
CSE590: Special Topics Course (Supercomputing), Spring 2012 Date: April 20

Homework #4
(Due: May 4)

Task 1. [20 Points] Estimating the Number of Distinct Elements in a Sequence.
Suppose we are scanning a long sequence S of integers, and we would like to count the number
(say, m) of distinct integers appearing in S. It turns out that if m is large, then it can be estimated
reasonably well by scanning S only once, and using extra storage only for a constant number (say,
K) of additional integers. For our current task each such additional integer will be an L-bit unsigned
number, where L = 32. For 0 ≤ k < K, let B(k) be the k-th such integer, and for 0 ≤ l < L, let
Bl(k) denote the l-th least significant bit of B(k). We will call B a counting bitmap.

We initialize each Bl(k) to 0, and then start scanning S. For each integer x ∈ S, we call the
following update function.

Update(B, x)

1. h← hash(x)

2. k ← h mod K, l← ρ(h div K)

3. if l < L then Bl(k)← 1

The update function uses the following hash function1:

hash(x) = (ax + b) mod q,

where a = 1073741827, b = 17179869209, and q = 4294967291, and also the following function:

ρ(x) =

L if x = 0,
min

i ∈ [0, L)
{ xi = 1 } otherwise,

where, x is an L-bit unsigned integer, and xi is the i-th (0 ≤ i < L) least significant bit of x.

After updating B for all integers in S, we call Evaluate(B) to get an estimate of m.

Observe that if Bu is a counting bitmap of a sequence Su, and Bv is that of another sequence Sv,
then the counting bitmap B of S = Su ∪ Sv can be constructed by setting Bl(k) to the bitwise OR
of Bul (k) and Bvl (k) for all l ∈ [0, L) and k ∈ [0,K).

Write a MapReduce program in Hadoop to estimate the number of distinct integers in any given
sequence of integers. Scan each test sequence given for this task (see Appendix), and report your
estimates for K ∈ {1, 2, 32, 64, 128}. For each estimate m′ also include the ratio m′

m , where m is the
actual number of distinct integers in the test sequence.

1Any hash function that outputs integers sufficiently distributed over the scalar range [0, 2L) can be used.

1

Evaluate(B)

1. s← 0

2. for k ← 0 to K − 1 do

3. r ← min
l ∈ [0, L)

{ Bl(k) = 0 }

4. s← s+ r

5. m′ ←
⌊

K
0.77351

× 2
s
K

⌋
6. return m′

Task 2. [30 Points] Estimating the Number of Reachable Nodes. Given a large directed
graph G = (V,E), we would like to estimate the number of vertices reachable from each vertex of
V by scanning the edges in E only a few times. For this purpose we will use a counting bitmap
from Task 1 for each vertex of the graph. The algorithm is given below (Estimate-Reachables).

Estimate-Reachables(G = (V,E)) {takes a directed graph G = (V,E) as input, and for each u ∈ V ,
returns an estimate of the #nodes reachable from u}

1. for each u ∈ V do

2. create a counting bitmap Bu with parameters K and L {a counting bitmap from Task 1}
3. Bu

l (k)← 0, ∀k ∈ [0,K) and ∀l ∈ [0, L)

4. Update(Bu, u) {initially, u is the only node reachable from u}
5. N (u)← Evaluate(Bu)

6. done← False

7. while done = False do

8. for each (u, v) ∈ E do

9. Bu
l (k)← bitwise-OR(Bu

l (k), Bv
l (k)), ∀k ∈ [0,K) and ∀l ∈ [0, L) {all nodes reachable from v

are also reachable from u}
10. done← True

11. for each u ∈ V do

12. t← Evaluate(Bu)
{
in iteration i ≥ 0, Bu estimates #nodes within distance 2i from u

}
13. if t 6= N (u) then done← False {if the estimate changes from previous iteration

then we have not converged yet}
14. N (u)← t

15. return N {for each u ∈ V , N (u) is set to an estimate for the #nodes reachable from u}

Implement a MapReduce version of Estimate-Reachables in Hadoop. Run your program on
each test case for this task and produce your estimates for K ∈ {1, 4, 16, 64}. For each test case
report the number of times you had to scan the edges before convergence as well as the maximum,
minimum and average values of the estimates for each K.

2

APPENDIX 1: Input/Output Format for Task 1

– Input Format: The first line of the input will contain one integer giving the number of
integers (n) in the file. Each of the next n lines will contain one integer. Before running your
program you are free to split the given input file into multiple files suitable for use by your
program.

– Output Format: The output will consist of only number giving your estimate of the number
of distinct integers.

– Test Input/Output: /work/01905/rezaul/CSE590/HW4/T1/tests on Lonestar.

APPENDIX 2: Input/Output Format for Task 2

– Input Format: The first line of the input will contain two integers giving the number of
vertices (n), and the number of edges (m), respectively. Each of the next m lines will contain
two integers u and v (1 ≤ u, v ≤ n) denoting a directed edge from vertex u to vertex v. Before
running your program you are free to split the given input file into multiple files suitable for
use by your program.

– Output Format: The output will consist of four integers: Nmax, Nmin, Navg and c, where
the first three numbers are the maximum, minimum and average (rounded to the nearest
integer) of the estimates in N , respectively, and c is the checksum value computed using the
following function. Please make sure that you use a large enough datatype to avoid overflow
during checksum computation.

Checksum(G(V,E), N)

1. c← 0

2. for v ← 1 to |V | do
3. c← hash(c+N (v))

4. return c

– Test Input/Output: /work/01905/rezaul/CSE590/HW4/T2/tests on Lonestar.

APPENDIX 3: What to Turn in

Please email one compressed archive file (e.g., zip, tar.gz) containing the following items to cse590hw@
cs.stonybrook.edu.

– Source code (including the code for splitting input files, and for task 2 the code you used for
computing checksums), makefiles and any other scripts required for running your code.

– Output files for test cases.

– A PDF document containing all answers.

3

APPENDIX 4: Things to Remember

– You can use Amazon Web Services (AWS) for your homework. You can access your account
from the following page: https://cse590.signin.aws.amazon.com/console.

– The following is a tutorial prepared by our grader (Gaurav Menghani) on how to use Hadoop
on AWS: http://gaurav.im/files/aws-hadoop/presentation.html.

– Please remember to terminate any instances on AWS that you no longer need. It turns out
that the AWS credits burn pretty fast! So we need to be very careful with our usage. Please
install Hadoop on your local machine for the development and debugging of you code, and
use AWS only when you need a multi-node cluster.

– Please start working on the homework as early as possible so that you can identify any
difficulties in using AWS and Hadoop as soon as possible, and solve them in time.

4

