CSE 548 / AMS 542: Analysis of Algorithms

Prerequisites Review 6
(Greedy Algorithms: MST, SSSP, …)

Rezaul Chowdhury
Department of Computer Science
SUNY Stony Brook
Fall 2023
An Activity-Selection Problem

Suppose:

- You are given a set $S = \{a_1, a_2, ..., a_n\}$ of n proposed activities that wish to use a resource, such as a lecture hall, which can serve only one activity at a time.
An Activity-Selection Problem

Suppose:

- You are given a set $S = \{a_1, a_2, \ldots, a_n\}$ of n proposed activities that wish to use a resource, such as a lecture hall, which can serve only one activity at a time.
- Each activity a_i has a start time s_i and finish time f_i, where $0 \leq s_i < f_i < \infty$. If selected, activity a_i takes place during the half-open time interval $[s_i, f_i)$.
- Activities a_i and a_j are compatible if the intervals $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap. That is, a_i and a_j are compatible if $s_i \geq f_j$ or $s_j \geq f_i$.

Goal: Select a maximum-size subset of mutually compatible activities.

Assume that the activities are sorted in monotonically non-decreasing order of finish time: $f_1 \leq f_2 \leq f_3 \leq \cdots \leq f_{n-1} \leq f_n$.

<table>
<thead>
<tr>
<th>a_i</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
<th>a_9</th>
<th>a_{10}</th>
<th>a_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>f_i</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>
An Activity-Selection Problem

An example set S of activities

<table>
<thead>
<tr>
<th>a_i</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
<th>a_9</th>
<th>a_{10}</th>
<th>a_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>f_i</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
An Activity-Selection Problem

An example set S of activities

<table>
<thead>
<tr>
<th>a_i</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
<th>a_9</th>
<th>a_{10}</th>
<th>a_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>f_i</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A mutually compatible set of activities
An Activity-Selection Problem

An example set S of activities

<table>
<thead>
<tr>
<th>a_i</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
<th>a_9</th>
<th>a_{10}</th>
<th>a_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>f_i</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

A largest mutually compatible set of activities
An Activity-Selection Problem

An example set S of activities

<table>
<thead>
<tr>
<th>a_i</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
<th>a_9</th>
<th>a_{10}</th>
<th>a_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>f_i</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

Another largest mutually compatible set of activities
Activity-Selection: Greedy Choice

Let $S_k =$ the set of activities in S that start after activity a_k finishes.

Theorem: Consider any nonempty subproblem S_k and let a_m be an activity in S_k with the earliest finish time. Then a_m is included in some maximum-size subset of mutually compatible activities of S_k.

Proof: Let $A_k =$ a maximum-size subset of mutually compatible activities in S_k.

Let a_j be the activity in A_k with the earliest finish time.

If $a_j = a_m$, we are done.

If $a_j \neq a_m$, let $A_k' = A_k - \{a_j\} \cup \{a_m\}$.

The activities in A_k' are disjoint because the activities in A_k are disjoint, a_j is the first activity in A_k to finish, and $f_m \leq f_j$.

Since $|A_k'| = |A_k|$, we conclude that A_k' is a maximum-size subset of mutually compatible activities of S_k, and it includes a_m.

14
Greedy Activity Selection

An example set \(S \) of activities

<table>
<thead>
<tr>
<th>(a_i)</th>
<th>(a_1)</th>
<th>(a_2)</th>
<th>(a_3)</th>
<th>(a_4)</th>
<th>(a_5)</th>
<th>(a_6)</th>
<th>(a_7)</th>
<th>(a_8)</th>
<th>(a_9)</th>
<th>(a_{10})</th>
<th>(a_{11})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_i)</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>(f_i)</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>
Greedy Activity Selection

An example set S of activities

<table>
<thead>
<tr>
<th>a_i</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
<th>a_9</th>
<th>a_{10}</th>
<th>a_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>f_i</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

Accept a_1

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td></td>
</tr>
<tr>
<td>a_2</td>
<td></td>
</tr>
<tr>
<td>a_3</td>
<td></td>
</tr>
<tr>
<td>a_4</td>
<td></td>
</tr>
<tr>
<td>a_5</td>
<td></td>
</tr>
<tr>
<td>a_6</td>
<td></td>
</tr>
<tr>
<td>a_7</td>
<td></td>
</tr>
<tr>
<td>a_8</td>
<td></td>
</tr>
<tr>
<td>a_9</td>
<td></td>
</tr>
<tr>
<td>a_{10}</td>
<td></td>
</tr>
<tr>
<td>a_{11}</td>
<td></td>
</tr>
</tbody>
</table>
Greedy Activity Selection

An example set S of activities

<table>
<thead>
<tr>
<th>a_i</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
<th>a_9</th>
<th>a_{10}</th>
<th>a_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>f_i</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

Overlap with a_1
Greedy Activity Selection

An example set S of activities

<table>
<thead>
<tr>
<th>a_i</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
<th>a_9</th>
<th>a_{10}</th>
<th>a_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>f_i</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

Reject a_2
Greedy Activity Selection

An example set S of activities

<table>
<thead>
<tr>
<th>a_i</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
<th>a_9</th>
<th>a_{10}</th>
<th>a_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>f_i</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

Overlap with a_1
Greedy Activity Selection

An example set S of activities

<table>
<thead>
<tr>
<th>a_i</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
<th>a_9</th>
<th>a_{10}</th>
<th>a_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>f_i</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

Reject a_3
Greedy Activity Selection

An example set S of activities

<table>
<thead>
<tr>
<th>a_i</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
<th>a_9</th>
<th>a_{10}</th>
<th>a_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>f_i</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

Accept a_4
Greedy Activity Selection

An example set S of activities

<table>
<thead>
<tr>
<th>a_i</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
<th>a_9</th>
<th>a_{10}</th>
<th>a_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>1 3</td>
<td>0 5</td>
<td>3 5</td>
<td>6 8</td>
<td>8 2</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_i</td>
<td>4 5</td>
<td>6 7</td>
<td>9 9</td>
<td>10 11</td>
<td>12 14</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Overlap with a_4
Greedy Activity Selection

An example set S of activities

<table>
<thead>
<tr>
<th>a_i</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
<th>a_9</th>
<th>a_{10}</th>
<th>a_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>f_i</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reject a_5</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td></td>
</tr>
<tr>
<td>a_2</td>
<td></td>
</tr>
<tr>
<td>a_3</td>
<td></td>
</tr>
<tr>
<td>a_4</td>
<td></td>
</tr>
<tr>
<td>a_5</td>
<td></td>
</tr>
<tr>
<td>a_6</td>
<td></td>
</tr>
<tr>
<td>a_7</td>
<td></td>
</tr>
<tr>
<td>a_8</td>
<td></td>
</tr>
<tr>
<td>a_9</td>
<td></td>
</tr>
<tr>
<td>a_{10}</td>
<td></td>
</tr>
<tr>
<td>a_{11}</td>
<td></td>
</tr>
</tbody>
</table>

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Greedy Activity Selection

An example set S of activities

<table>
<thead>
<tr>
<th>a_i</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
<th>a_9</th>
<th>a_{10}</th>
<th>a_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>f_i</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

Overlap with a_4
Greedy Activity Selection

An example set S of activities

<table>
<thead>
<tr>
<th>a_i</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
<th>a_9</th>
<th>a_{10}</th>
<th>a_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>f_i</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

Reject a_6
Greedy Activity Selection

An example set S of activities

<table>
<thead>
<tr>
<th>a_i</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
<th>a_9</th>
<th>a_{10}</th>
<th>a_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>f_i</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

Overlap with a_4

![Overlap Diagram with a_4]
Greedy Activity Selection

An example set S of activities

<table>
<thead>
<tr>
<th>a_i</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
<th>a_9</th>
<th>a_{10}</th>
<th>a_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>f_i</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

Reject a_7
Greedy Activity Selection

An example set S of activities

<table>
<thead>
<tr>
<th>a_i</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
<th>a_9</th>
<th>a_{10}</th>
<th>a_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>f_i</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

Accept a_8
Greedy Activity Selection

An example set S of activities

<table>
<thead>
<tr>
<th>a_i</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
<th>a_9</th>
<th>a_{10}</th>
<th>a_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>f_i</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

Overlap with a_8
Greedy Activity Selection

An example set S of activities

<table>
<thead>
<tr>
<th>a_i</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
<th>a_9</th>
<th>a_{10}</th>
<th>a_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>f_i</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

Reject a_9
Greedy Activity Selection

An example set S of activities

<table>
<thead>
<tr>
<th>a_i</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
<th>a_9</th>
<th>a_{10}</th>
<th>a_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>f_i</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

Overlap with a_8
Greedy Activity Selection

An example set S of activities

<table>
<thead>
<tr>
<th>a_i</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
<th>a_9</th>
<th>a_{10}</th>
<th>a_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>f_i</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

Reject a_{10}
Greedy Activity Selection

An example set S of activities

<table>
<thead>
<tr>
<th>a_i</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
<th>a_9</th>
<th>a_{10}</th>
<th>a_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>f_i</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

Accept a_{11}
Greedy Activity-Selection

\textsc{Greedy-Activity-Selector} (s, f)

1. \(n \leftarrow \text{s.length} \)
2. \(A \leftarrow \{a_1\} \)
3. \(k \leftarrow 1 \)
4. \textbf{for} \(m \leftarrow 2 \) \textbf{to} \(n \) \textbf{do}
5. \textbf{if} \(s[m] \geq f[k] \) \textbf{then}
6. \(A \leftarrow A \cup \{a_m\} \)
7. \(k \leftarrow m \)
8. \textbf{return} \(A \)

Running time = \(\Theta(n) \)
A topological sort of a DAG (i.e., directed acyclic graph) $G = (V, E)$ is a linear ordering of all its vertices such that if G contains an edge (u, v), then u appears before v in the ordering.

