
1

CSE 548 / AMS 542: Analysis of Algorithms

Prerequisites Review 1
(Insertion Sort and Selection Sort)

Rezaul Chowdhury
Department of Computer Science

SUNY Stony Brook
Fall 2023

Insertion Sort

2

1 2 3 4 5 6 7 8 9 10

A 7 4 1 15 9 5 12 3 18 11

1 2 3 4 5 6 7 8 9 10

A 1 4 7 9 15 5 12 3 18 11

1 2 3 4 5 6 7 8 9 10

A 1 4 5 7 9 15 12 3 18 11

sorted unchanged

sorted unchanged

State 1
Input array

State 5
Suppose somehow
we have this:

State 6
Now from state 5 we
want to reach this:

1 2 3 4 5 6 7 8 9 10

A 7 4 1 15 9 5 12 3 18 11Input array

Let State 𝒋𝒋 be a state of the array 𝐴𝐴 in which all numbers that were originally in
𝐴𝐴[1. . 𝑗𝑗] are placed in sorted order (i.e., nondecreasing order of value) in 𝐴𝐴[1. . 𝑗𝑗].

Insertion Sort

3

1 2 3 4 5 6 7 8 9 10

A 1 4 7 9 15 5 12 3 18 11

1 2 3 4 5 6 7 8 9 10

A 1 4 5 7 9 15 12 3 18 11

sorted unchanged

sorted unchanged

State 5
Suppose somehow
we have this:

State 6
Now from state 5
we want reach this:

To reach state 6 put
𝐴𝐴 6 in sorted order
among the sorted
numbers in 𝐴𝐴 1. . 5 .

Insertion Sort

4

1 2 3 4 5 6 7 8 9 10

A 1 4 7 9 15 5 12 3 18 11

State 5
Suppose somehow
we have this:

Compare 𝐴𝐴 6 with 𝐴𝐴 5 .

1 2 3 4 5 6 7 8 9 10

A 1 4 7 9 5 15 12 3 18 11

Since 𝐴𝐴 5 > 𝐴𝐴 6 , swap.

Compare 𝐴𝐴 5 with 𝐴𝐴 4 .

1 2 3 4 5 6 7 8 9 10

A 1 4 7 5 9 15 12 3 18 11

Since 𝐴𝐴 4 > 𝐴𝐴 5 , swap.

Compare 𝐴𝐴 4 with 𝐴𝐴 3 .

1 2 3 4 5 6 7 8 9 10

A 1 4 5 7 9 15 12 3 18 11

Since 𝐴𝐴 3 > 𝐴𝐴 4 , swap.

Compare 𝐴𝐴 3 with 𝐴𝐴 2 .

1 2 3 4 5 6 7 8 9 10

A 1 4 5 7 9 15 12 3 18 11

Since 𝐴𝐴 2 ≤ 𝐴𝐴 3 , stop.

