CSE638: Advanced Algorithms, Spring 2013 Date: March 26

Homework #2

(Due: April 16)

Task 1. [40 Points | Parallel BFS with Cilk’s Work Stealing.

(a)

(b)

[20 Points | In homework 1 we analyzed and implemented parallel BFS algorithms based
on randomized distributed work-stealing, and we explicitly implemented the work-stealing
mechanism. Explain how you will reimplement the algorithm from part 1(f) of homework 1
(without the modication for avoiding duplicate exploration) so that it uses Cilk’s work-stealing
scheduler for load balancing instead of your own work-stealing code.

[20 Points | Update the table you created for part 1(j) of homework 1 with the running
times of your new implementation.

Task 2. [160 Points | Parallel Connected Components.

(a)

[10 Points | Consider the function RANDOM-HOOK(V, L, N) in Figure 1, and assume
that V' has no zero degree vertices. Suppose we start with an empty set), and add edges to
it as follows. We traverse the vertices in V' in some order, and for each v € V encountered
in that order, we add (v, N[v]) to @ provided the graph induced by Q U {(v, N[v])} does not

; V]
contain a cycle. Prove that |Q| > 5.

[10 Points | Consider the set @ constructed in part 2(a). We say that an edge (u,v) € @ is
a hook provided C[u] # Clv] right after step 3 of RANDOM-HOOK. Prove that for all Q' C @,
if one knows the hook status of all edges in @’ that still does not reveal anything about the
hook status of any edge in Q \ @'

[10 Points | Explain why RANDOM-HOOK (in Figure 1) is superior to the random hooking
technique we saw in the class (used in PAR-RANDOMIZED-CC).

[10 Points | Use your results from parts 2(a)-2(c) to show that in any invocation of
RAaNDOM-HOOK(V, L, N), with probability at least 1 — W at least ‘1—‘2.' vertices of

V' will change their L values.

[10 Points | Use your result from part 2(d) to prove high probability bounds for the work
and span of PAR-RANDOMIZED-CC-2.

[15 Points | Consider PAR-RANDOMIZED-CC-3. The algorithm repeatedly chooses a ran-
dom sample (of geometrically decreasing sizes) from the edges of the input graph, and uses the
sample to identify vertices (or supervertices) that have potentially high degree (PhD). Each
vertex of the graph starts with a PhD status, but loses the status as soon as a chosen sample

of edges fails to include an edge connecting that vertex with another vertex with a PhD sta-
tus. The RANDOM-HOOK function is called only on the vertices that retain the PhD status.
After a sufficient number of such sampling and hooking rounds, the number of edges among
the supervertices reduce to a sufficiently small number. At that point connected components
among the supervertices are found by calling PAR-RANDOMIZED-CC-2. Now suppose at re-
cursion depth d of PAR-RANDOMIZED-CC-3, ng denotes the number of vertices/supervertices
in V with a PhD status. Then ng is the number of vertices in the original input graph. Let

n = ng. Prove that for each d € [0, dmnaz], g < a?d.n w.h.p. in n, where a = \/ % and
dmaz = ’7% 10gl n—‘ :

[15 Points | We call an edge (u,v) heavy provided PhD[u] = PhD[v] = TRUE, otherwise
we call it light. At recursion depth d of PAR-RANDOMIZED-CC-3, let r4 be the expected
number of heavy edges that become light. Prove that for each d € [0, dpaz], ra < al . n.

[10 Points | Prove that in the call to PAR-RANDOMIZED-CC-2 in line 21 of PAR-RANDOMIZED-
CC-3, the expected number of edges in E' is O (n).

[10 Points | Compute the expected work and span of PAR-RANDOMIZED-CC-3.

[60 Points | Implement PAR-RANDOMIZED-CC (the one we saw in the class), PAR-RANDOMIZED-
CC-2 (from Figure 1) and PAR-RANDOMIZED-CC-3 (from Figure 2), and optimize them.
Create a table that compares the running times of these three implementations using all
cores. For each input file (in Appendix 1) create a separate row in the table showing the
running times of all three algorithms.

[20 Points | Generate a strong scalability plot (see slides 15-18 of lecture 5) for each of the
two parallel implementations from part (j) using the Live Journal graph (see Appendix 1) as
input.