We can view a topological sort of a graph as an ordering of its vertices along a horizontal line so that all directed edges go from left to right.
Greedy-Topological-Sort (G)

1. \(n \leftarrow |G.V| \)
2. \(i \leftarrow 0 \)
3. while \(i < n \) do
4. find a node \(x \in G.V \) with no incoming edges
5. assign number \(i \) to \(x \)
6. \(i \leftarrow i + 1 \)
7. remove \(x \) with all its outgoing edges from \(G \)
Topological Sort

GREEDY-TOPOLOGICAL-SORT (G)

1. \(n \leftarrow |G.V| \)
2. \(i \leftarrow 0 \)
3. while \(i < n \) do
4. find a node \(x \in G.V \) with no incoming edges
5. assign number \(i \) to \(x \)
6. \(i \leftarrow i + 1 \)
7. remove \(x \) with all its outgoing edges from \(G \)

choose node \(a \) with no incoming edges
Topological Sort

GREEDY-TOPOLOGICAL-SORT (G)

1. \(n \leftarrow |G.V| \)
2. \(i \leftarrow 0 \)
3. \(\text{while } i < n \text{ do} \)
4. \(\text{find a node } x \in G.V \) with no incoming edges
5. \(\text{assign number } i \text{ to } x \)
6. \(i \leftarrow i + 1 \)
7. \(\text{remove } x \text{ with all its outgoing edges from } G \)

Diagram:
- Assign number \(i = 0 \) to node \(a \)
- \(i \leftarrow 1 \) (increment \(i \))
Topological Sort

GREEDY-TOPOLOGICAL-SORT (G)

1. \(n \leftarrow |G.V| \)
2. \(i \leftarrow 0 \)
3. **while** \(i < n \) **do**
4. find a node \(x \in G.V \) with no incoming edges
5. assign number \(i \) to \(x \)
6. \(i \leftarrow i + 1 \)
7. remove \(x \) with all its outgoing edges from \(G \)
Greedy-Topological-Sort \((G) \)

1. \(n \leftarrow |G.V| \)
2. \(i \leftarrow 0 \)
3. **while** \(i < n \) **do**
4. find a node \(x \in G.V \) with no incoming edges
5. assign number \(i \) to \(x \)
6. \(i \leftarrow i + 1 \)
7. remove \(x \) with all its outgoing edges from \(G \)

Choose node \(b \) with no incoming edges

- Choose node \(b \) with no incoming edges.
Topological Sort

GREEDY-TOPOLOGICAL-SORT (G)

1. \(n \leftarrow |G.V| \)
2. \(i \leftarrow 0 \)
3. \textbf{while} \(i < n \)
4. find a node \(x \in G.V \) with no incoming edges
5. assign number \(i \) to \(x \)
6. \(i \leftarrow i + 1 \)
7. remove \(x \) with all its outgoing edges from \(G \)

assign number \(i = 1 \) to node \(b \)
\(i \leftarrow 2 \) (increment \(i \))
GREEDY-TOPOLOGICAL-SORT (G)

1. \(n \leftarrow |G.V| \)
2. \(i \leftarrow 0 \)
3. \textbf{while} \(i < n \) \textbf{do}
4. \hspace{10pt} \textbf{find a node} \(x \in G.V \) \textbf{with no incoming edges}
5. \hspace{10pt} \textbf{assign number} \(i \) \textbf{to} \(x \)
6. \hspace{10pt} \(i \leftarrow i + 1 \)
7. \hspace{10pt} \textbf{remove} \(x \) \textbf{with all its outgoing edges from} \(G \)

remove node b with all its outgoing edges
Greedy-Topological-Sort (G)

1. \(n \leftarrow |G.V| \)
2. \(i \leftarrow 0 \)
3. while \(i < n \) do
4. find a node \(x \in G.V \) with no incoming edges
5. assign number \(i \) to \(x \)
6. \(i \leftarrow i + 1 \)
7. remove \(x \) with all its outgoing edges from \(G \)

Choose node \(c \) with no incoming edges
Topological Sort

GREEDY-TOPOLOGICAL-SORT (G)

1. \(n \leftarrow |G.V| \)
2. \(i \leftarrow 0 \)
3. **while** \(i < n \) **do**
 4. find a node \(x \in G.V \) with no incoming edges
 5. assign number \(i \) to \(x \)
 6. \(i \leftarrow i + 1 \)
 7. remove \(x \) with all its outgoing edges from \(G \)

Diagram:

- Assign number \(i = 2 \) to node \(c \)
- \(i \leftarrow 3 \) (increment \(i \))
Greedy Topological Sort (G)

1. \(n \leftarrow |G.V| \)
2. \(i \leftarrow 0 \)
3. **while** \(i < n \) **do**
4. find a node \(x \in G.V \) with no incoming edges
5. assign number \(i \) to \(x \)
6. \(i \leftarrow i + 1 \)
7. remove \(x \) with all its outgoing edges from \(G \)

Topological Sort

remove node \(c \) with all its outgoing edges
Greedy-Topological-Sort (G)

1. \(n \leftarrow |G.V| \)
2. \(i \leftarrow 0 \)
3. while \(i < n \) do
4. find a node \(x \in G.V \) with no incoming edges
5. assign number \(i \) to \(x \)
6. \(i \leftarrow i + 1 \)
7. remove \(x \) with all its outgoing edges from \(G \)

choose node \(d \) with no incoming edges

```
choose node d with no incoming edges
```

![Diagram](image)
Greedy-Topological-Sort (G)

1. \(n \leftarrow |G.V| \)
2. \(i \leftarrow 0 \)
3. while \(i < n \) do
4. find a node \(x \in G.V \) with no incoming edges
5. assign number \(i \) to \(x \)
6. \(i \leftarrow i + 1 \)
7. remove \(x \) with all its outgoing edges from \(G \)

Topological Sort

assign number \(i = 3 \) to node \(d \)
\(i \leftarrow 4 \) (increment \(i \))
Topological Sort

GREEDY-TOPOLOGICAL-SORT (G)

1. \(n \leftarrow |G.V| \)
2. \(i \leftarrow 0 \)
3. \(\text{while } i < n \text{ do} \)
4. \(\text{find a node } x \in G.V \text{ with no incoming edges} \)
5. \(\text{assign number } i \text{ to } x \)
6. \(i \leftarrow i + 1 \)
7. \(\text{remove } x \text{ with all its outgoing edges from } G \)
GREEDY-TOPOLOGICAL-SORT (G)

1. \(n \leftarrow |G.V| \)
2. \(i \leftarrow 0 \)
3. while \(i < n \) do
4. find a node \(x \in G.V \) with no incoming edges
5. assign number \(i \) to \(x \)
6. \(i \leftarrow i + 1 \)
7. remove \(x \) with all its outgoing edges from \(G \)

Example:

Choose node \(e \) with no incoming edges.
Greedy-Topological-Sort (G)

1. $n \leftarrow |G.V|$
2. $i \leftarrow 0$
3. while $i < n$ do
4. find a node $x \in G.V$ with no incoming edges
5. assign number i to x
6. $i \leftarrow i + 1$
7. remove x with all its outgoing edges from G

Assign number $i = 4$ **to node** e

$i \leftarrow 5$ (increment i)
GREEDY-TOPOLOGICAL-SORT (G)

1. \(n \leftarrow |G.V| \)
2. \(i \leftarrow 0 \)
3. while \(i < n \) do
4. find a node \(x \in G.V \) with no incoming edges
5. assign number \(i \) to \(x \)
6. \(i \leftarrow i + 1 \)
7. remove \(x \) with all its outgoing edges from \(G \)
Topological Sort

GREEDY-TOPOLOGICAL-SORT (G)

1. \(n \leftarrow |G.V| \)
2. \(i \leftarrow 0 \)
3. while \(i < n \) do
4. find a node \(x \in G.V \) with no incoming edges
5. assign number \(i \) to \(x \)
6. \(i \leftarrow i + 1 \)
7. remove \(x \) with all its outgoing edges from \(G \)

choose node \(g \) with no incoming edges
Greedy-Topological-Sort (G)

1. \(n \leftarrow |G.V| \)
2. \(i \leftarrow 0 \)
3. **while** \(i < n \) **do**
 4. find a node \(x \in G.V \) with no incoming edges
 5. assign number \(i \) to \(x \)
 6. \(i \leftarrow i + 1 \)
 7. remove \(x \) with all its outgoing edges from \(G \)

Assign number \(i = 5 \) **to node** \(g \)

\(i \leftarrow 6 \) (increment \(i \))
GREEDY-TOPOLOGICAL-SORT (G)

1. $n \leftarrow |G.V|$
2. $i \leftarrow 0$
3. **while** $i < n$ **do**
4. find a node $x \in G.V$ with no incoming edges
5. assign number i to x
6. $i \leftarrow i + 1$
7. remove x with all its outgoing edges from G

remove node g with all its outgoing edges
Greedy-Topological-Sort (G)

1. \(n \leftarrow |G.V| \)
2. \(i \leftarrow 0 \)
3. while \(i < n \) do
4. find a node \(x \in G.V \) with no incoming edges
5. assign number \(i \) to \(x \)
6. \(i \leftarrow i + 1 \)
7. remove \(x \) with all its outgoing edges from \(G \)

Topological Sort

Choose node \(f \) with no incoming edges
Greedy-Topological-Sort \((G)\)

1. \(n \leftarrow |G.V|\)
2. \(i \leftarrow 0\)
3. **while** \(i < n\) **do**
4. find a node \(x \in G.V\) with no incoming edges
5. assign number \(i\) to \(x\)
6. \(i \leftarrow i + 1\)
7. remove \(x\) with all its outgoing edges from \(G\)
Greedy-Topological-Sort (G)

1. \(n \leftarrow |G.V| \)
2. \(i \leftarrow 0 \)
3. \textbf{while} \(i < n \) \textbf{do}
4. \quad find a node \(x \in G.V \) with no incoming edges
5. \quad assign number \(i \) to \(x \)
6. \quad \(i \leftarrow i + 1 \)
7. \quad remove \(x \) with all its outgoing edges from \(G \)
Topological Sort

Greedy-Topological-Sort (G)

1. \(n \leftarrow |G.V| \)
2. \(i \leftarrow 0 \)
3. **while** \(i < n \) **do**
4. find a node \(x \in G.V \) with no incoming edges
5. assign number \(i \) to \(x \)
6. \(i \leftarrow i + 1 \)
7. remove \(x \) with all its outgoing edges from \(G \)

choose node h with no incoming edges

![Diagram of a graph with nodes a, b, c, d, e, f, g, and h labeled with numbers 0 to 6. Edge directions and numbers are shown.]
Topological Sort

GREEDY-TOPOLOGICAL-SORT (G)

1. \(n \leftarrow |G.V| \)
2. \(i \leftarrow 0 \)
3. while \(i < n \) do
 4. find a node \(x \in G.V \) with no incoming edges
 5. assign number \(i \) to \(x \)
 6. \(i \leftarrow i + 1 \)
 7. remove \(x \) with all its outgoing edges from \(G \)

assign number \(i = 7 \) to node \(h \)

\(i \leftarrow 8 \) (increment \(i \))
Topological Sort

GREEDY-TOPOLOGICAL-SORT (G)

