
1

CSE 548 / AMS 542: Analysis of Algorithms

Prerequisites Review 9
(Network Flow

and Bipartite Matching)

Rezaul Chowdhury
Department of Computer Science

SUNY Stony Brook
Fall 2023

Flow Networks

2

We distinguish two vertices in a flow network: a source 𝑠𝑠 and a sink 𝑡𝑡.

For convenience, we assume that each vertex lies on some path from 𝑠𝑠 to 𝑡𝑡.
The graph is therefore connected and, since each vertex other than 𝑠𝑠 has at
least one entering edge, 𝐸𝐸 ≥ 𝑉𝑉 − 1.

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

12

14

𝑡𝑡4 7

A flow network 𝐺𝐺 = 𝑉𝑉,𝐸𝐸 is a directed
graph in which each edge 𝑢𝑢, 𝑣𝑣 ∈ 𝐸𝐸
has a nonnegative capacity 𝑐𝑐 𝑢𝑢, 𝑣𝑣 .

Also, if 𝑢𝑢, 𝑣𝑣 ∈ 𝐸𝐸 then 𝑣𝑣,𝑢𝑢 ∉ 𝐸𝐸.

If 𝑢𝑢, 𝑣𝑣 ∉ 𝐸𝐸, then we define 𝑐𝑐 𝑢𝑢, 𝑣𝑣 =
0 for convenience.

We disallow self-loops.

Flows and the Maximum Flow Problem

3

Let 𝐺𝐺 = 𝑉𝑉,𝐸𝐸 be a flow network with
a capacity function 𝑐𝑐.

Let 𝑠𝑠 be the source and let 𝑡𝑡 be the sink.

A flow in 𝐺𝐺 is a real-valued function
𝑓𝑓:𝑉𝑉 × 𝑉𝑉 → ℝ that satisfies the following
two properties:

Capacity constraint: For all 𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉, we require 0 ≤ 𝑓𝑓 𝑢𝑢, 𝑣𝑣 ≤ 𝑐𝑐 𝑢𝑢, 𝑣𝑣 .

Flow conservation: For all 𝑢𝑢 ∈ 𝑉𝑉 ∖ 𝑠𝑠, 𝑡𝑡 , we require ∑𝑣𝑣∈V 𝑓𝑓 𝑣𝑣,𝑢𝑢 =
∑𝑣𝑣∈V 𝑓𝑓 𝑢𝑢, 𝑣𝑣 .

When 𝑢𝑢, 𝑣𝑣 ∉ 𝐸𝐸, there can be no flow from 𝑢𝑢 to 𝑣𝑣, and 𝑓𝑓 𝑢𝑢, 𝑣𝑣 = 0.

The value 𝑓𝑓 of a flow 𝑓𝑓 is defined as: 𝑓𝑓 = ∑𝑣𝑣∈V 𝑓𝑓 𝑠𝑠, 𝑣𝑣 − ∑𝑣𝑣∈V 𝑓𝑓 𝑣𝑣, 𝑠𝑠 .

In the maximum-flow problem, we are given a flow network 𝐺𝐺 with
source 𝑠𝑠 and sink 𝑡𝑡 , and we wish to find a flow of maximum value.

Maximum Flow: The Ford-Fulkerson Method

4

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

12

14

Original Network

𝑡𝑡4 7

Original Network

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

12

14

𝑡𝑡4 7

Maximum Flow: The Ford-Fulkerson Method

5

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

12

14

Step 1: Augmenting Path

𝑡𝑡4 7

Original Network

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

12

14

𝑡𝑡4 7

Residual capacity = 𝟒𝟒

Maximum Flow: The Ford-Fulkerson Method

6

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

12

14

Step 1: Augmenting Path

𝑡𝑡4 7

Step 1: Updating Flow

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

12

14

𝑡𝑡4 7

+4

+4

Residual capacity = 𝟒𝟒 Increase flow by 𝟒𝟒 along path
𝒔𝒔 → 𝒗𝒗𝟏𝟏 → 𝒗𝒗𝟑𝟑 → 𝒗𝒗𝟐𝟐 → 𝒗𝒗𝟒𝟒 → 𝒕𝒕