State 6

Insertion Sort

5

1 2 3 4 5 6 7 8 9 10

A 7 4 1 15 9 5 12 3 18 11
State 1
𝐴𝐴 1 is trivially sorted

1 2 3 4 5 6 7 8 9 10

A 7 4 1 15 9 5 12 3 18 11Input array

1 2 3 4 5 6 7 8 9 10

A 4 7 1 15 9 5 12 3 18 11
State 2
𝐴𝐴 1. . 2 is now sorted

Insert 𝐴𝐴 2 in sorted order into 𝐴𝐴 1

1 2 3 4 5 6 7 8 9 10

A 1 4 7 15 9 5 12 3 18 11
State 3
𝐴𝐴 1. . 3 is now sorted

Insert 𝐴𝐴 3 in sorted order into 𝐴𝐴 1. . 2

1 2 3 4 5 6 7 8 9 10

A 1 4 7 15 9 5 12 3 18 11
State 4
𝐴𝐴 1. . 4 is now sorted

Insert 𝐴𝐴 4 in sorted order into 𝐴𝐴 1. . 3

1 2 3 4 5 6 7 8 9 10

A 1 4 7 9 15 5 12 3 18 11
State 5
𝐴𝐴 1. . 5 is now sorted

Insert 𝐴𝐴 5 in sorted order into 𝐴𝐴 1. . 4

Insertion Sort

6

1 2 3 4 5 6 7 8 9 10

A 1 4 7 9 15 5 12 3 18 11
State 5
𝐴𝐴 1. . 5 is now sorted

1 2 3 4 5 6 7 8 9 10

A 1 4 5 7 9 15 12 3 18 11
State 6
𝐴𝐴 1. . 6 is now sorted

Insert 𝐴𝐴 6 in sorted order into 𝐴𝐴 1. . 5

1 2 3 4 5 6 7 8 9 10

A 1 4 5 7 9 12 15 3 18 11
State 7
𝐴𝐴 1. . 7 is now sorted

Insert 𝐴𝐴 7 in sorted order into 𝐴𝐴 1. . 6

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 7 9 12 15 18 11
State 8
𝐴𝐴 1. . 8 is now sorted

Insert 𝐴𝐴 8 in sorted order into 𝐴𝐴 1. . 7

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 7 9 12 15 18 11
State 9
𝐴𝐴 1. . 9 is now sorted

Insert 𝐴𝐴 9 in sorted order into 𝐴𝐴 1. . 8

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 7 9 11 12 15 18
State 10
𝐴𝐴 1. . 10 is now sorted

Insert 𝐴𝐴 10 in sorted order into 𝐴𝐴 1. . 9

Insertion Sort
Input: An array 𝐴𝐴[1 ∶ 𝑛𝑛] of 𝑛𝑛 numbers.

Output: Elements of 𝐴𝐴[1 ∶ 𝑛𝑛] rearranged in non-decreasing order of value.

INSERTION-SORT (A)

1. for 𝑗𝑗 = 2 to 𝐴𝐴. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

2. // insert 𝐴𝐴 𝑗𝑗 into the sorted sequence 𝐴𝐴 1. . 𝑗𝑗 − 1

3. 𝑖𝑖 = 𝑗𝑗 − 1

4. while 𝑖𝑖 > 0 and 𝐴𝐴 𝑖𝑖 > 𝐴𝐴 𝑖𝑖 + 1

5. 𝐴𝐴 𝑖𝑖 + 1 ↔ 𝐴𝐴 𝑖𝑖 // swap 𝐴𝐴 𝑖𝑖 and 𝐴𝐴 𝑖𝑖 + 1

6. 𝑖𝑖 = 𝑖𝑖 − 1

7

INSERTION-SORT (A)

1. for 𝑗𝑗 = 2 to 𝐴𝐴. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

2. // insert 𝐴𝐴 𝑗𝑗 into the sorted sequence 𝐴𝐴 1. . 𝑗𝑗 − 1

3. 𝑖𝑖 = 𝑗𝑗 − 1

4. while 𝑖𝑖 > 0 and 𝐴𝐴 𝑖𝑖 > 𝐴𝐴 𝑖𝑖 + 1

5. 𝐴𝐴 𝑖𝑖 + 1 ↔ 𝐴𝐴 𝑖𝑖 // swap 𝐴𝐴 𝑖𝑖 and 𝐴𝐴 𝑖𝑖 + 1

6. 𝑖𝑖 = 𝑖𝑖 − 1

Worst Case Runtime of Insertion Sort (Upper Bound)

Running time, 𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐1𝑛𝑛 + 𝑐𝑐3 𝑛𝑛 − 1
 +𝑐𝑐4 ∑𝑗𝑗=2𝑛𝑛 𝑗𝑗 + 𝑐𝑐5 ∑𝑗𝑗=2𝑛𝑛 𝑗𝑗 − 1 + 𝑐𝑐6 ∑𝑗𝑗=2𝑛𝑛 𝑗𝑗 − 1