1. \(n \leftarrow |G.V| \)
2. \(i \leftarrow 0 \)
3. while \(i < n \) do
4. find a node \(x \in G.V \) with no incoming edges
5. assign number \(i \) to \(x \)
6. \(i \leftarrow i + 1 \)
7. remove \(x \) with all its outgoing edges from \(G \)

remove node \(h \) with all its outgoing edges
Topological Sort

GREEDY-TOPOLOGICAL-SORT (G)

1. \(n \leftarrow |G.V| \)
2. \(i \leftarrow 0 \)
3. while \(i < n \) do
4. find a node \(x \in G.V \) with no incoming edges
5. assign number \(i \) to \(x \)
6. \(i \leftarrow i + 1 \)
7. remove \(x \) with all its outgoing edges from \(G \)
Topological Sort

Greedy-Topological-Sort (G)

1. \(n \leftarrow |G.V| \)
2. \(i \leftarrow 0 \)
3. while \(i < n \) do
4. find a node \(x \in G.V \) with no incoming edges
5. assign number \(i \) to \(x \)
6. \(i \leftarrow i + 1 \)
7. remove \(x \) with all its outgoing edges from \(G \)

assign number \(i = 8 \) to node \(i \)

\(i \leftarrow 9 \) (increment \(i \))
Greedy Topological Sort

\[\text{Greedy-Topological-Sort} \ (G) \]

1. \(n \leftarrow |G.V| \)
2. \(i \leftarrow 0 \)
3. \textbf{while} \(i < n \) \textbf{do}
4. \textbf{find a node} \(x \in G.V \) \textbf{with no incoming edges}
5. \textbf{assign number} \(i \) \textbf{to} \(x \)
6. \(i \leftarrow i + 1 \)
7. \textbf{remove} \(x \) \textbf{with all its outgoing edges from} \(G \)

Diagram:

- Node labels: 0, 1, 2, 3, 4, 5, 6, 7, 8
- Edges and labels indicate dependencies between nodes.
Greedy-Topological-Sort (G)

1. \(n \leftarrow |G.V| \)
2. \(i \leftarrow 0 \)
3. **while** \(i < n \) **do**
4. find a node \(x \in G.V \) with no incoming edges
5. assign number \(i \) to \(x \)
6. \(i \leftarrow i + 1 \)
7. remove \(x \) with all its outgoing edges from \(G \)

![Diagram of Topological Sort](image)

Done!

Diagram of Topological Sort

- Graph \(G \) with nodes labeled from 0 to 8.
- Nodes are ordered topologically from left to right.
- Edge labels indicate direction of edges.

Nodes and Edges

- Nodes: a, b, c, d, e, g, f, h, i
- Edges: directed from lower to higher numbers.
Let $n = |G.V|$ and $m = |G.E|$. Then the running time of the algorithm is $O(n + m)$.

Greedy-Topological-Sort (G)

1. $n \leftarrow |G.V|$
2. $i \leftarrow 0$
3. while $i < n$ do
4. find a node $x \in G.V$ with no incoming edges
5. assign number i to x
6. $i \leftarrow i + 1$
7. remove x with all its outgoing edges from G
The Minimum Spanning Tree (MST) Problem

We are given a weighted connected undirected graph $G = (V, E)$ with vertex set V and edge set E, and a weight function w such that for each edge $(u, v) \in E$, $w(u, v)$ represents its weight.

An acyclic subset $T \subseteq E$ that connects all vertices of V must form a tree, which we call a spanning tree since it “spans” the graph G.

A spanning tree of G can be found easily in $O(n + m)$ time, where $n = |V|$ and $m = |E|$, using a breadth-first search (BFS) or a depth-first search (DFS).

The minimum-spanning-tree (MST) problem asks us to find a spanning tree T whose total weight $w(T) = \sum_{(u, v) \in T} w(u, v)$ is minimized.
The Minimum Spanning Tree (MST) Problem

A weighted undirected graph
The Minimum Spanning Tree (MST) Problem

A weighted undirected graph

Its MST (in red) of total weight 37
MST: Greedy Strategy for Growing an MST

We are given a weighted connected undirected graph \(G = (V, E) \) with vertex set \(V \) and edge set \(E \), and a weight function \(w \) such that for each edge \((u, v) \in E\), \(w(u, v) \) represents its weight.

Suppose set \(A \subset E \) is a subset of some MST of \(G \).

Now if edge \((u, v) \in E\) but edge \((u, v) \notin A\), we call \((u, v)\) a **safe edge** provided \(A \cup \{u, v\} \) is also a subset of an MST of \(G \).
MST: Greedy Strategy for Growing an MST

Red edges form an MST. Let’s call it T

Let $A = \{(i, c), (c, f), (f, g), (g, h)\}$

Clearly, $A \subset T$.

MST: Greedy Strategy for Growing an MST

Red edges form an MST. Let’s call it T

Let $A = \{(i, c), (c, f), (f, g), (g, h)\}$

Clearly, $A \subset T$.

Edge (b, c) is safe because $A \cup \{(b, c)\} \subseteq T$.
MST: Greedy Strategy for Growing an MST

Red edges form an MST. Let’s call it T

Let $A = \{(i, c), (c, f), (f, g), (g, h)\}$

Clearly, $A \subset T$.

Edge (c, d) is safe because $A \cup \{(c, d)\} \subseteq T$.
MST: Greedy Strategy for Growing an MST

Red edges form an MST. Let's call it T.

Let $A = \{(i, c), (c, f), (f, g), (g, h)\}$.

Clearly, $A \subseteq T$.

Edge (a, b) is safe because $A \cup \{(a, b)\} \subseteq T$.
MST: Greedy Strategy for Growing an MST

Red edges form an MST. Let’s call it T.

Let $A = \{(i, c), (c, f), (f, g), (g, h)\}$

Clearly, $A \subset T$.

Edge (d, e) is safe because $A \cup \{(d, e)\} \subseteq T$.
MST: Greedy Strategy for Growing an MST

Red edges form an MST. Let’s call it T

Let $A = \{(i, c), (c, f), (f, g), (g, h)\}$

Clearly, $A \subset T$.

Edge (h, i) is NOT safe because $A \cup \{(h, i)\}$ is NOT part of any MST of the given graph.
MST: Greedy Strategy for Growing an MST

Let's call it T. Let $A = \{(i, c), (c, f), (f, g), (g, h)\}$

Clearly, $A \subset T$.

Edge (d, f) is NOT safe because $A \cup \{(d, f)\}$ is NOT part of any MST of the given graph.
MST: Greedy Strategy for Growing an MST

Red edges form an MST. Let’s call it \(T \)

Let \(A = \{(i, c), (c, f), (f, g), (g, h)\} \)

Clearly, \(A \subset T \).

Edge \((a, h)\) is safe because though \(A \cup \{(a, h)\} \) is not a subset of \(T \), it is a subset of another MST.
MST: Greedy Strategy for Growing an MST

Generic-MST(\(G = (V, E), w\))

1. \(A \leftarrow \emptyset\)
2. while \(A\) does not form a spanning tree of \(G\) do
3. find an edge \((u, v) \in E\) that is safe for \(A\)
4. \(A \leftarrow A \cup \{(u, v)\}\)
5. return \(A\)
MST: Finding Safe Edges

A **cut** \((S, V \setminus S)\) of an undirected graph \(G = (V, E)\) is a partition of \(V\).

We say that an edge \((u, v) \in E\) **crosses** the cut \((S, V \setminus S)\) if one of its endpoints is in \(S\) and the other is in \(V \setminus S\).

Green vertices belong to set \(S\), i.e., \(S = \{a, b, d, e\}\).
White vertices belong to set \(V - S\), i.e., \(V - S = \{c, f, g, h, i\}\).
The red line represent the cut \((S, V - S)\).
Dotted edges are the cut edges, i.e., they cross the red line.
MST: Finding Safe Edges

A cut \textit{respects} a set A of edges if no edge in A crosses the cut.

An edge is a \textit{light edge} crossing a cut if its weight is the minimum of any edge crossing the cut. Multiple light edges can cross a cut.

Let the blue thick edges form the set A, i.e.,

$$A = \{(a, b), (c, f), (c, i), (f, g), (g, h)\}.$$

Then edge (c, d) is a light edge crossing the cut.
MST: Finding Safe Edges

A cut respects a set A of edges if no edge in A crosses the cut.

An edge is a light edge crossing a cut if its weight is the minimum of any edge crossing the cut. Multiple light edges can cross a cut.

The entire set A can be on the same side of the cut, e.g.,

$$A = \{(c, f), (c, i), (f, g), (g, h)\}.$$

Still edge (c, d) is a light edge crossing the cut.
MST: Finding Safe Edges

A cut respects a set \(A \) of edges if no edge in \(A \) crosses the cut.

An edge is a light edge crossing a cut if its weight is the minimum of any edge crossing the cut. Multiple light edges can cross a cut.

Consider a different cut as shown above.

Consider the same set \(A = \{(c, f), (c, i), (f, g), (g, h)\} \).

Now both \((a, h)\) and \((b, c)\) are light edges crossing the cut.
MST: Finding Safe Edges

Theorem: Let $G = (V, E)$ be a connected, undirected graph with a real-valued weight function w defined on E. Let A be a subset of E that is included in some minimum spanning tree for G, and let $(S, V \setminus S)$ be any cut of G that respects A, and let (u, v) be a light edge crossing $(S, V \setminus S)$. Then, edge (u, v) is safe for A.
THEOREM: Let $A \subset E$ is included in some MST T of G, and let $(S, V \setminus S)$ be any cut of G that respects A, and let (u, v) be a light edge crossing $(S, V \setminus S)$. Then, edge (u, v) is safe for A.

PROOF IDEA:

Let (u, v) be a light edge crossing the cut.
Let’s assume $(u, v) \notin T$, as otherwise we are done.
MST: Finding Safe Edges

THEOREM: Let $A \subseteq E$ is included in some MST T of G, and let $(S, V \setminus S)$ be any cut of G that respects A, and let (u, v) be a light edge crossing $(S, V \setminus S)$. Then, edge (u, v) is safe for A.

PROOF IDEA:

As T is a spanning tree, some edge $(x, y) \in T$ must also cross the cut.
MST: Finding Safe Edges

THEOREM: Let $A \subset E$ is included in some MST T of G, and let $(S, V \setminus S)$ be any cut of G that respects A, and let (u, v) be a light edge crossing $(S, V \setminus S)$. Then, edge (u, v) is safe for A.