Maximum Flow: The Ford-Fulkerson Method

7

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

12

14

Step 1: Augmenting Path

𝑡𝑡4 7

Step 1: Updated Flow

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

4/12

4/14

𝑡𝑡4 7

Current 𝒔𝒔 to 𝒕𝒕 flow = 𝟒𝟒

Maximum Flow: The Ford-Fulkerson Method

8

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

8

10

Step 2: Residual Network

𝑡𝑡4 7

Step 1: Updated Flow

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

4/12

4/14

𝑡𝑡4 7

4

4

Maximum Flow: The Ford-Fulkerson Method

9

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

8

10

Step 2: Augmenting Path

𝑡𝑡4 7

Step 1: Updated Flow

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

4/12

4/14

𝑡𝑡4 7

4

4

Residual capacity = 𝟒𝟒

Maximum Flow: The Ford-Fulkerson Method

10

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

8

10

Step 2: Augmenting Path

𝑡𝑡4 7

Step 2: Updating Flow

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

4/12

4/14

𝑡𝑡4 7

4

4

+4

+4

Residual capacity = 𝟒𝟒 Increase flow by 𝟒𝟒 along path
𝒔𝒔 → 𝒗𝒗𝟒𝟒 → 𝒗𝒗𝟏𝟏 → 𝒗𝒗𝟑𝟑 → 𝒕𝒕

Maximum Flow: The Ford-Fulkerson Method

11

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

8

10

Step 2: Augmenting Path

𝑡𝑡4 7

Step 2: Updated Flow

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

8/12

4/14

𝑡𝑡4/
4 7

4

4

Current 𝒔𝒔 to 𝒕𝒕 flow = 𝟖𝟖

Maximum Flow: The Ford-Fulkerson Method

12

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

4

10

Step 3: Residual Network

𝑡𝑡4 7

Step 2: Updated Flow

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

8/12

4/14

𝑡𝑡4/
4 7

8

4

Maximum Flow: The Ford-Fulkerson Method

13

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

4

10

Step 3: Augmenting Path

𝑡𝑡4 7

Step 2: Updated Flow

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

8/12

4/14

𝑡𝑡4/
4 7

8

4

Residual capacity = 𝟒𝟒

Maximum Flow: The Ford-Fulkerson Method

14

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

4

10

Step 3: Augmenting Path

𝑡𝑡4 7

Step 3: Updating Flow

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

8/12

4/14

𝑡𝑡4/
4 7

8

4

+4

Residual capacity = 𝟒𝟒 Increase flow by 𝟒𝟒 along path
𝒔𝒔 → 𝒗𝒗𝟏𝟏 → 𝒗𝒗𝟒𝟒 → 𝒗𝒗𝟑𝟑 → 𝒕𝒕