PAR-RANDOMIZED-CC-2(V, E, L)

(Input is an unweighted undirected graph with vertex set V' and edge set E. For each v € V', L[v] is set to v before
the invocation of this function. When this function terminates, for each v € V| L[v] contains the unique id of the
connected component containing v. We call an edge (u,v) live provided L[u| # L[v].)

1. if |E| =0 then return {no edge to contract}
2. parallel for each (u,v) € E do N[u] + v, N[v] + u {try to associate the edge (u,v) with u and v}
3. RanpoM-HoOK(V, L, N) {hook among vertices in V based on the edges chosen in the previous step}
4. V' {v| ((w,w)€E V (v,u) €E)A v=L[v]#Lu] } {collect the non-zero degree roots after hooking}
5. E' < { (L[u],L[v]) | (u,v) € E A L[u] # L[v] } {E' contains only edges among roots,

and no duplicate edges and self loops}
6. PAR-RANDOMIZED-CC-2(V', E', L) {recurse on the smaller instance}
7. parallel for each v € V do L[v] < L[L[v]] {map the solution back to the current instance}

RANDOM-HOOK(V, L, N)

(Input is an unweighted undirected graph with vertex set V. For each v € V, L[v] is set to v before the invocation
of this function. For each u € V, Nu] is set to a v such that (u,v) is an edge in the graph. This function randomly
hooks vertices in V' to their neighbors in such a way that after the function terminates these vertices form a set of
disjoint stars. For each v € V, L[v] is set to u (possibly u = v) provided u is the center of the star containing v.)

1.
2.

=

A N

11.
12.
13.
14.
15.

parallel for each u € V do {for each vertex in V'}
Cu < RanpoM { HEAD, TAIL } {toss a coin}
H, < FALSE {record that this vertex has not yet been hooked}

parallel for each u € V do {for each vertex uw in V'}
v+ NJu] {will try to hook u with v = Nu|}
if C, = TAIL and C, = HEAD then {if u tossed TAIL and v tossed HEAD}

Llu] + v {make u point to v}

H, + TRUE, H, + TRUE {record that both w and v are hooked}
parallel for each u € V do {manipulate the coin tosses to hook more in a second try}
if H, = TRUE then C, + HEAD {if u is already hooked, will try to hook unhooked vertices pointing to u}
else if C,, = TAIL then C,, + HEAD else C, < TAIL {if u is not hooked, flip C}
parallel for each u € V do {try to hook again}
v« NJu] {will try to hook uw with v = Nu|}

if C,, = TAIL and C, = HEAD then {if u has TAIL and v has HEAD}
L{u] + Lv] {make w point to whatever v is pointing to}

Figure 1: Parallel connected components (CC) on a graph.

PAR-RANDOMIZED-CC-3(V, E, L, PhD, N, U, d)

(Input is an unweighted undirected graph with vertex set V' and edge set E. The recursion depth of the function
is given by d which is set to 0 when the function is invoked for the first time. Let n be the number of vertices in
the graph when d = 0, and m = |E|. Each v € V is an integer in [1,n]. Pointers L (label), PhD (potentially high
degree), N (neighbor) and U (updated) point to arrays L[1 : n], PhD[1 : n], N[1 : n] and U[1 : n], respectively.
For each v € [1,n], L[v] is set to v, and PhD[v] is set to TRUE before the initial invocation of this function. When
this function terminates, for each v € V, L[v] contains the unique id of the connected component containing v. We

assume that @ = /12 and dmas = B log 1 n—‘. We call an edge (u,v) live provided L{u] # L[v]. Edge (u,v) is heavy

provided PhD[u] = 1IghD[v], otherwise it is light.)