PROOF IDEA:

As T is a spanning tree, some edge $(x, y) \in T$ must also cross the cut. Let’s add edge (u, v) to T. That must form a cycle in $T \cup \{(u, v)\}$. So, $T \cup \{(u, v)\}$ is not a tree.
THEOREM: Let \(A \subset E \) is included in some MST \(T \) of \(G \), and let \((S, V \setminus S)\) be any cut of \(G \) that respects \(A \), and let \((u, v)\) be a light edge crossing \((S, V \setminus S)\). Then, edge \((u, v)\) is safe for \(A \).

PROOF IDEA:

We can break the cycle by removing edge \((x, y)\) from \(T \cup \{(u, v)\} \).
Let \(T' = T - \{(x, y)\} \cup \{(u, v)\} \).

Observe that \(T' \) is now a spanning tree of \(G \).
MST: Finding Safe Edges

Theorem: Let $A \subseteq E$ be included in some MST T of G, and let $(S, V \setminus S)$ be any cut of G that respects A, and let (u, v) be a light edge crossing $(S, V \setminus S)$. Then, edge (u, v) is safe for A.

Proof Idea:

Now, $w(T') = w(T - \{(x, y)\} \cup \{(u, v)\})$

$$= w(T) - w((x, y)) + w((u, v)) \leq w(T)$$

But we assumed that T is an MST of G, and so $w(T) \leq w(T')$
THEOREM: Let $A \subseteq E$ is included in some MST T of G, and let $(S, V \setminus S)$ be any cut of G that respects A, and let (u, v) be a light edge crossing $(S, V \setminus S)$. Then, edge (u, v) is safe for A.

PROOF IDEA:

Since, $w(T') \leq w(T)$ and $w(T) \leq w(T')$, we have $w(T') = w(T)$. So, T' must also be an MST of G.
MST: Finding Safe Edges

Theorem: Let \(A \subseteq E \) be included in some MST \(T \) of \(G \), and let \((S, V \setminus S)\) be any cut of \(G \) that respects \(A \), and let \((u, v)\) be a light edge crossing \((S, V \setminus S)\). Then, edge \((u, v)\) is safe for \(A \).

Proof Idea:

Since \(A \subseteq T \) and \((x, y) \notin A\), we have \(A \subseteq T' \).

Thus, \(A \cup \{(u, v)\} \subseteq T' \).

Since \(T' \) is an MST of \(G \), edge \((u, v)\) is safe for \(A \).
MST: Finding Safe Edges

Theorem: Let $G = (V, E)$ be a connected, undirected graph with a real-valued weight function w defined on E. Let A be a subset of E that is included in some minimum spanning tree for G, and let $(S, V \setminus S)$ be any cut of G that respects A, and let (u, v) be a light edge crossing $(S, V \setminus S)$. Then, edge (u, v) is safe for A.

Corollary: Let $G = (V, E)$ be a connected, undirected graph with a real-valued weight function w defined on E. Let A be a subset of E that is included in some minimum spanning tree for G, and let $C = (V_C, E_C)$ be a connected component (tree) in the forest $G_A = (V, A)$. If (u, v) is a light edge crossing from C to some other component of G_A, then edge (u, v) is safe for A.
MST: Prim’s Algorithm

\[\text{MST-Prim} \ (G = (V, E), \ w, \ r) \]

1. \(\text{for each vertex } v \in G. V \ \text{do} \)
2. \(v.d \leftarrow \infty \)
3. \(v.\pi \leftarrow \text{NIL} \)
4. \(r.d \leftarrow 0 \)
5. \(\text{Min-Heap } Q \leftarrow \emptyset \)
6. \(\text{for each vertex } v \in G. V \ \text{do} \)
7. \(\text{INSERT}(Q, v) \)
8. \(\text{while } Q \neq \emptyset \ \text{do} \)
9. \(u \leftarrow \text{EXTRACT-MIN}(Q) \)
10. \(\text{for each } (u,v) \in G. E \ \text{do} \)
11. \(\text{if } v \in Q \ \text{and } w(u,v) < v.d \ \text{then} \)
12. \(v.d \leftarrow w(u,v) \)
13. \(v.\pi \leftarrow u \)
14. \(\text{DECREASE-KEY}(Q, v, w(u,v)) \)
MST: Prim’s Algorithm

Initial State

- **a**. \(d = \infty \)
 - **a**. \(\pi = NIL \)
- **b**. \(d = \infty \)
 - **b**. \(\pi = NIL \)
- **c**. \(d = \infty \)
 - **c**. \(\pi = NIL \)
- **d**. \(d = \infty \)
 - **d**. \(\pi = NIL \)
- **e**. \(d = \infty \)
 - **e**. \(\pi = NIL \)
- **h**. \(d = \infty \)
 - **h**. \(\pi = NIL \)
- **g**. \(d = \infty \)
 - **g**. \(\pi = NIL \)
- **f**. \(d = \infty \)
 - **f**. \(\pi = NIL \)
MST: Prim’s Algorithm

Initial State

- $b. \text{d} = \infty$
- $b. \pi = \text{NIL}$
- $c. \text{d} = \infty$
- $c. \pi = \text{NIL}$
- $d. \text{d} = \infty$
- $d. \pi = \text{NIL}$
- $a. \text{d} = 0$
- $a. \pi = \text{NIL}$
- $i. \text{d} = \infty$
- $i. \pi = \text{NIL}$
- $h. \text{d} = \infty$
- $h. \pi = \text{NIL}$
- $g. \text{d} = \infty$
- $g. \pi = \text{NIL}$
- $f. \text{d} = \infty$
- $f. \pi = \text{NIL}$
- $e. \text{d} = \infty$
- $e. \pi = \text{NIL}$
Step 1: add vertex \(a \) to MST

\begin{itemize}
\item \(b. d = \infty \), \(b. \pi = \text{NIL} \)
\item \(c. d = \infty \), \(c. \pi = \text{NIL} \)
\item \(d. d = \infty \), \(d. \pi = \text{NIL} \)
\item \(a. d = 0 \), \(a. \pi = \text{NIL} \)
\item \(i. d = \infty \), \(i. \pi = \text{NIL} \)
\item \(h. d = \infty \), \(h. \pi = \text{NIL} \)
\item \(g. d = \infty \), \(g. \pi = \text{NIL} \)
\item \(f. d = \infty \), \(f. \pi = \text{NIL} \)
\item \(e. d = \infty \), \(e. \pi = \text{NIL} \)
\end{itemize}
Step 1': update neighbors of a

\begin{align*}
S &= \{a\} \\
\text{Cut} &= (S, V - S)
\end{align*}
MST: Prim’s Algorithm

Step 2: add vertex b through edge (a, b)

$S = \{a\}$
Cut $= (S, V - S)$

(a, b) is the light edge crossing the cut
Step 2’: update neighbors of \(b \)

\[
\begin{align*}
S & = \{a, b\} \\
\text{Cut} & = (S, V - S)
\end{align*}
\]
MST: Prim’s Algorithm

Step 3: add vertex c through edge \((b, c)\)

\[S = \{a, b\} \]

Cut = \((S, V - S)\)

\((b, c)\) is a light edge crossing the cut
MST: Prim’s Algorithm

Step 3’: update neighbors of c

$S = \{a, b, c\}$
Cut = $(S, V - S)$
Step 4: add vertex i through edge (c, i)

$S = \{a, b, c\}$

Cut = $(S, V - S)$

(c, i) is the light edge crossing the cut
MST: Prim’s Algorithm

Step 4’: update neighbors of \(i \)

\[S = \{a, b, c, i\} \]

Cut = \((S, V - S)\)
MST: Prim’s Algorithm

Step 5: add vertex f through edge (c, f)

$S = \{a, b, c, i\}$

Cut = $(S, V - S)$

(c, f) is the light edge crossing the cut
Step 5’: update neighbors of f

$S = \{a, b, c, i, f\}$
Cut = $(S, V - S)$
MST: Prim’s Algorithm

Step 6: add vertex \(g \) **through edge** \((f, g) \)

\[S = \{a, b, c, i, f\} \]

Cut = \((S, V - S)\)

\((c, g)\) is the light edge crossing the cut
Step 6': update neighbors of g

$S = \{a, b, c, i, f, g\}$
Cut = $(S, V - S)$
MST: Prim’s Algorithm

Step 7: add vertex h through edge (g, h)

$S = \{a, b, c, i, f, g\}$

Cut = $(S, V - S)$

(g, h) is the light edge crossing the cut
MST: Prim’s Algorithm

Step 7’: update neighbors of h

\[S = \{a, b, c, i, f, g, h\} \]

\[\text{Cut} = (S, V - S) \]
Step 8: add vertex d through edge (c, d)

$S = \{a, b, c, i, f, g, h\}$

Cut = $(S, V - S)$

(c, d) is the light edge crossing the cut
MST: Prim’s Algorithm

Step 8’: update neighbors of d

$S = \{a, b, c, i, f, g, h, d\}$
Cut = $(S, V - S)$
MST: Prim’s Algorithm

Step 9: add vertex e through edge (d, e)

$S = \{a, b, c, i, f, g, h, d\}$

Cut = $(S, V - S)$

(d, e) is the light edge crossing the cut
Step 9′: update neighbors of e

\[S = \{a, b, c, i, f, g, h, d, e\} \]
MST: Prim’s Algorithm

Done

Total weight = 37
MST: Prim’s Algorithm

Let \(n = |V| \) and \(m = |E| \)

INSERTS = \(n \)

EXTRACT-MINS = \(n \)

DECREASE-KEYS \(\leq m \)

Total cost

\[
\leq n(\text{cost}_{\text{Insert}} + \text{cost}_{\text{Extract-Min}}) + m(\text{cost}_{\text{Decrease-Key}})
\]
MST: Prim’s Algorithm

\[\text{Let } n = |V| \text{ and } m = |E|\]

For Binary Heap (worst-case costs):
\[\begin{align*}
\text{cost}_{\text{Insert}} &= O(\log n) \\
\text{cost}_{\text{Extract-Min}} &= O(\log n) \\
\text{cost}_{\text{Decrease-Key}} &= O(\log n)
\end{align*}\]

\[\therefore \text{Total cost (worst-case)} = O((m + n) \log n)\]
MST: Prim’s Algorithm

Let \(n = |V| \) and \(m = |E| \)

For Fibonacci Heap (amortized):

\[
\begin{align*}
\text{cost}_{\text{Insert}} &= O(1) \\
\text{cost}_{\text{Extract-Min}} &= O(\log n) \\
\text{cost}_{\text{Decrease-Key}} &= O(1)
\end{align*}
\]

∴ Total cost (amortized)
\[
= O(m + n \log n)
\]
A Disjoint-Set Data Structure
(for Kruskal’s MST Algorithm)

A disjoint-set data structure maintains a collection of disjoint dynamic sets. Each set is identified by a representative which must be a member of the set.