Maximum Flow: The Ford-Fulkerson Method

15

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

4

10

Step 3: Augmenting Path

𝑡𝑡4 7

Step 3: Updated Flow

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

8/12

4/14

𝑡𝑡4 7

8

4

Current 𝒔𝒔 to 𝒕𝒕 flow = 𝟏𝟏𝟏𝟏

Maximum Flow: The Ford-Fulkerson Method

16

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

4

10

Step 4: Residual Network

𝑡𝑡4 7

Step 3: Updated Flow

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

8/12

4/14

𝑡𝑡4 7

8

4

Maximum Flow: The Ford-Fulkerson Method

17

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

4

10

Step 4: Augmenting Path

𝑡𝑡4 7

Step 3: Updated Flow

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

8/12

4/14

𝑡𝑡4 7

8

4

Residual capacity = 𝟕𝟕

Maximum Flow: The Ford-Fulkerson Method

18

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

4

10

Step 4: Augmenting Path

𝑡𝑡4 7

Step 4: Updating Flow

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

8/12

4/14

𝑡𝑡4 7

8

4 +7

+7

Increase flow by 𝟕𝟕 along path
𝒔𝒔 → 𝒗𝒗𝟐𝟐 → 𝒗𝒗𝟒𝟒 → 𝒗𝒗𝟑𝟑 → 𝒕𝒕

Maximum Flow: The Ford-Fulkerson Method

19

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

4

10

Step 4: Augmenting Path

𝑡𝑡4 7

Step 4: Updated Flow

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

8/12

11/14

𝑡𝑡4 7/
7

8

4

Current 𝒔𝒔 to 𝒕𝒕 flow = 𝟏𝟏𝟏𝟏

Maximum Flow: The Ford-Fulkerson Method

20

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

4

3

Step 5: Residual Network

𝑡𝑡4 7

Step 4: Updated Flow

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

8/12

11/14

𝑡𝑡4 7/
7

8

11

Maximum Flow: The Ford-Fulkerson Method

21

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

4

3

Step 5: Augmenting Path

𝑡𝑡4 7

Step 4: Updated Flow

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

8/12

11/14

𝑡𝑡4 7/
7

8

11

Residual capacity = 𝟒𝟒

Maximum Flow: The Ford-Fulkerson Method

22

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

4

3

Step 5: Augmenting Path

𝑡𝑡4 7

Step 5: Updating Flow

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

8/12

11/14

𝑡𝑡4 7/
7

8

11

+4

Residual capacity = 𝟒𝟒 Increase flow by 𝟒𝟒 along path
𝒔𝒔 → 𝒗𝒗𝟏𝟏 → 𝒗𝒗𝟑𝟑 → 𝒕𝒕

Maximum Flow: The Ford-Fulkerson Method

23

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

4

3

Step 5: Augmenting Path

𝑡𝑡4 7

Step 5: Updated Flow

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

12/12

11/14

𝑡𝑡4 7/
7

8

11

Current 𝒔𝒔 to 𝒕𝒕 flow = 𝟐𝟐𝟐𝟐

Maximum Flow: The Ford-Fulkerson Method

24

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

3

Step 6: Residual Network

𝑡𝑡4 7

Step 5: Updated Flow

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

12/12

11/14

𝑡𝑡4 7/
7

12

11

No augmenting path!

Maximum Flow: The Ford-Fulkerson Method

25

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

3

Step 6: Residual Network

𝑡𝑡4 7

Step 6: No Update

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

12/12

11/14

𝑡𝑡4 7/
7

12

11

Done!
Maximum 𝒔𝒔 to 𝒕𝒕 flow = 𝟐𝟐𝟐𝟐

No augmenting path!

Maximum Flow: The Ford-Fulkerson Method

26

Input: A flow network 𝐺𝐺 = 𝑉𝑉,𝐸𝐸 with a capacity function 𝑐𝑐, a source
vertex 𝑠𝑠 and a sink vertex 𝑡𝑡.

Output: A maximum 𝑠𝑠 to 𝑡𝑡 flow.

FORD-FULKERSON (𝐺𝐺 = 𝑉𝑉,𝐸𝐸 , 𝑠𝑠, 𝑡𝑡)

1. for each edge 𝑢𝑢, 𝑣𝑣 ∈ 𝐺𝐺.𝐸𝐸 do

2. 𝑢𝑢, 𝑣𝑣 .𝑓𝑓 ← 0

3. while there exists a path 𝑝𝑝 from 𝑠𝑠 to 𝑡𝑡 in the residual network 𝐺𝐺𝑓𝑓 do

4. 𝑐𝑐𝑓𝑓 𝑝𝑝 ← min 𝑐𝑐𝑓𝑓 𝑢𝑢, 𝑣𝑣 | 𝑢𝑢, 𝑣𝑣 is in 𝑝𝑝

5. for each edge 𝑢𝑢, 𝑣𝑣 in 𝑝𝑝 do

6. if 𝑢𝑢, 𝑣𝑣 ∈ 𝐺𝐺.𝐸𝐸 then

7. 𝑢𝑢, 𝑣𝑣 . 𝑓𝑓 ← 𝑢𝑢, 𝑣𝑣 .𝑓𝑓 + 𝑐𝑐𝑓𝑓 𝑝𝑝

8. else 𝑣𝑣, 𝑢𝑢 .𝑓𝑓 ← 𝑣𝑣, 𝑢𝑢 .𝑓𝑓 − 𝑐𝑐𝑓𝑓 𝑝𝑝

The Ford-Fulkerson Method: Running Time

27

The running time of FORD-FULKERSON depends on how we find the
augmenting paths.

