CSE 590: Special Topics Course
(Supercomputing)

Lectures 7 & 8
(GPGPU Computing & CUDA)

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Spring 2012

GPU vs CPU: FLOP/s

Theoretical
GFLOP/s
1750

«=4-=NVIDIA GPU Single Preasion
i g NVIDIA GPU Double Preasion

=g |ntel CPU Single Predsion

=t |ntel CPU Dauble Preasion

1250
1000
750
TeslaC2050
500
250 Westmere

Tesla C1060 /Bloomfield

Woodcrest

Harpertown
Jul-08

Jun-04 Oct-05 Mar-07 Dec-09

Source: NVIDIA

GPU vs CPU: Memory Bandwidth

Theoretical GB/s

200

180

160

140

120

100

80

P S

-

-

-@=-CPU

== GPU

— b

-

»»»»»»»
-

Westmere

Bloomfield

Woodcrest

Prescott

Harpertown

Northwood ' ‘ ' ' ' ' '
2003 2004 2005 2006 2007 2008 2009 2010

Source: NVIDIA

GPU vs CPU: Design Philosophy

ALU ALU

CPU GPU
CPU’s are designed for general purpose computations requiring

sophisticated control flow and caching mechanisms.

GPU’s are designed for special purpose computations with massive

data-parallelism and high arithmetic intensity.
— Since the same program is executed for each data element there is
a lower requirement sophisticated flow control
— Because of high arithmetic intensity, the memory access latency
can be hidden with calculations instead of big caches

So GPU’s can devote more transistors to data processing rather than
data caching and flow control.

Architecture of a Modern GPU

CUDA (Compute Unified Device Architecture)

A general purpose parallel computing architecture with

— a new parallel programming model, and
— instruction set architecture

that leverages the parallel compute engine in NVIDIA GPUs to
solve data-parallel computations more efficiently than CPUs.

GPU Computing Applications

NVIDIA GPU
with the CUDA Parallel Computing Architecture

Fermi Archlt(_a_c_ture Sakorce 00 Ser!es Quadro Fermi Series Tesla 20 Series
(Compute capabilities 2.x) | GeForce 400 Series

. GeForce 200 Series Quadro FX Series
Tesla Archlte_(_:t_ure GeForce 9 Series Quadro Plex Series Tesla1
(Compute capabilities 1.x) GoEorce 8 Series Quadro NVS Series

»
4 »
- -
v,
- -

Source: NVIDIA

TP
I Professional
= Graphics

CUDA: a Scalable Programming Model

Three Key abstractions exposed as a minimal set of language
extensions

Multithreaded CUDA Program

— A hierarchy of thread groups

_ Blocka Blocks Blocks Block7.
— Shared memories | |
— Barrier synchronization L
GPU with 2 Cores GPU with 4 Cores
The programmer partitions Core0 = Corel | Core0 Corel Core2 Core3
— the problem into coarse sub- LI l - -
problems that can be solved /N | o 3
independently in parallel by LIl
blocks of threads WL
— each sub-problem into finer The thread blocks can be
pieces that can be solved executed in any order —
cooperatively in parallel by all concurrently or sequentially —

Source: NVIDIA

threads within the block leading to automatic scalability.

Differences between CPU and CUDA Threads

— CUDA threads are extremely lightweight compared to CPU
threads
— Only a few cycles to create

— Instant switching

— CUDA runs thousands of threads while CPU’s run only a few

CUDA Extensions to C Functional Declarations

Executed on the:

Only callable from the:

__device _ float DeviceFunc() device device
__global _ void KernelFunc() device host
__host__ float HostFunc() host host

Kernel Functions

// Kernel definition
__global void VecAdd(float* A, float* B, float* C)
{

int i = threadIdx.x;

C[i] = A[i] + B[i]l;
}

. . Execution Configuration
int main ()

{

Source: NVIDIA

vecaadk<<1,

)
— Called from host (CPU)

— Executed on device (GPU)

— Only one kernel runs at a time (for compute capability < 2.0)
— All running threads execute the same kernel (except above)

— All kernel launches are asynchronous (control returns to the
CPU immediately)

Kernel Functions (Restirictions)

__global void VecAdd(float* A, float* B, float* C)
{

int i = threadIdx.x;

C[i] = A[i] + B[i];
}

int main ()

{

Source: NVIDIA

VecAdd<<<1l, N>>>(A, B, C);

— Must return void

— Variable number of arguments (i.e., varargs) not allowed
— No static variables

— No access to host memory

— Must be non-recursive

Thread Hierarchy: Thread Index

Threads can be identified using a 1, 2 or 3 dimensional thread index
forming a1, 2 or 3 dimensional thread block.