The collection is maintained under the following operations:

MAKE-SET(x): create a new set \(\{x\} \) containing only element \(x \).

 Element \(x \) becomes the representative of the set.

FIND(x): returns a pointer to the representative of the set containing \(x \)

UNION(x, y): replace the dynamic sets \(S_x \) and \(S_y \) containing \(x \) and \(y \), respectively, with the set \(S_x \cup S_y \)
A Disjoint-Set Data Structure (union by rank)

MAKE-SET (x)
1. \(\pi(x) \leftarrow x \)
2. \(\text{rank}(x) \leftarrow 0 \)

LINK (x, y)
1. \(\text{if rank}(x) > \text{rank}(y) \text{ then } \pi(y) \leftarrow x \)
2. \(\text{else } \pi(x) \leftarrow y \)
3. \(\text{if rank}(x) = \text{rank}(y) \text{ then } \text{rank}(y) \leftarrow \text{rank}(y) + 1 \)

UNION (x, y)
1. \(\text{LINK (FIND (x), FIND (y))} \)

FIND (x)
1. \(\text{if } x \neq \pi(x) \text{ then return FIND (} \pi(x) \text{)} \)
2. \(\text{else return } x \)
A Disjoint-Set Data Structure
(union by rank)

Theorem: A sequence of N MAKE-SET, UNION and FIND operations of which exactly $n \leq N$ are MAKE-SET operations takes $O(N \log n)$ time to execute.
LEMMA: Let $G = (V, E)$ be a connected, undirected graph with a real-valued weight function w defined on E. Let C be a cycle of G with a unique heaviest edge $\hat{e} \in E$. Then \hat{e} cannot be part of any MST of G.
MST: Another Useful Lemma

Lemma: Let $G = (V, E)$ be a connected, undirected graph with a real-valued weight function w defined on E. Let C be a cycle of G with a unique heaviest edge $\hat{e} \in E$. Then \hat{e} cannot be part of any MST of G.

Proof:

Let \hat{e} be part of some spanning tree T of G.

![Graph with weights](image)
MST: Another Useful Lemma

Lemma: Let $G = (V, E)$ be a connected, undirected graph with a real-valued weight function w defined on E. Let C be a cycle of G with a unique heaviest edge $\hat{e} \in E$. Then \hat{e} cannot be part of any MST of G.

Proof:

Let \hat{e} be part of some spanning tree T of G. Let’s remove \hat{e} from T. Then T will get split into two components. There must be an edge $\bar{e} \in C$ that reconnects the two components.
MST: Another Useful Lemma

Lemma: Let $G = (V, E)$ be a connected, undirected graph with a real-valued weight function w defined on E. Let C be a cycle of G with a unique heaviest edge $\hat{e} \in E$. Then \hat{e} cannot be part of any MST of G.

Proof:

Let’s add \bar{e} to $T - \{\hat{e}\}$, and let $T' = T \cup \{\bar{e}\} - \{\hat{e}\}$. Then T' is a spanning tree of G.

Since $w(\hat{e}) > w(\bar{e})$, we get, $w(T') = w(T) - w(\hat{e}) + w(\bar{e}) < w(T)$.

So, T cannot be an MST of G!
MST: Kruskal’s Algorithm

MST-Kruskal \((G = (V, E), w)\)

1. \(A \leftarrow \emptyset\)
2. \textbf{for} each vertex \(v \in G.V\) \textbf{do}
3. \hspace{1em} \textbf{MAKE-SET}(v)
4. \hspace{1em} sort the edges of \(G.E\) into nondecreasing order by weight \(w\)
5. \textbf{for} each edge \((u, v) \in G.E\) taken in nondecreasing order by weight \textbf{do}
6. \hspace{1em} \textbf{if} \ FIND(u) \neq FIND(v) \ \textbf{then}
7. \hspace{2em} \hspace{1em} \(A \leftarrow A \cup \{(u, v)\}\)
8. \hspace{1em} \textbf{UNION}(u, v)
9. \hspace{1em} \textbf{return} A
MST: Kruskal’s Algorithm

Initial State:

Disjoint-Set Data Structure (union by rank only):

\[\text{MAKE-SET}(x), \ x \in \{a, b, c, d, e, f, g, h, i\} \]
MST: Kruskal’s Algorithm

(1) edge \((h, g)\):

\[
S = \{\text{component (connected through red edges) containing } h\} = \{h\}
\]

Cut = \((S, V - S)\)

\((h, g)\) is the light edge crossing the cut

Disjoint-Set Data Structure (union by rank only):

\[
\text{FIND}(h)\text{ returns } h, \quad \text{FIND}(g)\text{ returns } g
\]
MST: Kruskal’s Algorithm

(1) edge \((h, g)\):

\[
S = \{\text{component (connected through red edges) containing } h\} = \{h\}
\]

Cut = \((S, V - S)\)

\((h, g)\) is the light edge crossing the cut

Disjoint-Set Data Structure
(union by rank only):

\[
\text{UNION(} h, g \text{)}
\]
MST: Kruskal’s Algorithm

(2) edge \((i, c)\):

\[
S = \{ \text{component (connected through red edges) containing } i \} = \{i\}
\]

\[
\text{Cut} = (S, V - S)
\]

\((i, c)\) is the light edge crossing the cut

Disjoint-Set Data Structure (union by rank only):

\(\text{FIND}(i)\) returns \(i\), \(\text{FIND}(c)\) returns \(c\)
MST: Kruskal’s Algorithm

(2) edge \((i, c)\):

\[
S = \{\text{component (connected through red edges) containing } i\} = \{i\}
\]

Cut = \((S, V - S)\)

\((i, c)\) is the light edge crossing the cut

Disjoint-Set Data Structure
(union by rank only):

\[
\text{UNION}(i, c)
\]
MST: Kruskal’s Algorithm

(3) edge \((g, f)\):

\[
S = \{\text{component (connected through red edges) containing } g\} = \{h, g\}
\]

Cut = \((S, V - S)\)

\((g, f)\) is the light edge crossing the cut

Disjoint-Set Data Structure

(union by rank only):

\[\text{FIND}(g) \text{ returns } g, \quad \text{FIND}(f) \text{ returns } f\]
MST: Kruskal’s Algorithm

(3) edge \((g, f)\):

\[S = \{\text{component (connected through red edges) containing } g\} = \{h, g\} \]

Cut = \((S, V - S)\)

\((g, f)\) is the light edge crossing the cut

Disjoint-Set
Data Structure
(union by rank only):

\[\text{UNION}(g, f) \]
MST: Kruskal’s Algorithm

(4) edge \((a, b)\):

\[S = \{\text{component (connected through red edges) containing } a\} = \{a\} \]

Cut = \((S, V - S)\)

\((a, b)\) is the light edge crossing the cut

Disjoint-Set Data Structure (union by rank only):

\[\text{FIND}(a) \text{ returns } a, \quad \text{FIND}(b) \text{ returns } b \]
MST: Kruskal’s Algorithm

(4) edge \((a, b)\):

\[
S = \{\text{component (connected through red edges) containing } a\} = \{a\}
\]

\[
\text{Cut} = (S, V - S)
\]

\((a, b)\) is the light edge crossing the cut

Disjoint-Set Data Structure
(union by rank only):

```
UNION(a, b)
```
MST: Kruskal’s Algorithm

(5) edge \((c, f)\):

\[
S = \{\text{component (connected through red edges) containing } c\} = \{c, i\}
\]

Cut = \((S, V - S)\)

\((c, f)\) is the light edge crossing the cut

Disjoint-Set Data Structure

(union by rank only):

\[
\begin{align*}
\text{FIND}(c) \text{ returns } c, & \quad \text{FIND}(f) \text{ returns } g \\
\end{align*}
\]
MST: Kruskal’s Algorithm

(5) edge \((c, f)\):

\[S = \{ \text{component (connected through red edges) containing } c \} = \{c, i\} \]

Cut = \((S, V - S)\)

\((c, f)\) is the light edge crossing the cut

Disjoint-Set
Data Structure
(union by rank only):

\[
\begin{align*}
\text{UNION}(c, f)
\end{align*}
\]
MST: Kruskal’s Algorithm

(6) edge \((i, g)\):

\[
S = \{\text{component (connected through red edges) containing } i\} = \{i, c, f, g, h\}
\]

Cut = \((S, V - S)\)

\((i, g)\) creates a cycle by connecting two nodes of \(S\), and it is the heaviest edge on that cycle

Disjoint-Set Data Structure
(union by rank only):

\[
\text{FIND}(i) \text{ returns } g, \quad \text{FIND}(g) \text{ returns } g
\]
MST: Kruskal’s Algorithm

(6) edge \((i, g)\):

\[S = \{ \text{component (connected through red edges) containing } i \} = \{i, c, f, g, h\} \]

\[\text{Cut} = (S, V - S) \]

\((i, g)\) creates a cycle by connecting two nodes of \(S\), and it is the heaviest edge on that cycle.

Disjoint-Set Data Structure

(union by rank only):

- Node \(a\) with rank 0
- Node \(b\) with rank 1
- Node \(c\) with rank 0
- Node \(d\) with rank 0
- Node \(e\) with rank 0
- Node \(f\) with rank 0
- Node \(g\) with rank 0
- Node \(h\) with rank 0
- Node \(i\) with rank 0
MST: Kruskal’s Algorithm

(7) edge \((c, d)\):

\[
S = \{\text{component (connected through red edges) containing } c\} = \{i, c, f, g, h\}
\]

Cut = \((S, V - S)\)

\((c, d)\) is the light edge crossing the cut

Disjoint-Set Data Structure

(union by rank only):

\(\text{FIND}(c)\) returns \(g\), \(\text{FIND}(d)\) returns \(d\)
MST: Kruskal’s Algorithm

(7) edge \((c, d) \):

\[S = \{ \text{component (connected through red edges) containing } c \} = \{ i, c, f, g, h \} \]

Cut = \((S, V - S)\)

\((c, d) \) is the light edge crossing the cut

Disjoint-Set
Data Structure
(union by rank only):

\[\text{UNION}(c, d) \]
MST: Kruskal’s Algorithm

(8) edge \((i, h)\):

\[S = \{ \text{component (connected through red edges) containing } i \} = \{i, c, f, g, h\} \]

\[\text{Cut} = (S, V - S) \]

\((i, h)\) creates a cycle by connecting two nodes of \(S\), and it is the heaviest edge on that cycle.