If we choose the augmenting paths poorly, the algorithm might not even
terminate: the value of the flow will increase with successive augmentations,
but it need not even converge to the maximum flow value (e.g., might
happen when the capacities are irrational numbers).

In practice, the capacities are often integral.

If the capacities are rational numbers, we can apply an appropriate scaling
transformation to make them all integral.

If 𝑓𝑓∗ denotes a maximum flow in the transformed network, then a
straightforward implementation of FORD-FULKERSON requires to find an
augmenting path at most 𝑓𝑓∗ times, since each augmentation increases the
flow value by at least one unit.

The Ford-Fulkerson Method: Running Time

28

Once the residual network 𝐺𝐺𝑓𝑓 is known, an augmenting path can be found in
𝑂𝑂 𝑚𝑚 + 𝑛𝑛 time using either a depth-first or a breadth-first search, where
𝑛𝑛 = 𝑉𝑉 and 𝑚𝑚 = 𝐸𝐸 .

It is also easy to maintain the network, capacities and flows in a way that
allows one to find 𝐺𝐺𝑓𝑓 and update the flows in 𝑂𝑂 𝑚𝑚 + 𝑛𝑛 time during each
augmentation.

The running time of FORD-FULKERSON is thus 𝑂𝑂 𝑚𝑚 + 𝑛𝑛 𝑓𝑓∗ which is simply
𝑂𝑂 𝑚𝑚 𝑓𝑓∗ as 𝑚𝑚 = Ω 𝑛𝑛 .

The Edmonds-Karp Algorithm

29

The Edmonds-Karp algorithm is an implementation of the FORD-FULKERSON
method in which the augmenting path 𝑝𝑝 in line 3 is found using a breadth-
first search.

That is, 𝑝𝑝 is chosen as a shortest path from 𝑠𝑠 to 𝑡𝑡 in the residual network,
where each edge has unit distance (weight).

One can show that the Edmonds-Karp algorithm runs in 𝑂𝑂 𝑚𝑚2𝑛𝑛 time,
where 𝑛𝑛 = 𝐺𝐺.𝑉𝑉 and 𝑚𝑚 = 𝐺𝐺.𝐸𝐸 .

Cuts of Flow Networks (Max-flow Min-cut Theorem)

30

A cut (𝑆𝑆,𝑇𝑇) of flow network 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) is a partition of 𝑉𝑉 into 𝑆𝑆 and
𝑇𝑇 = 𝑉𝑉 ∖ 𝑆𝑆 such that 𝑠𝑠 ∈ 𝑆𝑆 and 𝑡𝑡 ∈ 𝑇𝑇.

(Unlike the “cut” used for MST’s, here the graph is directed, and we insist that 𝑠𝑠 ∈ 𝑆𝑆 and 𝑡𝑡 ∈ 𝑇𝑇.)

If 𝑓𝑓 is a flow, then the net flow 𝑓𝑓 𝑆𝑆,𝑇𝑇 across 𝑆𝑆,𝑇𝑇 is defined to be

𝑓𝑓 𝑆𝑆,𝑇𝑇 = ∑𝑢𝑢∈S∑𝑣𝑣∈𝑇𝑇 𝑓𝑓 𝑢𝑢, 𝑣𝑣 − ∑𝑢𝑢∈S∑𝑣𝑣∈𝑇𝑇 𝑓𝑓 𝑣𝑣,𝑢𝑢 .

The capacity of the cut 𝑆𝑆,𝑇𝑇 is: 𝑐𝑐 𝑆𝑆,𝑇𝑇 = ∑𝑢𝑢∈S∑𝑣𝑣∈𝑇𝑇 𝑐𝑐 𝑢𝑢, 𝑣𝑣 .

A minimum cut of a network is a cut of minimum capacity.