1. if d < dmas then {need to recurse more to sufficiently reduce #vertices with PhD status}
2. mq < [m . o/ﬂ {size of edge sample which geometrically decreases with d}
3. E+ a sample of size mgy chosen uniformly at random from F {do not always touch all edges in E}
4. parallel for each v € V do U[v] + FALSE {ﬂag Ulv] keeps track if an edge in E hits v}
5. parallel for each (u,v) € E do {check each edge in the sample}
6. u < Lu], v + L[v] {find the root of the tree containing each endpoint}
7. ifu' €V and v €V and v’ # v and PhD[u'] = PhD[v'] = TRUE then {if (u',v") is live and heavy}
8. N[u'] <, N[v']« o {try to associate the edge with u' and v'}
9. Ulu'] + TRUE, U[v'] + TRUE {E hits u' and v/}
10. parallel for each v € V do {check each vertex v in V'}
11. if Uv] = FALSE then PhD|v] + FALSE {zf E does not hit v then v loses its PhD status}
12. Vo« {v|veV A Uy =TRUE } {‘A/ contains the vertices from V which still have PhD status}
13. RANDOM-HOOK(V,L N) {hook among vertices in V (see Figure])}
14. Vi+—{v|veV Av=LQ]} {V" contains only the roots after hooking}
15. PAR-RaNDOMIZED-CC-3(V', E, L, PhD, N, U, d+1) {recurse on the smaller instance}
16. parallel for each v € V do L[v] < L[L[v]] {map the solution back to the current instance}

17. endif
18. ¢f d =0 then {done compressing}
19. Vie{v|veV A v=L[} {collect only the root vertices}
20. E' + { (L], L[v]) | (u,v) € E A L[u] # L[v] } {E" contains only edges among roots,
and no duplicate edges and self loops}
21. ParR-RANDOMIZED-CC-2(V', E’, L) {use the algorithm from Figure 1 to solve the problem once the
number of edges reduces to a sufficiently small number}
22. parallel for each v € V do L{v] < L[L[v]] {map the solution back to the current instance}

23. endif

Figure 2: Parallel connected components (CC) based on edge sampling.

APPENDIX 1: Input/Output Format for Task 2

Your code must read from standard input and write to standard output.

— Input Format: The first line of the input will contain two integers giving the number of
vertices (n) and the number of edges (m), respectively. Each of the next m lines will contain
two integers u and v (1 < u,v < n) denoting an undirected edge between vertices u and v.
The edges will be sorted in nondecreasing order of the first vertex.

— Output Format: The first line of the output will contain an integer r giving the number of
connected components in the input graph. This will be followed by the size of each of the r
connected components, each on a separate line, ordered from the largest to the smallest. The
size of a connected component is an integer giving the number of vertices in that component.

— Sample Input/Output: /work/01905/rezaul/CSE638/HW2/samples on Lonestar.
— Test Input/Output (Table 1): /work/01905/rezaul/CSE638/HW2/turn-in on Lonestar.

Graph Description n m
as-skitter Internet topology graph, from traceroutes run daily in 2005 1.7M 11M
ca-AstroPh Collaboration network of Arxiv Astro Physics 18.7K | 396K
com-amazon Amazon product network 334K | 925K
com-dblp DBLP collaboration network 317K 1M
com-friendster | Friendster online social network 65M 1.8B
com-lj LiveJournal online social network 4M 34M
com-orkut Orkut online social network 3M | 117TM
roadNet-CA Road network of California 2M 2.7M
roadNet-PA Road network of Pennsylvania 1M 1.5M
roadNet-TX Road network of Texas 1.4M 1.9M

Table 1: Input graphs with #vertices (n) and #edges (m).

APPENDIX 2: What to Turn in

One compressed archive file (e.g., zip, tar.gz) containing the following items.

— Source code, makefiles and job scripts.
— A PDF document containing all answers and plots.

— QOutput generated for the input files in /work/01905/rezaul/CSE638/HW2/turn-in/ on Lon-
estar. If the name of the input file is xxxxx-in.txt in task 2(j), please name the output files as
xxxxx-2j-CC-1-out.txt, xxxxx-2j-CC-2-out.txt and xxxxx-2j-CC-3-out.txt for PAR-
RANDOMIZED-CC, PAR-RANDOMIZED-CC-2 and PAR-RANDOMIZED-CC-3, respectively.

APPENDIX 3: Things to Remember

— Please never run anything that takes more than a minute or uses multiple cores
on TACC login nodes. TACC policy strictly prohibits such usage. They reserve the right
to suspend your account if you do so. All runs must be submitted as jobs to compute nodes
(even when you use Cilkview or PAPI).

— Please store all data in your work folder ($WORK), and not in your home folder ($SHOME).

— When measuring running times please exclude the time needed for reading the input and
writing the output. Measure only the time needed by the algorithm.