Disjoint-Set Data Structure (union by rank only):

\[\text{FIND}(i) \text{ returns } g, \quad \text{FIND}(h) \text{ returns } g \]
(8) edge \((i, h)\):

\[S = \{ \text{component (connected through red edges) containing } i \} = \{i, c, f, g, h\} \]

Cut = \((S, V - S)\)

\((i, h)\) creates a cycle by connecting two nodes of \(S\), and it is the heaviest edge on that cycle.

Disjoint-Set Data Structure
(union by rank only):
(9) edge \((a, h)\):

\[S = \{\text{component (connected through red edges) containing } a\} = \{a, b\} \]

Cut = \((S, V - S)\)

\((a, h)\) is a light edge crossing the cut

Disjoint-Set Data Structure (union by rank only):

\(
\begin{align*}
\text{FIND}(a) & \text{ returns } b, \quad \text{FIND}(h) \text{ returns } g
\end{align*}
\)
MST: Kruskal’s Algorithm

(9) edge \((a, h)\):

\[
S = \{\text{component (connected through red edges) containing } a\} = \{a, b\}
\]

Cut = \((S, V - S)\)

\((a, h)\) is a light edge crossing the cut

Disjoint-Set Data Structure

(union by rank only):

\[
\text{UNION}(a, h)
\]
MST: Kruskal’s Algorithm

(10) edge \((b, c)\):

\[\begin{align*}
S &= \{ \text{component (connected through red edges) containing } b \} = \{a, b, c, d, f, g, h, i\} \\
\text{Cut} &= (S, V - S)
\end{align*} \]

\((b, c)\) creates a cycle by connecting two nodes of \(S\), and it is a heaviest edge on that cycle.

Disjoint-Set Data Structure

(union by rank only):

\[\text{FIND}(b) \text{ returns } g, \quad \text{FIND}(c) \text{ returns } g \]
MST: Kruskal’s Algorithm

(10) edge \((b, c)\):

\[
S = \{\text{component (connected through red edges) containing } b\} = \{a, b, c, d, f, g, h, i\}
\]

\[
\text{Cut} = (S, V - S)
\]

\((b, c)\) creates a cycle by connecting two nodes of \(S\), and it is a heaviest edge on that cycle

Disjoint-Set

Data Structure

(union by rank only)
MST: Kruskal’s Algorithm

(11) edge \((d, e)\):

\[S = \{ \text{component (connected through red edges) containing } d \} = \{a, b, c, d, f, g, h, i\} \]

\[\text{Cut} = (S, V - S) \]

\((d, e)\) is a light edge crossing the cut

Disjoint-Set Data Structure (union by rank only):

FIND\((d)\) returns \(g\), FIND\((e)\) returns \(e\)
MST: Kruskal’s Algorithm

(11) edge \((d, e)\):

\[S = \{\text{component (connected through red edges) containing } d\} = \{a, b, c, d, f, g, h, i\} \]

Cut = \((S, V - S)\)

\((d, e)\) is a light edge crossing the cut

Disjoint-Set
Data Structure
(union by rank only) :
MST: Kruskal’s Algorithm

(12) edge \((e, f)\):

\[S = \{\text{component (connected through red edges) containing } e\} = \{a, b, c, d, e, f, g, h, i\} \]

\[\text{Cut} = (S, V - S) \]

\((e, f)\) creates a cycle by connecting two nodes of \(S\), and it is the heaviest edge on that cycle

Disjoint-Set Data Structure
(union by rank only):

\(\text{FIND}(e)\) returns \(g\), \(\text{FIND}(f)\) returns \(g\)
MST: Kruskal’s Algorithm

(12) edge \((e, f)\):

\[S = \{\text{component (connected through red edges) containing } e\} = \{a, b, c, d, e, f, g, h, i\} \]

\[\text{Cut} = (S, V - S) \]

\((e, f)\) creates a cycle by connecting two nodes of \(S\), and it is the heaviest edge on that cycle

Disjoint-Set Data Structure
(union by rank only):

\[
\begin{array}{ccccccccc}
\text{a} & \text{b} & \text{c} & \text{d} & \text{e} & \text{f} & \text{g} & \text{i} & \text{h} \\
\hline
0 & 1 & 0 & 0 & 0 & 0 & 2 & 0 & 0
\end{array}
\]
MST: Kruskal’s Algorithm

(13) edge \((b, h)\):

\[S = \{\text{component (connected through red edges) containing } b\} = \{a, b, c, d, e, f, g, h, i\} \]

\[\text{Cut} = (S, V - S) \]

\((b, h)\) creates a cycle by connecting two nodes of \(S\), and it is the heaviest edge on that cycle

Disjoint-Set
Data Structure
(union by rank only):

\(\text{FIND}(b)\) returns \(g\), \(\text{FIND}(h)\) returns \(g\)
MST: Kruskal’s Algorithm

(13) edge \((b, h)\):

\[S = \{\text{component (connected through red edges) containing } b\} = \{a, b, c, d, e, f, g, h, i\} \]

Cut = \((S, V - S)\)

\((b, h)\) creates a cycle by connecting two nodes of \(S\), and it is the heaviest edge on that cycle

Disjoint-Set
Data Structure
(union by rank only) :

MST: Kruskal’s Algorithm

(14) edge \((d, f)\):

\[S = \{ \text{component (connected through red edges) containing } d \} = \{a, b, c, d, e, f, g, h, i\} \]

\[\text{Cut} = (S, V - S) \]

\((d, f)\) creates a cycle by connecting two nodes of \(S\), and it is the heaviest edge on that cycle.

Disjoint-Set Data Structure (union by rank only):

\[\text{FIND}(d) \text{ returns } g, \quad \text{FIND}(f) \text{ returns } g \]
MST: Kruskal’s Algorithm

(14) edge \((d, f)\):

\[S = \{\text{component (connected through red edges) containing } d\} = \{a, b, c, d, e, f, g, h, i\}\]

\[
\text{Cut} = (S, V - S)
\]

\((d, f)\) creates a cycle by connecting two nodes of \(S\), and it is the heaviest edge on that cycle

Disjoint-Set

Data Structure

(union by rank only):
MST: Kruskal’s Algorithm

(14) edge \((d, f)\):

Total weight = 37

Disjoint-Set Data Structure
(union by rank only):
Let \(n = |V| \) and \(m = |E| \). Since \(G \) is connected, we have \(m \geq n - 1 \). Then the sorting in step 4 can be done in \(O(m \log m) \) time.

\#disjoint-set operations performed, \(N = 2m + 2n - 1 \), of which

\#MAKE-SET: \(n \), \#FIND: \(2m \), \#UNION: \(n - 1 \)

So, total time taken by disjoint-set operations = \(O((n + m) \log n) \)

Hence, MST-Kruskal’s running time = \(O(m \log m) \)
The Single-Source Shortest Paths (SSSP) Problem

We are given a weighted, directed graph $G = (V, E)$ with vertex set V and edge set E, and a non-negative weight function w such that for each edge $(u, v) \in E$, $w(u, v)$ represents its weight.

We are also given a source vertex $s \in V$.

Our goal is to find a shortest path (i.e., a path of the smallest total edge weight) from s to each vertex $v \in V$.
Lemma: [subpaths of shortest paths are shortest paths] Given a weighted, directed graph $G = (V, E)$ with weight function $w: E \to \mathbb{R}$, let $p = v_1 v_2 \ldots v_k$ be a shortest path from vertex v_1 to vertex v_k and, for any i and j such that $1 \leq i \leq j \leq k$, let $p_{ij} = v_i v_{i+1} \ldots v_j$ be the subpath of p from vertex v_i to vertex v_j. Then p_{ij} is a shortest path from v_i to v_j.

Intuition behind Dijkstra’s SSSP Algorithm

Lemma: [subpaths of shortest paths are shortest paths] Given a weighted, directed graph $G = (V, E)$ with weight function $w: E \to \mathbb{R}$, let $p = v_1 v_2 \ldots v_k$ be a shortest path from vertex v_1 to vertex v_k and, for any i and j such that $1 \leq i \leq j \leq k$, let $p_{ij} = v_i v_{i+1} \ldots v_j$ be the subpath of p from vertex v_i to vertex v_j. Then p_{ij} is a shortest path from v_i to v_j.

166
Intuition behind Dijkstra’s SSSP Algorithm

Lemma: [subpaths of shortest paths are shortest paths] … … …

Let $p = v_1 v_2 \ldots v_k$ be a shortest path from v_1 to v_k and, for any i and j such that $1 \leq i \leq j \leq k$, let $p_{ij} = v_i v_{i+1} \ldots v_j$ be the subpath of p from v_i to v_j. Then p_{ij} is a shortest path from v_i to v_j.

Proof: Let’s decompose p as follows.

Then weight of path p, $w(p) = w(p_{1i}) + w(p_{ij}) + w(p_{jk})$.

![Diagram of shortest paths](image)
Intuition behind Dijkstra’s SSSP Algorithm

Lemma: [subpaths of shortest paths are shortest paths] ...

Let $p = v_1v_2 \ldots v_k$ be a shortest path from v_1 to v_k and, for any i and j such that $1 \leq i \leq j \leq k$, let $p_{ij} = v_i v_{i+1} \ldots v_j$ be the subpath of p from v_i to v_j. Then p_{ij} is a shortest path from v_i to v_j.

Proof: Let’s decompose p as follows.

```
\begin{align*}
    \text{Then weight of path } p, \ w(p) &= w(p_{1i}) + w(p_{ij}) + w(p_{jk}). \\
    \text{If } p_{ij} \text{ is not a shortest path, let } p'_{ij} \text{ be a shorter path from } v_i \text{ to } v_j. \\
    \therefore w(p_{1i}) + w(p'_{ij}) + w(p_{jk}) &< w(p_{1i}) + w(p_{ij}) + w(p_{jk}) = w(p),
\end{align*}
```

which contradicts our assumption that p is a shortest v_1 to v_k path.
Intuition behind Dijkstra’s SSSP Algorithm

Observations: Let $v \in V$ and $v \neq s$.

Consider any shortest path $p_{s,v}$ from s to v.

Path $p_{s,v}$ must reach v through a node u from which v has an incoming edge, i.e., $(u, v) \in E$.

Let $p_{s,u}$ be the subpath of $p_{s,v}$ that goes from s to u.

Since subpaths of shortest paths are also shortest paths, $p_{s,u}$ must be a shortest path from s to u.