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

12/12

11/14

𝑡𝑡1/
4

7/
7

𝑆𝑆 𝑇𝑇

𝑣𝑣1 𝑣𝑣3

𝑣𝑣2 𝑣𝑣4

𝑠𝑠

12/12

11/14

𝑡𝑡4

7/
7

Cuts of Flow Networks (Max-flow Min-cut Theorem)

31

THEOREM (CLRS): If 𝑓𝑓 is a flow in a flow network 𝐺𝐺 = 𝑉𝑉,𝐸𝐸 with
source 𝑠𝑠 and sink 𝑡𝑡, then the following conditions are equivalent:

1. 𝑓𝑓 is a maximum flow in 𝐺𝐺.
2. The residual network 𝐺𝐺𝑓𝑓 contains no augmenting paths.
3. 𝑓𝑓 = 𝑐𝑐 𝑆𝑆,𝑇𝑇 for some cut 𝑆𝑆,𝑇𝑇 of 𝐺𝐺.

The theorem above says that, in a flow network:
 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐

The Maximum Matching Problem

32

Given an undirected graph 𝐺𝐺 = 𝑉𝑉,𝐸𝐸 , a
matching is a subset of edges 𝑀𝑀 ⊆ 𝐸𝐸
such that for all vertices 𝑣𝑣 ∈ 𝑉𝑉, at most
one edge of 𝑀𝑀 is incident on 𝑣𝑣.

We say that a vertex 𝑣𝑣 ∈ 𝑉𝑉 is matched by
the matching 𝑀𝑀 if some edge in 𝑀𝑀 is
incident on 𝑣𝑣; otherwise, 𝑣𝑣 is unmatched.

A maximum matching is a matching of
maximum cardinality, that is, a matching
𝑀𝑀 such that for any matching 𝑀𝑀′, we
have 𝑀𝑀 ≥ 𝑀𝑀′ .

The Maximum Bipartite Matching Problem

34

We shall restrict our attention to finding maximum matchings in bipartite
graphs: graphs in which the vertex set can be partitioned into 𝑉𝑉 = 𝐿𝐿 ∪ 𝑅𝑅,
where 𝐿𝐿 and 𝑅𝑅 are disjoint and all edges in 𝐸𝐸 go between 𝐿𝐿 and 𝑅𝑅. We
further assume that every vertex in 𝑉𝑉 has at least one incident edge.

A bipartite graph

𝐿𝐿 𝑅𝑅

The Maximum Bipartite Matching Problem

35

We shall restrict our attention to finding maximum matchings in bipartite
graphs: graphs in which the vertex set can be partitioned into 𝑉𝑉 = 𝐿𝐿 ∪ 𝑅𝑅,
where 𝐿𝐿 and 𝑅𝑅 are disjoint and all edges in 𝐸𝐸 go between 𝐿𝐿 and 𝑅𝑅. We
further assume that every vertex in 𝑉𝑉 has at least one incident edge.

A bipartite matching

𝐿𝐿 𝑅𝑅

The Maximum Bipartite Matching Problem

36

We shall restrict our attention to finding maximum matchings in bipartite
graphs: graphs in which the vertex set can be partitioned into 𝑉𝑉 = 𝐿𝐿 ∪ 𝑅𝑅,
where 𝐿𝐿 and 𝑅𝑅 are disjoint and all edges in 𝐸𝐸 go between 𝐿𝐿 and 𝑅𝑅. We
further assume that every vertex in 𝑉𝑉 has at least one incident edge.

A maximum bipartite matching

𝐿𝐿 𝑅𝑅

The Maximum Bipartite Matching Problem

37

We shall restrict our attention to finding maximum matchings in bipartite
graphs: graphs in which the vertex set can be partitioned into 𝑉𝑉 = 𝐿𝐿 ∪ 𝑅𝑅,
where 𝐿𝐿 and 𝑅𝑅 are disjoint and all edges in 𝐸𝐸 go between 𝐿𝐿 and 𝑅𝑅. We
further assume that every vertex in 𝑉𝑉 has at least one incident edge.