= 0.5 𝑐𝑐4 + 𝑐𝑐5 + 𝑐𝑐6 𝑛𝑛2 + 0.5 2𝑐𝑐1 + 2𝑐𝑐3 + 𝑐𝑐4 − 𝑐𝑐5 − 𝑐𝑐6 𝑛𝑛 − 𝑐𝑐3 + 𝑐𝑐4

⇒ 𝑇𝑇 𝑛𝑛 = 𝑂𝑂 𝑛𝑛2

𝑐𝑐1
0

𝑐𝑐3
𝑐𝑐4
𝑐𝑐5
𝑐𝑐6

𝑛𝑛

𝑛𝑛 − 1

�
2≤𝑗𝑗≤𝑛𝑛

𝑗𝑗

�
2≤𝑗𝑗≤𝑛𝑛

𝑗𝑗 − 1

cost times

8

INSERTION-SORT (A)

1. for 𝑗𝑗 = 2 to 𝐴𝐴. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

2. // insert 𝐴𝐴 𝑗𝑗 into the sorted sequence 𝐴𝐴 1. . 𝑗𝑗 − 1

3. 𝑖𝑖 = 𝑗𝑗 − 1

4. while 𝑖𝑖 > 0 and 𝐴𝐴 𝑖𝑖 > 𝐴𝐴 𝑖𝑖 + 1

5. 𝐴𝐴 𝑖𝑖 + 1 ↔ 𝐴𝐴 𝑖𝑖 // swap 𝐴𝐴 𝑖𝑖 and 𝐴𝐴 𝑖𝑖 + 1

6. 𝑖𝑖 = 𝑖𝑖 − 1

Best Case Runtime of Insertion Sort (Lower Bound)

𝑛𝑛

𝑛𝑛 − 1

0

𝑐𝑐1
0

𝑐𝑐3
𝑐𝑐4
𝑐𝑐5
𝑐𝑐6

cost times

9

Running time, 𝑇𝑇 𝑛𝑛 ≥ 𝑐𝑐1𝑛𝑛 + 𝑐𝑐3 𝑛𝑛 − 1 + 𝑐𝑐4 𝑛𝑛 − 1

= 𝑐𝑐1 + 𝑐𝑐3 + 𝑐𝑐4 𝑛𝑛 − 𝑐𝑐3 + 𝑐𝑐4

⇒ 𝑇𝑇 𝑛𝑛 = Ω 𝑛𝑛

Insertion Sort
(Slightly Optimized but Same Asymptotic Bounds)
Input: An array 𝐴𝐴[1 ∶ 𝑛𝑛] of 𝑛𝑛 numbers.

Output: Elements of 𝐴𝐴[1 ∶ 𝑛𝑛] rearranged in non-decreasing order of value.

INSERTION-SORT (A)

1. for 𝑗𝑗 = 2 to 𝐴𝐴. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

2. 𝑘𝑘𝑘𝑘𝑘𝑘 = 𝐴𝐴 𝑗𝑗

3. // insert 𝐴𝐴 𝑗𝑗 into the sorted sequence 𝐴𝐴 1. . 𝑗𝑗 − 1

4. 𝑖𝑖 = 𝑗𝑗 − 1

5. while 𝑖𝑖 > 0 and 𝐴𝐴 𝑖𝑖 > 𝑘𝑘𝑘𝑘𝑘𝑘

6. 𝐴𝐴 𝑖𝑖 + 1 = 𝐴𝐴 𝑖𝑖

7. 𝑖𝑖 = 𝑖𝑖 − 1

8. 𝐴𝐴 𝑖𝑖 + 1 = 𝑘𝑘𝑘𝑘𝑘𝑘

10

Selection Sort

11

1 2 3 4 5 6 7 8 9 10

A 7 4 1 15 9 5 12 3 18 11

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 9 15 12 7 18 11

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 7 15 12 9 18 11

State 0
Input array

State 4
Suppose somehow
we have this:

State 5
Now from state 4 we
want to reach this:

1 2 3 4 5 6 7 8 9 10

A 7 4 1 15 9 5 12 3 18 11Input array

Let State 𝒋𝒋 be a state of the array 𝐴𝐴 in which the smallest 𝑗𝑗 numbers of 𝐴𝐴[1. .𝑛𝑛]
are placed in sorted order (i.e., nondecreasing order of value) in 𝐴𝐴[1. . 𝑗𝑗], and
the remaining numbers placed in arbitrary order in 𝐴𝐴[𝑗𝑗 + 1. . 𝑛𝑛].