// Kernel definition
__global void MatAdd(float A[N] [N]

, float B[N] [N],
float C[N] [N])

{
int i = threadIdx.x;
int j = threadldx.y;
C[i][3J] = A[1]1[J] + BIl[1]I[3]1-
}
int main ()
{
// Kernel invocation with one block of N * N * 1 threads
int numBlocks = 1;
dim3 threadsPerBlock (N, N);
MatAdd<<<numBlocks, threadsPerBlock>>> (A, B, C);
}

Source: NVIDIA

Thread Hierarchy: Block Index

Blocks can be identified using a 1, 2 or 3 dimensional block index
forming a 1, 2 or 3 dimensional grid.

// Kernel definition
__global void MatAdd(float A[N] [N], float B[N] [N],
float C[N] [N])

{
int i = blockIdx.x * blockDim.xX + threadIdx.Xx;
int j = blockIdx.y * blockDim.y + threadIdx.y;
if (i < N && j < N)
C[i][3J] = A[i][J] + B[i]([3J1~
}
int main ()
{
// Kernel invocation
dim3 threadsPerBlock (16, 16);
dim3 numBlocks (N / threadsPerBlock.x, N / threadsPerBlock.y):;
MatAdd<<<numBlocks, threadsPerBlock>>> (A, B, C);
}

Source: NVIDIA

Thread Hierarchy: Grids, Blocks and Threads

All _ device and global
functions have access to the
following built-in device
variables

— dim3 gridDim: dimenions of
the grid in blocks

— dim3 blockDim: dimenions of
a block in threads

— dim3 blockldx: block index
within the grid

— dim3 threadldx: thread index
within a block

Host Device
Grid 1
Kernel 1 Block Block Block
(0,0) (1,0) (2,0)
Block - Block | Block
(ol];)' (ll 1) \“‘ (20 1)
" Grid2
Kernel 2 . » ," ‘.‘
—
Y | | | \

 Block (1, 1)

Source: NVIDIA

CUDA Memory Model

Registers
— Very large number of registers per
processor (thread)
— Instant access

Local Memory

— A portion of global memory that is
private to a processor (thread)

— Used for register spills
— Slow (same as global memory)

Shared Memory

— Asmall (e.g., 16 KB)
block of memory
shared by all processors
(threads) in a multi

Grid

Block (0, 0)

o

Block (1, 0)

|

Thread (0, 0)

Thread (1, 0) Thread (0, 0)

Thread (1, 0)

-processor (block)

— Divided into Several memory banks

— As fast as registers w/o bank conflicts

Source: NVIDIA

CUDA Memory Model

Global Memory

— A large block (in GB) of memory
shared by all multiprocessors on a
GPU

— High bandwidth (> 100 GB/s)
— Slow (several 100 clock cycles
when not cached)
Constant Memory

— Small (e.g., 64 KB) read-only
memory shared by all multi-
processors

— Cached (per multi
-processor)

— Slow (several 100 clock
cycles on cache miss)

Texture Memory

— Similar to constant memory

Grid

Block (0, 0)

o

Block (1, 0)

|

Thread (0, 0)

Thread (1, 0) Thread (0, 0)

Thread (1, 0)

Source: NVIDIA

— Reads can be samplings (e.g., nearest point of interpolation)

CUDA Memory Model

cudaMalloc(): allocates object in
the devices global memory.

cudaFree(): frees objects from
device global memory.

cudaMemcpy(): memory data
transfer:

— host to host

— host to device
— device to host
— device to device

Grid

Block (0, 0)

|

Block (1, 0)

|

Thread (0, 0)

Thread (1, 0) Thread (0, 0)

Thread (1, 0)

==

CE

Source: NVIDIA

Synchronization

For the following tasks control is returned to the host before the
device completes the task

— Kernel launches

— Memory copies between two addresses on the same device
— Memory copies of size 64KB or less from host to device

— Memory copies by functions suffixed with Async

— Memory set function calls

However, kernel launches and cudaMemcpy can start only after all
previous CUDA calls have completed.

cudaDeviceSynchronize(): blocks until the device has completed all
previously requested tasks

__syncthreads(): synchronize all threads in a block

Example: CUDA Memory Functions

global void VecAdd (float* A, float* B, float* C, int N)