Another maximum bipartite matching

𝐿𝐿 𝑅𝑅

Maximum Bipartite Matching using Network Flow

38

Given a bipartite graph 𝐺𝐺 = 𝑉𝑉,𝐸𝐸 with 𝑉𝑉 = 𝐿𝐿 ∪ 𝑅𝑅, where 𝐿𝐿 and 𝑅𝑅 are
disjoint and all edges in 𝐸𝐸 go between 𝐿𝐿 and 𝑅𝑅.

𝐿𝐿 𝑅𝑅

Maximum Bipartite Matching using Network Flow

39

First, direct all edges from 𝐿𝐿 to 𝑅𝑅.

𝐿𝐿 𝑅𝑅

Maximum Bipartite Matching using Network Flow

40

Then add a source 𝑠𝑠 and a sink 𝑡𝑡.

For every vertex 𝑣𝑣 ∈ 𝐿𝐿, add an edge 𝑠𝑠, 𝑣𝑣 directed from 𝑠𝑠 to 𝑣𝑣.

For every vertex 𝑣𝑣 ∈ 𝑅𝑅, add an edge 𝑣𝑣, 𝑡𝑡 directed from 𝑣𝑣 to 𝑡𝑡.

𝐿𝐿 𝑅𝑅

𝑠𝑠 𝑡𝑡

Maximum Bipartite Matching using Network Flow

41

For every edge 𝑢𝑢, 𝑣𝑣 in this new directed graph, set capacity 𝑐𝑐 𝑢𝑢, 𝑣𝑣 = 1.

𝐿𝐿 𝑅𝑅

𝑠𝑠 𝑡𝑡

1

1

1

1

1

1

1

1

1

1

1

1 1

1
11

1

Maximum Bipartite Matching using Network Flow

42

Now, find a maximum 𝑠𝑠 to 𝑡𝑡 flow 𝑓𝑓∗ in this new flow network 𝐺𝐺𝐺 using the
FORD-FULKERSON method.

One can show that 𝑓𝑓∗ will always be an integer and will be equal to the
maximum matching in the original bipartite graph.

Since 𝑓𝑓∗ < 𝑛𝑛 = 𝐿𝐿 ∪ 𝑅𝑅 , running time will be 𝑂𝑂 𝑚𝑚𝑚𝑚 , where 𝑚𝑚 = 𝐸𝐸 .

𝐿𝐿 𝑅𝑅

𝑠𝑠 𝑡𝑡

1

1/1

1/1

1

1/1

1/1

1/1

1/1

1

1

1/1

1 1/1

1
11

1/1

The Flow-based Bipartite Matching Algorithm Works
because of the Integrality Theorem

43

THEOREM (CLRS): If the capacity function 𝑐𝑐 takes on only integer
values, then the maximum flow 𝑓𝑓 produced by the FORD-FULKERSON
method has the property that 𝑓𝑓 is an integer. Moreover, for all
vertices 𝑢𝑢 and 𝑣𝑣, the value of 𝑓𝑓 𝑢𝑢, 𝑣𝑣 is an integer.

COROLLARY (CLRS): The cardinality of a maximum matching 𝑀𝑀 in a
bipartite graph 𝐺𝐺 equals the value of a maximum flow 𝑓𝑓 in its
corresponding flow network 𝐺𝐺𝐺.

Optional
Proof of Running Time of

the Edmonds-Karp Algorithm

44

The Edmonds-Karp Algorithm: Running Time

45

LEMMA 26.7 (CLRS): If the Edmonds-Karp algorithm is run on a flow
network 𝐺𝐺 = 𝑉𝑉,𝐸𝐸 with source 𝑠𝑠 and and sink 𝑡𝑡, then for all
vertices 𝑣𝑣 ∈ 𝐺𝐺.𝑉𝑉 ∖ 𝑠𝑠, 𝑡𝑡 , the shortest path distance 𝛿𝛿𝑓𝑓 𝑠𝑠, 𝑣𝑣 in the
residual network 𝐺𝐺𝑓𝑓 increases monotonically with each flow
augmentation.

