Vice President of Research, Intel Corporation

Unicore Performance: High Power Density

— Changing f by 20% changes performance by 13%
— So what happens if we overclock by 20%?

— And underclock by 20%?

Over-clocked Design Dual-core

+20% F Underclocked
() requency (-20%)

Source: Andrew A. Chien, Vice President of Research, Intel Corporation

Unicore Performance: Manufacturing Issues

— Frequency, fU1/s

— s =feature size (transistor dimension)

— Transistors / unitarea 11/ s?
— Typically, diesize 11 /s

— So, what happens if feature size goes down by a factor of x?

— Raw computing power goes up by a factor of x*!

— Typically most programs run faster by a factor of x3
without any change!

Source: Kathy Yelick and Jim Demmel, UC Berkeley

Unicore Performance: Manufacturing Issues

— Manufacturing cost goes up as feature size decreases

— Cost of a semiconductor fabrication plant doubles
every 4 years (Rock’s Law)

— CMOS feature size is limited to 5 nm (at least 10 atoms)

Cost of semiconductor factories in millions of 1995 dollars
10,000 ~

Hratlo scale)
B //
1,000 |-
: ;/
. e
100 | /
- L
E / L
i ’./ o
1D$E/"
1
'66 ‘74 ‘82 ‘a0 'ag

Source: Kathy Yelick and Jim Demmel, UC Berkeley

Unicore Performance: Physical Limits

Execute the following loop on a serial machine in 1 second:

for (i=0;i<10%% ++i)

zZ[i]l=x[il+ylil];
— We will have to access 3x1012 data items in one second
— Speed of light is, c =3x108m/s

— So each data item must be within ¢/ 3x102 = 0.1 mm
from the CPU on the average

— All data must be put inside a 0.2 mm x 0.2 mm square

— Each data item (> 8 bytes) can occupy only 1 A2 space!
(size of a small atom!)

Source: Kathy Yelick and Jim Demmel, UC Berkeley

Unicore Performance: Memory Wall

Relative
Performance
10000
B CcPU
1000
100
10
1
1980 1985 1990 1995 2000 2005

Source: Sun World Wide Analyst Conference Feb. 25, 2003

Source: Rick Hetherington, Chief Technology Officer, Microelectronics, Sun Microsystems

Moore’s Law Reinterpreted

10000000
L
1000000 _ &
* Transistors (Thousands) % s
“ s
100000 ~—— ™= Frequency (MHz) L
s Power (W) *
10000 +— e Cores
1000
»
100 %
& &
A A
D I I 1 I I 1 I I
1970 1975 1980 1985 1990 1995 2000 2005 2010

Source: Report of the 2011 Workshop on Exascale Programming Challenges

Cores / Processor (General Purpose)

Future: 100+ |

J
=

Number of Cores

|
1\

MNehalem: 8+

IED re2 Quad (4}

Core 2 Duo (2)

2006 2007 2008 2009 2010 2015

Source: Andrew A. Chien, Vice President of Research, Intel Corporation

Operations per second for seral code

No Free Lunch for Traditional Software

y 11 Core |
@ "'§
s &
%3 31 [Highest Clock
WE | Epeed*ﬂﬂﬂEHz
%35 B! | ingle Core |
S 52
3 I |2'l:ura5|
Cgals
I_ﬁg g | .-"';
L§e ¥: 7 s
'SEE | 2 4 Cores
| s IF—IF
35 . sl _ | 8 Cores
g IGHL8ComE — = = —
£ —.'__—.-*-"-"—"I'-"

Additional operations per second if code can lake advantage of concurrency

Source: Simon Floyd, Workstation Performance: Tomorrow's Possibilities (Viewpoint Column)

Top 500 Supercomputing Sites

Cores per Socket - Systems Share

Share

1595 2000 2005 2010
12 - 18 | El
3= __E =

Source: www.top500.org

Insatiable Demand for Performance

GenomicS Research Financial Analysis Medical Imaging

Source: Patrick Gelsinger, Intel Developer Forum, 2008

Numerical Weather Prediction
Problem: (temperature, pressure, ..., humidity, wind velocity)

« f(longitude, latitude, height, time)

Approach (very coarse resolution):

— Consider only modeling fluid flow in the atmosphere

— Divide the entire global atmosphere into cubic cells of
size 1 mile x 1 mile x 1 mile each to a height of 10 miles
=2 x 10° cells

— Simulate 7 days in 1 minute intervals

=~ 10* time-steps to simulate

— 200 floating point operations (flop) / cell / time-step
= 4 x 10*> floating point operations in total

— To predictin 1 hour =1 Tflop/s (Tera flop / sec)

Some Useful Classifications
of Parallel Computers

Parallel Computer Memory Architecture
(Shared Memory)

— All processors access all memory
as global address space

— Changes in memory by one
processor are visible to all others

— Tow types:

— Uniform Memory Access
(UMA)

Bus Interconnect

— Non-Uniform Memory

NUMA

Source: Blaise Barney, LLNL

Parallel Computer Memory Architecture
(Shared Memory)

Advantages

— User-friendly programming

perspective to memory

— Fast data sharing

Disadvantages

— Difficult and expensive

to scale

Bus Interconnect

user responsibility
NUMA

Source: Blaise Barney, LLNL

Parallel Computer Memory Architecture
(Distributed Memory)