{
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < N)
C[i] = A[i] + B[i]:
}

int main ()
int N = ...;

sizeltlsitze =ENExEsiizeof (float));

float* h A = (float*)malloc(size);
float* h B (float*)malloc (size) ;

NVIDIA

float* d A;
cudaMalloc (&d_A, size);

float* d B; (J]
cudaMalloc (&d_B, size); E
float* d _C; =
cudaMalloc (&d C, size); (@)

B (7s]

cudaMemcpy (d_A, h A, size, cudaMemcpyHostToDevice) ;
cudaMemcpy (d_B, h B, size, cudaMemcpyHostToDevice) ;

int threadsPerBlock = 256;
int blocksPerGrid =

(N + threadsPerBlock - 1) / threadsPerBlock;
VecAdd<<<blocksPerGrid, threadsPerBlock>>>(d A, d B, d_C, N);

cudaMemcpy (h_C, d C, size, cudaMemcpyDeviceToHost) ;

cudaFree (d_A) ;
cudaFree (d_B) ;
cudaFree (d C);

CUDA Variable Type Qualifiers

Memory Scope Lifetime
i;:(;rzfrgslsvariables other register thread kernel
automatic array variables local thread kernel
__device global grid application
__Shared shared block kernel
__constant___ constant grid application

M ST
M(row, col
typedef struct {
int width;
int height;
float* elements;
} Matrix;

#define

SIZE 16

BLOCK

slaration of Eh x multiplication kernel

Matrix, const Matrix, Matrix):;

___ void MatMulKernel

(cons

to be multiples of BLOCK

void MatMul (const const Matrix B, Matrix C)

{

Matrix d_A;

d A.width = A.width; d A.height = A.height:;
szzeit size = A.width * A.height * sizeof (float):;
cudaMalloc (&d_A.elements,

size) ;

cudaMemcpy (d A.elements, A.elements, size,
cEdaMemcpyHostToDevice);

Matrix d_B;

d B.width = B.width; d B.height = B.height:;

size = B.width * B.height * sizeof (float);

cudaMalloc (&d_B.elements, size);

cudaMemcpy (d_B.elements, B.elements, size,

cudaMemcpyHostToDevice) ;

/ Allocate C 1n ae cCe mer
Matrix d_C;
d C.width = C.width; d_C.height =
size = C.width * C.height *
cudaMalloc (&d_C.elements,

C.height;
sizeof (float) ;
size) ;

TRVOXESRKEeTTne -
dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y):

MatMulKernel<<<dimGrid, dimBlock>>>(d A, d B, d C);

P

cudaMemcpy (C.elements, Cd.elements, size,
cudaMemcpyDeviceToHost) ;

Free device m ry

cudaFree (d_A.elements);
cudaFree (d_B.elements);
cudaFree (d_C.elements);

Matrix Multiplication w/o Shared Memory

NVIDIA

__global void MatMulKernel (Matrix A, Matrix B, Matrix C)

Dy ac

float Cvalue = 0;
int row = blockIdx.y * blockDim.y + threadIdx.y:
int col = blockIdx.x * blockDim.x + threadIdx.x;

for (int e = 0; e < A.width; ++te)
Cvalue += A.elements[row * A.width + e]
* B.elements[e * B.width + col];
C.elements[row * C.width + col] = Cvalue;

3
0 col I~
L 11 Ll
} .
B
e
=
.
7]
=
(-]
4
0 A
A C
E
o
2
row = a <
A.width A B.width _
Ahemhtl
Matrix multiplication kernel called by MatMul ()

Source

: NVIDIA

Source

Matrix Multiplication with Shared Memory

Aw A
B N
v
x
3
a £
v 2
W=
18 s
-
"4
i§
=
A
A C ~
s
x
0 col Z
I I
0
w
Csub u ~
% B
5 2
s o .
g <
BLOCK_SIZE-1
< > < > -—
BLOCK_SIZE BLOCK_SIZE BLOCK_SIZE
A.width B.width
< > < v»

Source: NVIDIA

Matrix Multiplication with Shared Memory

// Matrices are
// M(row, col) = *(M.elements
typedef struct {

int width;

int height;

int stride;

float* elements;
} Matrix;

stored in row-major order:

+ row * M.stride + col)

a matrix element

[/ Get
device float GetElement (const Matrix A, int row, int col)

{

return A.elements[row * A.stride + col];

// Set
device void SetElement (Matrix A, int row, int col,
float value)

a matrix element

A.elements[row * A.stride + col] = value;

