
CSE590: Special Topics Course (Supercomputing), Spring 2012 Date: Feb 19

Homework #2
(Due: February 26)

Task. [50 Points] Consider the following 3D order-2k stencil (also known as a (6k + 1)-point
stencil) used for 3D finite difference computations, where c0, c1, . . . , ck are prespecified constants.

dt+1(x, y, z) = c0dt(x, y, z) +
k∑

i=1

ci

 dt(x− i, y, z) + dt(x + i, y, z)
+dt(x, y − i, z) + dt(x, y + i, z)
+dt(x, y, z − i) + dt(x, y, z + i)


Given positive integers nx, ny, nz and tfinal, and values of d0(x, y, z) for all 〈x, y, z〉 ∈ [1, nx] ×
[1, ny] × [1, nz], our goal is to compute all dtfinal

(x, y, z). We assume that dt(x, y, z) = 0 when
〈x, y, z〉 /∈ [1, nx]× [1, ny]× [1, nz] and t ≥ 0. In this homework, we will also assume for simplicity
that k = 3 and nx = ny = nz = n = 2q for some integer q ≥ 0.

(a) [5 Points] Implement an iterative algorithm (using serial for loops) for solving the problem
on a serial machine. Analyze its running time T . [see Appendix 2 for input and output formats
]

(b) [5 Points] Modify your implementation in part (a) for running on shared-memory parallel
machines (e.g., using cilk++). Analyze its running time Tp on p cores. [Hint: simply use
parallel for loops].

(c) [25 Points] Implement an algorithm for solving the problem on distributed-memory parallel
machines (e.g., using MPI). Analyze its computation complexity tcomp and communication
complexity tcomm. [Hint: follow the simple idea used in lecture 6 for parallelizing the 2D heat
equation]

(d) [10 Points] Combine your implementations in parts (b) and (c) to solve the problem on
distributed shared-memory parallel machines, e.g., on a network of multicores. Analyze tcomp

and tcomm. [Hint: see Appendix 1 to get an idea on how to run MPI on top of Cilk]

(e) [5 Points] Find the largest value of n (say, nmax) for which your implementation in part
(a) terminates in less than 15 minutes (assuming tfinal = n). Report the running times of
your implementations in parts (a), (b), (c) and (d) for nmax and tfinal = nmax. For parts (c)
and (d) run your code on a network of 4 compute nodes, that is, use “-pe 12way 48” in your
jobscript on Lonestar and “-pe 16way 64” on Ranger.

1

APPENDIX 1: Calling Cilk++ Functions from MPI Code

ncr.cilk

#include <cilk.h>

int nCr(int n, int r)

{

if (r > n) return 0;

if ((r == 0) || (r == n)) return 1;

int x, y;

x = cilk_spawn nCr(n - 1, r - 1);

y = nCr(n - 1, r);

cilk_sync;

return (x + y);

}

extern "C++" int nCr_CPP(int n, int r)

{

return cilk::run(nCr, n, r);

}

ncr-mpi.cpp

#include <mpi.h>

extern "C++" int nCr_CPP(int n, int r);

int main(int argc, char *argv[])

{

MPI_Init(&argc, &argv);

int rank;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

printf("C(%d, %d) = %d\n", 30, 15 + rank,

nCr_CPP(30, 15 + rank));

MPI_Finalize();

return 0;

}

In ncr.cilk we have a Cilk++ function called nCr which we would like to call from within the
MPI code ncr-mpi.cpp. Since we do not have a cilk main function in ncr-mpi.cpp, we do not
have a Cilk++ context, and so nCr cannot be called directly from within ncr-mpi.cpp. Instead we
create a function (named nCr CPP) callable from C++ which starts a Cilk++ environment through
cilk::run and calls nCr.

You can compile and link the files as follows on Lonestar. First create a shared library named
libncr.so from ncr.cilk, and then compile ncr-mpi.cpp and link it with libncr.so.

cilk++ -m64 -fPIC -shared -o libncr.so ncr.cilk

mpicxx ncr-mpi.cpp -L. -L$CILKHOME/lib64 -Wl,-rpath=. -lncr -lcilk_main -lcilkrts -lcilkutil

The resulting MPI program (a.out) can be run as follows (from your job script).

ibrun tacc_affinity a.out

If you want to run your MPI program on t compute nodes on Lonestar, and launch k ∈ {1, 2, 3, 4, 6, 12}
parallel processes on each node, then include the following line in your job script with m = 12t.

#$ -pe kway m

If k parallel processes are launched on each node, then Cilk++ functions called from each process
will be able to launch at most 12/k concurrent threads. Recall that when multiple processes are
launched on the same node then the total memory is divided among the processes and no process
is able to access the memory allocated to other processes, but all threads running under a process
share the memory allocated to that process.

2

APPENDIX 2: Input and Output Formats

The input will start with a line containing two positive integers: n and tfinal. The second line will
contain four floating point numbers giving the values of c0, c1, c2 and c3, respectively. The next
n2 lines will contain n floating point numbers each. The i-th (1 ≤ i ≤ n2) such line will contain
values for d0(x, y, 1), d0(x, y, 2), . . . , d0(x, y, n), where x =

⌈
i
n

⌉
and y = i− n(x− 1).

The output will contain n2 lines giving the values of dtfinal
(x, y, z) for x, y, z ∈ [1, n] in exactly the

same format as d0 in the input.

3