smallest 4 numbers
in sorted order

remaining
6 numbers

smallest 5 numbers
in sorted order

remaining
5 numbers

Selection Sort

12

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 9 15 12 7 18 11

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 7 15 12 9 18 11

State 4
Suppose somehow
we have this:

State 5
Now from state 4
we want reach this:

smallest 4 numbers
in sorted order

remaining
6 numbers

smallest 5 numbers
in sorted order

remaining
5 numbers

To reach state 5 find
the smallest number
in 𝐴𝐴 5. . 10 and
swap that with 𝐴𝐴 5 .

Selection Sort

13

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 9 15 12 7 18 11

State 4
Suppose somehow
we have this:

smallest 4 numbers
in sorted order

remaining
6 numbers

𝑚𝑚𝑚𝑚𝑚𝑚 = 5 𝐴𝐴 6 ≥ 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚

Selection Sort

14

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 9 15 12 7 18 11

State 4
Suppose somehow
we have this:

smallest 4 numbers
in sorted order

remaining
6 numbers

𝑚𝑚𝑚𝑚𝑚𝑚 = 5 𝐴𝐴 6 ≥ 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚
Move on

Selection Sort

15

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 9 15 12 7 18 11

State 4
Suppose somehow
we have this:

smallest 4 numbers
in sorted order

remaining
6 numbers

𝑚𝑚𝑚𝑚𝑚𝑚 = 5 𝐴𝐴 7 ≥ 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚

Selection Sort

16

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 9 15 12 7 18 11

State 4
Suppose somehow
we have this:

smallest 4 numbers
in sorted order

remaining
6 numbers

𝑚𝑚𝑚𝑚𝑚𝑚 = 5 𝐴𝐴 7 ≥ 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚
Move on

Selection Sort

17

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 9 15 12 7 18 11

State 4
Suppose somehow
we have this:

smallest 4 numbers
in sorted order

remaining
6 numbers

𝑚𝑚𝑚𝑚𝑚𝑚 = 5 𝐴𝐴 8 < 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚

Selection Sort

18

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 9 15 12 7 18 11

State 4
Suppose somehow
we have this:

smallest 4 numbers
in sorted order

remaining
6 numbers

𝑚𝑚𝑚𝑚𝑚𝑚 = 8 𝐴𝐴 8 < 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚 = 8
Move on

Selection Sort

19

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 9 15 12 7 18 11

State 4
Suppose somehow
we have this:

smallest 4 numbers
in sorted order

remaining
6 numbers

𝑚𝑚𝑚𝑚𝑚𝑚 = 8 𝐴𝐴 9 ≥ 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚

Selection Sort

20

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 9 15 12 7 18 11

State 4
Suppose somehow
we have this:

smallest 4 numbers
in sorted order

remaining
6 numbers

𝑚𝑚𝑚𝑚𝑚𝑚 = 8 𝐴𝐴 9 ≥ 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚
Move on

Selection Sort

21

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 9 15 12 7 18 11

State 4
Suppose somehow
we have this:

smallest 4 numbers
in sorted order

remaining
6 numbers

𝑚𝑚𝑚𝑚𝑚𝑚 = 8 𝐴𝐴 10 ≥ 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚

Selection Sort

22

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 9 15 12 7 18 11

State 4
Suppose somehow
we have this:

smallest 4 numbers
in sorted order

remaining
6 numbers

𝑚𝑚𝑚𝑚𝑚𝑚 = 8 𝐴𝐴 10 ≥ 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚
Done scanning