PROOF: Let’s assume for contradiction that for some vertex 𝑣𝑣 ∈
𝐺𝐺.𝑉𝑉 ∖ 𝑠𝑠, 𝑡𝑡 , there is a flow augmentation that causes the shortest-
path distance from 𝑠𝑠 to 𝑣𝑣 to decrease.

Let 𝑓𝑓 be the flow just before the first augmentation that decreases
some shortest-path distance and let 𝑓𝑓′ be the flow just afterward.

Let 𝑣𝑣 be the vertex with the minimum 𝛿𝛿𝑓𝑓′ 𝑠𝑠, 𝑣𝑣 whose distance was

decreased by the augmentation, so that 𝛿𝛿𝑓𝑓′ 𝑠𝑠, 𝑣𝑣 < 𝛿𝛿𝑓𝑓 𝑠𝑠, 𝑣𝑣 .

The Edmonds-Karp Algorithm: Running Time

46

PROOF (CONTINUED): Let 𝑝𝑝 = 𝑠𝑠 ↝ 𝑢𝑢 → 𝑣𝑣 be a shortest path from 𝑠𝑠 to
𝑣𝑣 in 𝐺𝐺𝑓𝑓, so that 𝑢𝑢, 𝑣𝑣 ∈ 𝐸𝐸𝑓𝑓, and 𝛿𝛿𝑓𝑓′ 𝑠𝑠,𝑢𝑢 = 𝛿𝛿𝑓𝑓′ 𝑠𝑠, 𝑣𝑣 − 1.

Because of the way we chose 𝑣𝑣, we know that 𝛿𝛿𝑓𝑓′ 𝑠𝑠,𝑢𝑢 ≥ 𝛿𝛿𝑓𝑓 𝑠𝑠,𝑢𝑢 .

Then we must have 𝑢𝑢, 𝑣𝑣 ∉ 𝐸𝐸𝑓𝑓, as otherwise by triangle inequality:

𝛿𝛿𝑓𝑓 𝑠𝑠, 𝑣𝑣 ≤ 𝛿𝛿𝑓𝑓 𝑠𝑠,𝑢𝑢 + 1 ≤ 𝛿𝛿𝑓𝑓′ 𝑠𝑠,𝑢𝑢 + 1 = 𝛿𝛿𝑓𝑓′ 𝑠𝑠, 𝑣𝑣 ,

which contradicts our assumption that 𝛿𝛿𝑓𝑓′ 𝑠𝑠, 𝑣𝑣 < 𝛿𝛿𝑓𝑓 𝑠𝑠, 𝑣𝑣 .

How can we have 𝑢𝑢, 𝑣𝑣 ∉ 𝐸𝐸𝑓𝑓 and 𝑢𝑢, 𝑣𝑣 ∈ 𝐸𝐸𝑓𝑓′? The augmentation
must have increased the flow from 𝑣𝑣 to 𝑢𝑢. The Edmonds-Karp
algorithm always augments flow along shortest paths, and therefore
the shortest path from 𝑠𝑠 to 𝑢𝑢 in 𝐺𝐺𝑓𝑓 has 𝑣𝑣,𝑢𝑢 as its last edge.

Therefore, 𝛿𝛿𝑓𝑓 𝑠𝑠, 𝑣𝑣 = 𝛿𝛿𝑓𝑓 𝑠𝑠,𝑢𝑢 − 1 ≤ 𝛿𝛿𝑓𝑓′ 𝑠𝑠,𝑢𝑢 − 1 = 𝛿𝛿𝑓𝑓′ 𝑠𝑠, 𝑣𝑣 − 2,
which contradicts our assumption that 𝛿𝛿𝑓𝑓′ 𝑠𝑠, 𝑣𝑣 < 𝛿𝛿𝑓𝑓 𝑠𝑠, 𝑣𝑣 .

The Edmonds-Karp Algorithm: Running Time

47

THEOREM 26.8 (CLRS): If the Edmonds-Karp algorithm is run on a
flow network 𝐺𝐺 = 𝑉𝑉,𝐸𝐸 with source 𝑠𝑠 and sink 𝑡𝑡, then the total
number of flow augmentations performed by the algorithm is
𝑂𝑂 𝑚𝑚𝑚𝑚 , where 𝑛𝑛 = 𝐺𝐺.𝑉𝑉 and 𝑚𝑚 = 𝐺𝐺.𝐸𝐸 .