So, once we know $p_{s,u}$, we can append (u, v) to it to find $p_{s,v}$.

But two questions!
Intuition behind Dijkstra’s SSSP Algorithm

First question: v can have multiple incoming edges. How do we know which of them lies on $p_{s,v}$?

Suppose, v has k incoming edges $(u_1, v), (u_2, v), \ldots, (u_k, v)$.

The solution is to maintain a tentative shortest s to v distance $d[v]$ initialized to ∞, and update $d[v]$ to $\min\{d[v], w(p_{s,u}) + w(u, v)\}$ when we find the shortest path $p_{s,u}$ to each $u \in \{u_1, u_2, \ldots, u_k\}$.
Intuition behind Dijkstra’s SSSP Algorithm

Second question: When do we know that $d[v] = \delta(s, v)$, where $\delta(s, v)$ is the shortest distance from s to v?

Find shortest paths to vertices in non-decreasing order of $\delta(s, \cdot)$.

We start with vertex s because we know $\delta(s, s) = 0$.

Since edge weights are non-negative, any u with $\delta(s, u) > \delta(s, v)$ cannot be on $p_{s,v}$.

So, if $d[v]$ is the smallest among all vertices to which we are yet to find shortest distances, we know that $d[v] = \delta(s, v)$.
Dijkstra’s SSSP Algorithm with a Min-Heap

(SSSP: Single-Source Shortest Paths)

Input: Weighted graph $G = (V, E)$ with vertex set V and edge set E, a weight function w, and a source vertex $s \in G[V]$.

Output: For all $v \in G[V]$, $v.d$ is set to the shortest distance from s to v.

```
Dijkstra-SSSP ( G = (V, E), w, s )
1.    for each vertex v ∈ G.V do
2.        v.d ← ∞
3.        v.π ← NIL
4.    s.d ← 0
5.    Min-Heap Q ← ∅
6.    for each vertex v ∈ G.V do
7.        INSERT( Q, v )
8.    while Q ≠ ∅ do
9.        u ← EXTRACT-MIN( Q )
10.       for each (u,v) ∈ G.E do
11.           if u.d + w(u,v) < v.d then
12.              v.d ← u.d + w(u,v)
13.              v.π ← u
14.            DECREASE-KEY( Q, v, u.d + w(u,v) )
```
SSSP: Dijkstra’s Algorithm

Initial State (with initial tentative distances)
SSSP: Dijkstra’s Algorithm

Step 1: add vertex s to SPT
SSSP: Dijkstra’s Algorithm

Step 1’: update neighbors of s
SSSP: Dijkstra’s Algorithm

Step 2: add vertex y through edge (s, y)
SSSP: Dijkstra’s Algorithm

Step 2’: update neighbors of y
SSSP: Dijkstra’s Algorithm

Step 3: add vertex z through edge (y, z)
SSSP: Dijkstra’s Algorithm

Step 3′: update neighbors of z
SSSP: Dijkstra’s Algorithm

Step 4: add vertex t through edge (y, t)
SSSP: Dijkstra’s Algorithm

Step 4’: update neighbors of \(t \)
SSSP: Dijkstra’s Algorithm

Step 5: add vertex x through edge (t, x)
SSSP: Dijkstra’s Algorithm

Step 5’: update neighbors of x
SSSP: Dijkstra’s Algorithm

Done
One undirected edge \Rightarrow Two directed edges

SSSP: Dijkstra’s Algorithm
SSSP: Dijkstra’s Algorithm

Initial State (with initial tentative distances)

- **b.** \(d = \infty\) \(\pi = \text{NIL}\)
- **c.** \(d = \infty\) \(\pi = \text{NIL}\)
- **d.** \(d = \infty\) \(\pi = \text{NIL}\)
- **a.** \(d = \infty\) \(\pi = \text{NIL}\)
- **i.** \(d = \infty\) \(\pi = \text{NIL}\)
- **h.** \(d = \infty\) \(\pi = \text{NIL}\)
- **g.** \(d = \infty\) \(\pi = \text{NIL}\)
- **f.** \(d = \infty\) \(\pi = \text{NIL}\)
- **e.** \(d = \infty\) \(\pi = \text{NIL}\)
SSSP: Dijkstra’s Algorithm

Initial State (with initial tentative distances)

- \(b.d = \infty \), \(b.\pi = NIL \)
- \(c.d = \infty \), \(c.\pi = NIL \)
- \(d.d = \infty \), \(d.\pi = NIL \)
- \(a.d = 0 \), \(a.\pi = NIL \)
- \(i.d = \infty \), \(i.\pi = NIL \)
- \(h.d = \infty \), \(h.\pi = NIL \)
- \(g.d = \infty \), \(g.\pi = NIL \)
- \(f.d = \infty \), \(f.\pi = NIL \)
SSSP: Dijkstra’s Algorithm

Initial State (with initial tentative distances)

- **a**. \(d = 0\), \(\pi = \text{NIL}\)
- **b**. \(d = \infty\), \(\pi = \text{NIL}\)
- **c**. \(d = \infty\), \(\pi = \text{NIL}\)
- **d**. \(d = \infty\), \(\pi = \text{NIL}\)
- **e**. \(d = \infty\), \(\pi = \text{NIL}\)
- **f**. \(d = \infty\), \(\pi = \text{NIL}\)
- **g**. \(d = \infty\), \(\pi = \text{NIL}\)
- **h**. \(d = \infty\), \(\pi = \text{NIL}\)
- **i**. \(d = \infty\), \(\pi = \text{NIL}\)
SSSP: Dijkstra’s Algorithm

Step 1: add vertex a to SPT

- $b. d = \infty$
- $b. \pi =\text{NIL}$
- $c. d = \infty$
- $c. \pi =\text{NIL}$
- $d. d = \infty$
- $d. \pi =\text{NIL}$
- $a. d = 0$
- $a. \pi =\text{NIL}$
- $i. d = \infty$
- $i. \pi =\text{NIL}$
- $h. d = \infty$
- $h. \pi =\text{NIL}$
- $g. d = \infty$
- $g. \pi =\text{NIL}$
- $f. d = \infty$
- $f. \pi =\text{NIL}$
- $e. d = \infty$
- $e. \pi =\text{NIL}$
SSSP: Dijkstra’s Algorithm

Step 1’: update neighbors of \(a \)

- \(b.\pi = a \)
- \(b.d = 4 \)
- \(c.\pi = NIL \)
- \(c.d = \infty \)
- \(d.\pi = NIL \)
- \(d.d = \infty \)
- \(h.\pi = a \)
- \(h.d = 8 \)
- \(g.\pi = NIL \)
- \(g.d = \infty \)
- \(f.\pi = NIL \)
- \(f.d = \infty \)
- \(i.\pi = NIL \)
- \(i.d = \infty \)
SSSP: Dijkstra’s Algorithm

Step 2: add vertex b **through edge** (a, b)

- **a.** $d = 0$
- **a.** $\pi = NIL$
- **b.** $d = 4$
- **b.** $\pi = a$
- **c.** $d = \infty$
- **c.** $\pi = NIL$
- **d.** $d = \infty$
- **d.** $\pi = NIL$
- **e.** $d = \infty$
- **e.** $\pi = NIL$
- **f.** $d = \infty$
- **f.** $\pi = NIL$
- **g.** $d = \infty$
- **g.** $\pi = NIL$
- **h.** $d = 8$
- **h.** $\pi = a$

Graph with nodes a, b, c, d, e, f, g, h and edges with weights.
SSSP: Dijkstra’s Algorithm

Step 2’: update neighbors of \(b \)

- \(b.d = 4 \), \(b.\pi = a \)
- \(c.d = 12 \), \(c.\pi = b \)
- \(d.d = \infty \), \(d.\pi = NIL \)
- \(a.d = 0 \), \(a.\pi = NIL \)
- \(h.d = 8 \), \(h.\pi = a \)
- \(g.d = \infty \), \(g.\pi = NIL \)
- \(f.d = \infty \), \(f.\pi = NIL \)

Graph with nodes and edges:
- Node \(a \):
 - Distance: 0
 - Previous Node: NIL
- Node \(b \):
 - Distance: 4
 - Previous Node: \(a \)
- Node \(c \):
 - Distance: 12
 - Previous Node: \(b \)
- Node \(d \):
 - Distance: \infty
 - Previous Node: NIL
- Node \(e \):
 - Distance: \infty
 - Previous Node: NIL
- Node \(f \):
 - Distance: \infty
 - Previous Node: NIL
- Node \(g \):
 - Distance: \infty
 - Previous Node: NIL
- Node \(h \):
 - Distance: 8
 - Previous Node: \(a \)

Connections:
- \(a \) to \(b \) with distance 4
- \(a \) to \(h \) with distance 8
- \(b \) to \(c \) with distance 8
- \(b \) to \(d \) with distance \infty
- \(b \) to \(f \) with distance \infty
- \(c \) to \(d \) with distance 7
- \(c \) to \(i \) with distance 2
- \(d \) to \(e \) with distance 9
- \(d \) to \(f \) with distance 14
- \(f \) to \(e \) with distance 10
- \(i \) to \(g \) with distance 6
- \(i \) to \(h \) with distance 7
- \(i \) to \(e \) with distance 14
- \(g \) to \(h \) with distance 2
- \(g \) to \(f \) with distance \infty
- \(g \) to \(e \) with distance 14
- \(h \) to \(i \) with distance 7
- \(h \) to \(f \) with distance \infty
- \(i \) to \(c \) with distance 2
SSSP: Dijkstra’s Algorithm

Step 3: add vertex h through edge (a, h)
SSSP: Dijkstra’s Algorithm

Step 3’: update neighbors of \(h \)

- \(b.d = 4 \) \(b.\pi = a \)
- \(c.d = 12 \) \(c.\pi = b \)
- \(d.d = \infty \) \(d.\pi = NIL \)
- \(a.d = 0 \) \(a.\pi = NIL \)
- \(h.d = 8 \) \(h.\pi = a \)
- \(i.d = 15 \) \(i.\pi = h \)
- \(g.d = 9 \) \(g.\pi = h \)
- \(f.d = \infty \) \(f.\pi = NIL \)
SSSP: Dijkstra’s Algorithm

Step 4: add vertex g through edge (h, g)

- $b.d = 4$
- $b.\pi = a$
- $c.d = 12$
- $c.\pi = b$
- $d.d = \infty$
- $d.\pi = NIL$
- $a.d = 0$
- $a.\pi = NIL$
- $h.d = 8$
- $h.\pi = a$
- $i.d = 15$
- $i.\pi = h$
- $g.d = 9$
- $g.\pi = h$
- $f.d = \infty$
- $f.\pi = NIL$
- $e.d = \infty$
- $e.\pi = NIL$
SSSP: Dijkstra’s Algorithm