Selection Sort

23

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 9 15 12 7 18 11

State 4
Suppose somehow
we have this:

smallest 4 numbers
in sorted order

remaining
6 numbers

𝑚𝑚𝑚𝑚𝑚𝑚 = 8
Swap 𝐴𝐴 5 and 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚

Selection Sort

24

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 7 15 12 9 18 11

State 5

smallest 5 numbers
in sorted order

remaining
5 numbers

𝑚𝑚𝑚𝑚𝑚𝑚 = 8
Swap 𝐴𝐴 5 and 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚

Selection Sort

25

1 2 3 4 5 6 7 8 9 10

A 7 4 1 15 9 5 12 3 18 11
State 0
Input array

1 2 3 4 5 6 7 8 9 10

A 1 4 7 15 9 5 12 3 18 11
State 1
𝐴𝐴 1 is now sorted

Swap 𝐴𝐴 1 with the smallest number in 𝐴𝐴 1. . 10

1 2 3 4 5 6 7 8 9 10

A 1 3 7 15 9 5 12 4 18 11
State 2
𝐴𝐴 1. . 2 is now sorted

Swap 𝐴𝐴 2 with the smallest number in 𝐴𝐴 2. . 10

1 2 3 4 5 6 7 8 9 10

A 1 3 4 15 9 5 12 7 18 11
State 3
𝐴𝐴 1. . 3 is now sorted

Swap 𝐴𝐴 3 with the smallest number in 𝐴𝐴 3. . 10

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 9 15 12 7 18 11
State 4
𝐴𝐴 1. . 4 is now sorted

Swap 𝐴𝐴 4 with the smallest number in 𝐴𝐴 4. . 10

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 7 15 12 9 18 11
State 5
𝐴𝐴 1. . 5 is now sorted

Swap 𝐴𝐴 5 with the smallest number in 𝐴𝐴 5. . 10

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 7 9 11 12 15 18

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 7 9 11 12 15 18

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 7 9 11 12 18 15

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 7 9 11 15 18 12

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 7 9 12 15 18 11

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 7 15 12 9 18 11

Selection Sort

26

State 5
𝐴𝐴 1. . 5 is now sorted

State 6
𝐴𝐴 1. . 6 is now sorted

Swap 𝐴𝐴 6 with the smallest number in 𝐴𝐴 6. . 10

State 7
𝐴𝐴 1. . 7 is now sorted

Swap 𝐴𝐴 7 with the smallest number in 𝐴𝐴 7. . 10

State 8
𝐴𝐴 1. . 8 is now sorted

Swap 𝐴𝐴 8 with the smallest number in 𝐴𝐴 8. . 10

State 9
𝐴𝐴 1. . 9 is now sorted

Swap 𝐴𝐴 9 with the smallest number in 𝐴𝐴 9. . 10

State 10
𝐴𝐴 1. . 10 is now sorted

Do nothing!

Selection Sort
Input: An array 𝐴𝐴[1 ∶ 𝑛𝑛] of 𝑛𝑛 numbers.

Output: Elements of 𝐴𝐴[1 ∶ 𝑛𝑛] rearranged in non-decreasing order of value.

SELECTION-SORT (A)

1. for 𝑗𝑗 = 1 to 𝐴𝐴. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 1

2. // find the index of an entry with the smallest value in 𝐴𝐴 𝑗𝑗. .𝐴𝐴. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

3. 𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑗𝑗

4. for 𝑖𝑖 = 𝑗𝑗 + 1 to 𝐴𝐴. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

5. if 𝐴𝐴 𝑖𝑖 < 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚

6. 𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑖𝑖

7. // swap 𝐴𝐴 𝑗𝑗 and 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚

8. 𝐴𝐴 𝑗𝑗 ↔ 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚

27

[Optional]
Proof of Correctness

of Insertion Sort

28

Loop Invariants
We use loop invariants to prove correctness of iterative algorithms

A loop invariant is associated with a given loop of an algorithm,
and it is a formal statement about the relationship among variables
of the algorithm such that

― [Initialization] It is true prior to the first iteration of the loop

― [Maintenance] If it is true before an iteration of the loop, it
remains true before the next iteration

― [Termination] When the loop terminates, the invariant gives us
a useful property that helps show that the algorithm is correct

29

Loop Invariants for Insertion Sort

INSERTION-SORT (A)