PROOF: We say that an edge 𝑢𝑢, 𝑣𝑣 in a residual network 𝐺𝐺𝑓𝑓 is critical
on an augmenting path 𝑝𝑝 if 𝑐𝑐𝑓𝑓 𝑝𝑝 = 𝑐𝑐𝑓𝑓 𝑢𝑢, 𝑣𝑣 .

After we have augmented flow along an augmenting path, any critical
edge on the path disappears from the residual network. Moreover, at
least one edge on any augmenting path must be critical.

We will show that each of the 𝑚𝑚 edges can become critical at most
𝑛𝑛/2 times.

The Edmonds-Karp Algorithm: Running Time

48

PROOF (CONTINUED): Let 𝑢𝑢, 𝑣𝑣 ∈ 𝐺𝐺.𝑉𝑉 be connected by 𝑢𝑢, 𝑣𝑣 ∈ 𝐺𝐺.𝐸𝐸.

Since augmenting paths are shortest paths, when 𝑢𝑢, 𝑣𝑣 is critical for
the first time, we have 𝛿𝛿𝑓𝑓 𝑠𝑠, 𝑣𝑣 = 𝛿𝛿𝑓𝑓 𝑠𝑠,𝑢𝑢 + 1.

Once the flow is augmented, the edge 𝑢𝑢, 𝑣𝑣 disappears from the
residual network. It cannot reappear later on another augmenting
path until after the flow from 𝑢𝑢 to 𝑣𝑣 is decreased, which occurs only if
𝑣𝑣,𝑢𝑢 appears on an augmenting path. If 𝑓𝑓′ is the flow in 𝐺𝐺 when this

event occurs, then we have 𝛿𝛿𝑓𝑓′ 𝑠𝑠,𝑢𝑢 = 𝛿𝛿𝑓𝑓′ 𝑠𝑠, 𝑣𝑣 + 1.

Since 𝛿𝛿𝑓𝑓 𝑠𝑠, 𝑣𝑣 ≤ 𝛿𝛿𝑓𝑓′ 𝑠𝑠, 𝑣𝑣 by Lemma 26.7, we have:

𝛿𝛿𝑓𝑓′ 𝑠𝑠,𝑢𝑢 = 𝛿𝛿𝑓𝑓′ 𝑠𝑠, 𝑣𝑣 + 1 ≥ 𝛿𝛿𝑓𝑓 𝑠𝑠,𝑣𝑣 + 1 = 𝛿𝛿𝑓𝑓 𝑠𝑠,𝑢𝑢 + 2.

The Edmonds-Karp Algorithm: Running Time

49

PROOF (CONTINUED): Consequently, from the time 𝑢𝑢, 𝑣𝑣 becomes
critical to the time when it next becomes critical, the distance of 𝑢𝑢
from 𝑠𝑠 increases by at least 2. The distance of 𝑢𝑢 from 𝑠𝑠 is initially at
least 0. The intermediate vertices on a shortest path from 𝑠𝑠 to 𝑢𝑢
cannot contain 𝑠𝑠, 𝑢𝑢, or 𝑡𝑡 (since 𝑢𝑢, 𝑣𝑣 on an augmenting path implies
that 𝑢𝑢 ≠ 𝑡𝑡). Therefore, until 𝑢𝑢 becomes unreachable from 𝑠𝑠,
if ever, its distance is at most 𝑛𝑛 − 2. Thus, after the first time that
𝑢𝑢, 𝑣𝑣 becomes critical, it can become critical at most 𝑛𝑛 − 2 /2 =
𝑛𝑛/2 − 1 times more, for a total of at most 𝑛𝑛/2 times.

Since there are 𝑂𝑂 𝑚𝑚 pairs of vertices that can have an edge between
them in a residual network, the total number of critical edges during
the entire execution of the algorithm is 𝑂𝑂 𝑚𝑚𝑚𝑚 . Each augmenting
path has at least one critical edge, and hence the theorem follows.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49