— Each processor has its own
local memory — no global
address space

— Changes in local memory by

one processor have no effect

Source: Blaise Barney, LLNL

on memory of other processors

— Communication network to connect inter-processor memory

Parallel Computer Memory Architecture
(Distributed Memory)

Advantages
— Easily scalable

— No cache-coherency
needed among processors

— Cost-effective
Source: Blaise Barney, LLNL
Disadvantages
— Communication is user responsibility

— Non-uniform memory access

— May be difficult to map shared-memory data structures
to this type of memory organization

Parallel Computer Memory Architecture
(Hybrid Distributed-Shared Memory)

— The share-memory component
can be a cache-coherent SMP or
a Graphics Processing Unit (GPU)

— The distributed-memory
component is the networking of
multiple SMP/GPU machines

— Most common architecture
for the largest and fastest

computers in the world today

Source: Blaise Barney, LLNL

Flynn's Taxonomy of Parallel Computers

Flynn’s classical taxonomy (1966):
Classification of multi-processor computer architectures along
two independent dimensions of instruction and data.

Single Data Multiple Data
(SD) (MD)

Single Instruction SISD SIMD
(SI)
Multlpl(el:;lrls;cructlon MISD MIMD

Flynn's Taxonomy of Parallel Computers

SISD

— A serial (non-parallel) computer

— The oldest and the most common

type of computers

— Example: Uniprocessor unicore

machines

load A
load B
C=A+B

awy

store C
A=B*2

store A

Source: Blaise Barney, LLNL

Flynn's Taxonomy of Parallel Computers

prev instruct prev instruct prev instruct
load A(1) load A(2) load A(n) @ xi1 [| x| x x0 |
load B(1) load B(2) load B(n) - * i ! N

C(1)=A(1)*B(1) C(2)=A(2)*B(2) C(n)=A(n)*B(n) - (] Y T ¥ 7! v |
store C(1) store C(2) store C(n) X[1+YI[] rx3+y3 x2+y2 | x1+y1 | x0 + yﬂ|j

next instruct next instruct next instruct
P1 P2 Pn Source: Blaise Barney, LLNL
SIMD

— A type of parallel computer

— All PU’s run the same instruction at any given clock cycle
— Each PU can act on a different data item

— Synchronous (lockstep) execution

— Two types: processor arrays and vector pipelines

— Example: GPUs (Graphics Processing Units)

Flynn's Taxonomy of Parallel Computers

MISD
— A type of parallel computer

— Very few ever existed

MIMD
— A type of parallel computer

— Synchronous /asynchronous

execution

— Examples: most modern
supercomputers, parallel
computing clusters,
multicore PCs

prev instruct prev instruct prev instruct
load A(1) load A(1) load A(1)
C(1)=A(1)"1 C(2)=A(1)*2 C(n)=A(1)"n
store C(1) store C(2) store C(n)
next instruct next instruct next instruct
P1 P2 Pn
prev instruct prev instruct prev instruct
load A(1) call funcD do 10 i=1,N
load B(1) x=y*z alpha=w**3
C(1)=A(1)*B(1) sum=x*2 zeta=C(i)
store C(1) call sub1(i,j) 10 continue
next instruct next instruct next instruct
P1 P2 Pn

awn

3wy

Source: Blaise Barney, LLNL

Parallel Algorithms
Warm-up

“The way the processor industry is going, is to add more and more cores, but
nobody Rnows how to program those things. I mean, two, yeah, four, not
really; eight, forget it.”

— Steve Jobs, NY Times interview, June 10 2008

Parallel Algorithms Warm-up (1)

Consider the following loop:

fori=1tondo
Cl[i] « A[i]xB[i]

— Suppose you have an infinite number of processors/cores

— Ignore all overheads due to scheduling, memory accesses,
communication, etc.

— Suppose each operation takes a constant amount of time

— How long will this loop take to complete execution?

Parallel Algorithms Warm-up (1)

Consider the following loop:

fori=1tondo
Cl[i] « A[i]xB[i]

— Suppose you have an infinite number of processors/cores

— Ignore all overheads due to scheduling, memory accesses,
communication, etc.

— Suppose each operation takes a constant amount of time
— How long will this loop take to complete execution?

— O(1)time

Parallel Algorithms Warm-up (2)

Now consider the following loop:

c -0
fori=1tondo
C<—C+A[I]XB[I]

— How long will this loop take to complete execution?

Parallel Algorithms Warm-up (2)

Now consider the following loop:

c -0
fori=1tondo
C<—C+A[I]XB[I]

— How long will this loop take to complete execution?

— O(logn) time

Parallel Algorithms Warm-up (3)

Now consider quicksort:

QSort(A)
if |A|<1return A
else p — Alrand(|A|)]
return QSort({x L1A: x<p })

#{p}#
QSort({x LU A:x>p})

— Assuming that A is split in the middle everytime, and the two
recursive calls can be made in parallel, how long will this

algorithm take?

Parallel Algorithms Warm-up (3)

Now consider quicksort:

QSort(A)
if |A|<1return A
else p — Alrand(|A|)]
return QSort({x L1A: x<p })

#{p}#
QSort({x LU A:x>p})

— Assuming that A is split in the middle everytime, and the two
recursive calls can be made in parallel, how long will this

algorithm take?

— O(log?n) (if partitioning takes logarithmic time)
— O(logn) (butcanbe partitioned in constant time)