1. for 𝑗𝑗 = 2 to 𝐴𝐴. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

2. 𝑘𝑘𝑘𝑘𝑘𝑘 = 𝐴𝐴 𝑗𝑗

3. // insert 𝐴𝐴 𝑗𝑗 into the sorted sequence 𝐴𝐴 1. . 𝑗𝑗 − 1

4. 𝑖𝑖 = 𝑗𝑗 − 1

5. while 𝑖𝑖 > 0 and 𝐴𝐴 𝑖𝑖 > 𝑘𝑘𝑘𝑘𝑘𝑘

6. 𝐴𝐴 𝑖𝑖 + 1 = 𝐴𝐴 𝑖𝑖

7. 𝑖𝑖 = 𝑖𝑖 − 1

8. 𝐴𝐴 𝑖𝑖 + 1 = 𝑘𝑘𝑘𝑘𝑘𝑘

30

Loop Invariants for Insertion Sort

INSERTION-SORT (A)

1. for 𝑗𝑗 = 2 to 𝐴𝐴. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

 Invariant 1: 𝐴𝐴 1. . 𝑗𝑗 − 1 consists of the elements

 originally in 𝐴𝐴 1. . 𝑗𝑗 − 1 , but in sorted order

2. 𝑘𝑘𝑘𝑘𝑘𝑘 = 𝐴𝐴 𝑗𝑗

3. // insert 𝐴𝐴 𝑗𝑗 into the sorted sequence 𝐴𝐴 1. . 𝑗𝑗 − 1

4. 𝑖𝑖 = 𝑗𝑗 − 1

5. while 𝑖𝑖 > 0 and 𝐴𝐴 𝑖𝑖 > 𝑘𝑘𝑘𝑘𝑘𝑘

6. 𝐴𝐴 𝑖𝑖 + 1 = 𝐴𝐴 𝑖𝑖

7. 𝑖𝑖 = 𝑖𝑖 − 1

8. 𝐴𝐴 𝑖𝑖 + 1 = 𝑘𝑘𝑘𝑘𝑘𝑘

31

Loop Invariants for Insertion Sort

INSERTION-SORT (A)

1. for 𝑗𝑗 = 2 to 𝐴𝐴. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

 Invariant 1: 𝐴𝐴 1. . 𝑗𝑗 − 1 consists of the elements

 originally in 𝐴𝐴 1. . 𝑗𝑗 − 1 , but in sorted order

2. 𝑘𝑘𝑘𝑘𝑘𝑘 = 𝐴𝐴 𝑗𝑗

3. // insert 𝐴𝐴 𝑗𝑗 into the sorted sequence 𝐴𝐴 1. . 𝑗𝑗 − 1

4. 𝑖𝑖 = 𝑗𝑗 − 1

5. while 𝑖𝑖 > 0 and 𝐴𝐴 𝑖𝑖 > 𝑘𝑘𝑘𝑘𝑘𝑘

 Invariant 2: 𝐴𝐴 𝑖𝑖. . 𝑗𝑗 are each ≥ 𝑘𝑘𝑘𝑘𝑘𝑘

6. 𝐴𝐴 𝑖𝑖 + 1 = 𝐴𝐴 𝑖𝑖

7. 𝑖𝑖 = 𝑖𝑖 − 1

8. 𝐴𝐴 𝑖𝑖 + 1 = 𝑘𝑘𝑘𝑘𝑘𝑘

32

Loop Invariant 1: Initialization

At the start of the first iteration of the loop (in lines 1 − 8): 𝑗𝑗 = 2

Hence, subarray 𝐴𝐴 1. . 𝑗𝑗 − 1 consists of a single element 𝐴𝐴 1 , which is
in fact the original element in 𝐴𝐴 1 .

The subarray consisting of a single element is trivially sorted.

Hence, the invariant holds initially.

33

Loop Invariant 1: Maintenance

We assume that invariant 1 holds before the start of the current iteration.

Hence, the following holds: 𝐴𝐴 1. . 𝑗𝑗 − 1 consists of the elements originally
 in 𝐴𝐴 1. . 𝑗𝑗 − 1 , but in sorted order.

For invariant 1 to hold before the start of the next iteration, the following
must hold at the end of the current iteration:

 𝐴𝐴 1. . 𝑗𝑗 consists of the elements originally in 𝐴𝐴 1. . 𝑗𝑗 , but in sorted order.