Step 4’: update neighbors of g

- b. $d = 4$
 - b. $\pi = a$
- c. $d = 12$
 - c. $\pi = b$
- d. $d = \infty$
 - d. $\pi = \text{NIL}$
- a. $d = 0$
 - a. $\pi = \text{NIL}$
- h. $d = 8$
 - h. $\pi = a$
- g. $d = 9$
 - g. $\pi = h$
- i. $d = 15$
 - i. $\pi = h$
- e. $d = \infty$
 - e. $\pi = \text{NIL}$
SSSP: Dijkstra’s Algorithm

Step 5: add vertex \(f \) through edge \((g, f)\)
SSSP: Dijkstra’s Algorithm

Step 5’: update neighbors of \(f \)

- \(b. d = 4 \), \(b. \pi = a \)
- \(c. d = 12 \), \(c. \pi = b \)
- \(d. d = 25 \), \(d. \pi = f \)
- \(a. d = 0 \), \(a. \pi = NIL \)
- \(i. d = 15 \), \(i. \pi = h \)
- \(h. d = 8 \), \(h. \pi = a \)
- \(g. d = 9 \), \(g. \pi = h \)
- \(f. d = 11 \), \(f. \pi = g \)
- \(e. d = 21 \), \(e. \pi = f \)
SSSP: Dijkstra’s Algorithm

Step 6: add vertex c through edge (b, c)
SSSP: Dijkstra’s Algorithm

Step 6’: update neighbors of c

- $b.d = 4$
 - $b.\pi = a$
- $c.d = 12$
 - $c.\pi = b$
- $d.d = 19$
 - $d.\pi = c$

![Graph diagram showing the updated neighbors of node c with distances and previous nodes]
SSSP: Dijkstra’s Algorithm

Step 7: add vertex i through edge (c, i)
SSSP: Dijkstra’s Algorithm

Step 7’: update neighbors of i

- \(a.d = 0 \), \(a.\pi = NIL \)
- \(b.d = 4 \), \(b.\pi = a \)
- \(c.d = 12 \), \(c.\pi = b \)
- \(d.d = 19 \), \(d.\pi = c \)
- \(i.d = 14 \), \(i.\pi = c \)
- \(h.d = 8 \), \(h.\pi = a \)
- \(g.d = 9 \), \(g.\pi = h \)
- \(f.d = 11 \), \(f.\pi = g \)
- \(e.d = 21 \), \(e.\pi = f \)
SSSP: Dijkstra’s Algorithm

Step 8: add vertex d through edge (c, d)

- $b.d = 4$, $b.\pi = a$
- $c.d = 12$, $c.\pi = b$
- $d.d = 19$, $d.\pi = c$
- $a.d = 0$, $a.\pi = NIL$
- $i.d = 14$, $i.\pi = c$
- $h.d = 8$, $h.\pi = a$
- $g.d = 9$, $g.\pi = h$
- $f.d = 11$, $f.\pi = g$
SSSP: Dijkstra’s Algorithm

Step 8’: update neighbors of \(d\)

- \(b. d = 4\), \(b. \pi = a\)
- \(c. d = 12\), \(c. \pi = b\)
- \(d. d = 19\), \(d. \pi = c\)

\(a. d = 0\), \(a. \pi = NIL\)

\(b. d = 4\), \(b. \pi = a\)
\(c. d = 12\), \(c. \pi = b\)
\(d. d = 19\), \(d. \pi = c\)

\(i. d = 14\), \(i. \pi = c\)

\(h. d = 8\), \(h. \pi = a\)
\(g. d = 9\), \(g. \pi = h\)
\(f. d = 11\), \(f. \pi = g\)

\(e. d = 21\), \(e. \pi = f\)
SSSP: Dijkstra’s Algorithm

Step 9: add vertex e through edge \((f, e)\)
SSSP: Dijkstra’s Algorithm

Step 9’: update neighbors of e

b. \(d = 4 \)
\(b. \pi = a \)

c. \(d = 12 \)
\(c. \pi = b \)

d. \(d = 19 \)
\(d. \pi = c \)

a. \(d = 0 \)
\(a. \pi = NIL \)

i. \(d = 14 \)
\(i. \pi = c \)

h. \(d = 8 \)
\(h. \pi = a \)

g. \(d = 9 \)
\(g. \pi = h \)

f. \(d = 11 \)
\(f. \pi = g \)

e. \(d = 21 \)
\(e. \pi = f \)
SSSP: Dijkstra’s Algorithm

Done

\(b.d = 4\)
\(b.\pi = a\)

\(c.d = 12\)
\(c.\pi = b\)

\(d.d = 19\)
\(d.\pi = c\)

\(a.d = 0\)
\(a.\pi = NIL\)

\(i.d = 14\)
\(i.\pi = c\)

\(e.d = 21\)
\(e.\pi = f\)
Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

Input: Weighted graph $G = (V, E)$ with vertex set V and edge set E, a weight function w, and a source vertex $s \in G[V]$.

Output: For all $v \in G[V]$, $v.d$ is set to the shortest distance from s to v.

Let $n = |G[V]|$ and $m = |G[E]|$

INSERTS $= n$
EXTRACT-MINS $= n$
DECREASE-KEYS $\leq m$

Total cost

\[\leq n(cost_{\text{Insert}} + cost_{\text{Extract-Min}}) + m(cost_{\text{Decrease-Key}}) \]
Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

Input: Weighted graph $G = (V, E)$ with vertex set V and edge set E, a weight function w, and a source vertex $s \in G[V]$.

Output: For all $v \in G[V]$, $v.d$ is set to the shortest distance from s to v.

Let $n = |G[V]|$ and $m = |G[E]|$

For Binary Heap (worst-case costs):

- $cost_{\text{Insert}} = O(\log n)$
- $cost_{\text{Extract-Min}} = O(\log n)$
- $cost_{\text{Decrease-Key}} = O(\log n)$

\[\therefore \text{Total cost (worst-case)} = O((m + n) \log n) \]
Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

Input: Weighted graph $G = (V, E)$ with vertex set V and edge set E, a weight function w, and a source vertex $s \in G[V]$.

Output: For all $v \in G[V]$, $v.d$ is set to the shortest distance from s to v.

Dijkstra-SSSP ($G = (V,E)$, w, s)
1. for each vertex $v \in G.V$ do
2. \hspace{1cm} $v.d \leftarrow \infty$
3. \hspace{1cm} $v.\pi \leftarrow NIL$
4. \hspace{1cm} $s.d \leftarrow 0$
5. \hspace{1cm} Min-Heap $Q \leftarrow \emptyset$
6. for each vertex $v \in G.V$ do
7. \hspace{2cm} INSERT(Q, v)
8. \hspace{1cm} while $Q \neq \emptyset$ do
9. \hspace{2cm} $u \leftarrow \text{EXTRACT-MIN}(Q)$
10. \hspace{2cm} for each $(u,v) \in G.E$ do
11. \hspace{3cm} if $u.d + w(u,v) < v.d$ then
12. \hspace{4cm} $v.d \leftarrow u.d + w(u,v)$
13. \hspace{4cm} $v.\pi \leftarrow u$
14. \hspace{4cm} DECREASE-KEY(Q, v, $u.d + w(u,v)$)

Let $n = |G[V]|$ and $m = |G[E]|$

For Fibonacci Heap (amortized):

- $cost_{\text{Insert}} = O(1)$
- $cost_{\text{Extract-Min}} = O(\log n)$
- $cost_{\text{Decrease-Key}} = O(1)$

\[\therefore \text{Total cost (amortized)} = O(m + n \log n)\]
Optional
Kruskal’s MST algorithm
and a Union-Find data structure
with union by rank and path compression
A Disjoint-Set Data Structure (union by rank and path compression)

MAKE-SET \(x \)
1. \(\pi(x) \leftarrow x \)
2. \(\text{rank}(x) \leftarrow 0 \)

LINK \(x, y \)
1. if \(\text{rank}(x) > \text{rank}(y) \) then \(\pi(y) \leftarrow x \)
2. else \(\pi(x) \leftarrow y \)
3. if \(\text{rank}(x) = \text{rank}(y) \) then \(\text{rank}(y) \leftarrow \text{rank}(y) + 1 \)

UNION \(x, y \)
1. \(\text{LINK} \left(\text{FIND} \left(x \right), \text{FIND} \left(y \right) \right) \)

FIND \(x \)
1. if \(x \neq \pi(x) \) then \(\pi(x) \leftarrow \text{FIND} \left(\pi(x) \right) \)
2. return \(\pi(x) \)
A Disjoint-Set Data Structure
(union by rank and path compression)

Theorem: A sequence of \(N \) \texttt{MAKE-SET}, \texttt{UNION} and \texttt{FIND} operations of which exactly \(n \) \((\leq N)\) are \texttt{MAKE-SET} operations takes \(O(N\alpha(n)) \) time to execute, where \(\alpha(n) \) is the extremely slowly growing \textit{Inverse Ackermann Function} which has a value no larger than 3 for all practical values of \(n \).
MST: Kruskal’s Algorithm (union by rank and path compression)

Algorithm:

\[\text{MST-Kruskal}(G = (V, E), w) \]

1. \(A \leftarrow \emptyset \)
2. \(\text{for each vertex } v \in G.V \text{ do} \)
3. \(\text{MAKE-SET}(v) \)
4. \(\text{sort the edges of } G.E \text{ into nondecreasing order by weight } w \)
5. \(\text{for each edge } (u, v) \in G.E \text{ taken in nondecreasing order by weight do} \)
6. \(\text{if } \text{FIND}(u) \neq \text{FIND}(v) \text{ then} \)
7. \(A \leftarrow A \cup \{(u, v)\} \)
8. \(\text{UNION}(u, v) \)
9. \(\text{return } A \)

Let \(n = |V| \) and \(m = |E| \). Since \(G \) is connected, we have \(m \geq n - 1 \). Then the sorting in step 4 can be done in \(O(m \log m) \) time.

disjoint-set operations performed, \(N = 2m + 2n - 1 \), of which

- \#MAKE-SET: \(n \)
- \#FIND: \(2m \)
- \#UNION: \(n - 1 \)

So, total time taken by disjoint-set operations = \(O((n + m)\alpha(n)) \)

Hence, MST-Kruskal’s running time = \(O(m \log m) \)