// Get the BLOCK SIZEXBLOCK SIZE sub-matrix Asub of A that is

the right and row

// located col sub-matrices to sub-matrices

// from the upper-left corner of A
__device Matrix GetSubMatrix(Matrix A, int row, int col)

{

Matrix Asub;

Asub.width = BLOCK SIZE;
Asub.height = BLOCK SIZE;
Asub.stride = A.stride;

Asub.elements = &A.elements[A.stride * BLOCK SIZE * row
+ BLOCK SIZE * col];
return Asub;

// Thread bloc

-k size

#define BLOCK SIZE 16

// Forward declaration of the matrix multiplication kernel
__global void MatMulKernel (const Matrix, const Matrix, Matrix);

// Matrix multiplication - Host code

// Matrix dimensions are ass

umed to be multiples of BLOCK SIZE

void MatMul (const Matrix A, const Matrix B, Matrix C)

{

// Load A and B to device memory

Matrix d A;

d A.width = d A.stride = A.width; d A.height = A.height;

size t size = A.width * A.height * sizeof (float);

cudaMalloc (&d A.elements, size);

cudaMemcpy (d A.elements, A.elements, size,
cudaMemcpyHostToDevice) ;

Matrix d B;

d B.width = d B.stride = B.width; d B.height = B.height;

size = B.width * B.height * sizeof (float);

cudaMalloc (&d B.elements, size);

cudaMemcpy (d B.elements, B.elements, size,
cudaMemcpyHostToDevice) ;

// Allocate C in device memory

MatErIXSdRE?

d C.width = d C.stride = C.width; d C.height = C.height;
size = C.width * C.height * sizeof (float);
cudaMalloc (&d C.elements, size);

// Invoke kernel

dim3 dimBlOCk(BLOCK_SIZE, BLOCK SIZE);

dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y);
MatMulKernel<<<dimGrid, dimBlock>>>(d A, d B, d C);

Source: NVIDIA

Matrix Multiplication with Shared Memory

// Read C from device memory // Get sub-matrix Bsub of B
cudaMemcpy (C.elements, d C.elements, size, Matrix Bsub = GetSubMatrix (B, m, blockCol);

cudaMemcpyDeviceToHost) ;

// Shared memory used to store Asub and Bsub respectively

// Free device memory _ shared float As[BLOCK SIZE] [BLOCK SIZE];
cudaFree(d A.elements); __shared float Bs[BLOCK SIZE] [BLOCK SIZE];
cudaFree (d B.elements);
cudaFree (d C.elements); // Load Asuk Bsub from device memory to shared memory
} // Each th 1911 l ads one element of each sub-matrix
As[row] [col] = GetElement (Asub, row, col);
// Matrix multiplication kernel called by MatMul () Bs[row] [col] = GetElement (Bsub, row, col);
__global void MatMulKernel (Matrix A, Matrix B, Matrix C)
{ // Synchronize to make sure the sub-matrices are loaded
// Block row and column // before starting the computation
int blockRow = blockIdx.y; __syncthreads () ;
int blockCol = blockIdx.x;
// Multiply Asub and Bsub together
// Each thread block computes one sub-matrix Csub of C for (int e = 0; e < BLOCK SIZE; ++e)
Matrix Csub = GetSubMatrix(C, blockRow, blockCol); Cvalue += As[row] [e] * Bs[e][col];
// Each thread computes one element of Csub // Synchronize to make sure that the preceding

ults

// by accumulating res Ve // computation is done before loading two new
float Cvalue = 0; // sub-matrices t

of A and B in the next iteration
__syncthreads () ;
// Thread row and column within Csub }
int row = threadIdx.y;
int col = threadIdx.x; // Write Csub to device memory
// Each thread writes one element
// Loop over all the sub-matrices of A and B that are SetElement (Csub, row, col, Cvalue);
// required to compute Csub }

// Multiply each pair of sub-matrices together
// and accumulate the results
for (int m = 0; m < (A.width / BLOCK SIZE); ++m) {

// Get sub-matrix Asub of A
Matrix Asub = GetSubMatrix (A, blockRow, m);

Source: NVIDIA

Some Optimization Tips

— Increase data parallelism

— Keep resource usage (e.g., registers, shared memory) low
enough to allow multiple warps per multiprocessor

— Increase arithmetic intensity

— Recompute on device to avoid costly host to device data
transfers

— Use the fast shared memory more than the slow global memory
— Increase coalesced accesses to global memory

— Avoid bank conflicts in shared memory

— Improve spatial locality for cached memory

— One large data transfer is much faster than many small transfers