We use invariant 2 to prove this. 34

Loop Invariant 1: Maintenance
Loop Invariant 2: Initialization

At the start of the first iteration of the loop (in lines 5 − 7): 𝑖𝑖 = 𝑗𝑗 − 1

Hence, subarray 𝐴𝐴 𝑖𝑖. . 𝑗𝑗 consists of only two entries: 𝐴𝐴 𝑖𝑖 and 𝐴𝐴 𝑗𝑗 .

We know the following:
― 𝐴𝐴 𝑖𝑖 > 𝑘𝑘𝑘𝑘𝑘𝑘 (explicitly tested in line 5)
― 𝐴𝐴 𝑗𝑗 = 𝑘𝑘𝑘𝑘𝑘𝑘 (from line 2)

Hence, invariant 2 holds initially.
35

Loop Invariant 1: Maintenance
Loop Invariant 2: Maintenance

We assume that invariant 2 holds before the start of the current iteration.

Hence, the following holds: 𝐴𝐴 𝑖𝑖. . 𝑗𝑗 are each ≥ 𝑘𝑘𝑘𝑘𝑘𝑘.

Since line 6 copies 𝐴𝐴 𝑖𝑖 which is known to be > 𝑘𝑘𝑘𝑘𝑘𝑘 to 𝐴𝐴 𝑖𝑖 + 1 which also
held a value ≥ 𝑘𝑘𝑘𝑘𝑘𝑘, the following holds at the end of the current iteration:
𝐴𝐴 𝑖𝑖 + 1. . 𝑗𝑗 are each ≥ 𝑘𝑘𝑘𝑘𝑘𝑘.

Before the start of the next iteration the check 𝐴𝐴 𝑖𝑖 > 𝑘𝑘𝑘𝑘𝑘𝑘 in line 5 ensures
that invariant 2 continues to hold.

36

Loop Invariant 1: Maintenance
Loop Invariant 2: Maintenance

Observe that the inner loop (in lines 5 − 7) does not destroy any data
because though the first iteration overwrites 𝐴𝐴 𝑗𝑗 , that 𝐴𝐴 𝑗𝑗 has already
been saved in 𝑘𝑘𝑘𝑘𝑘𝑘 in line 2.

As long as 𝑘𝑘𝑘𝑘𝑘𝑘 is copied back into a location in 𝐴𝐴 1. . 𝑗𝑗 without destroying
any other element in that subarray, we maintain the invariant that 𝐴𝐴 1. . 𝑗𝑗
contains the first 𝑗𝑗 elements of the original list.

37

Loop Invariant 1: Maintenance
Loop Invariant 2: Termination

When the inner loop terminates we know the following.

― 𝐴𝐴 1. . 𝑖𝑖 is sorted with each element ≤ 𝑘𝑘𝑘𝑘𝑘𝑘
 if 𝑖𝑖 = 0, true by default
 if 𝑖𝑖 > 0, true because 𝐴𝐴 1. . 𝑖𝑖 is sorted and 𝐴𝐴 𝑖𝑖 ≤ 𝑘𝑘𝑘𝑘𝑘𝑘

― 𝐴𝐴 𝑖𝑖 + 1. . 𝑗𝑗 is sorted with each element ≥ 𝑘𝑘𝑘𝑘𝑘𝑘 because the following
held before 𝑖𝑖 was decremented: 𝐴𝐴 𝑖𝑖. . 𝑗𝑗 is sorted with each item ≥ 𝑘𝑘𝑘𝑘𝑘𝑘

― 𝐴𝐴 𝑖𝑖 + 1 = 𝐴𝐴 𝑖𝑖 + 2 if the loop was executed at least once, and
𝐴𝐴 𝑖𝑖 + 1 = 𝑘𝑘𝑘𝑘𝑘𝑘 otherwise 38

Loop Invariant 1: Maintenance
Loop Invariant 2: Termination

When the inner loop terminates we know the following.

― 𝐴𝐴 1. . 𝑖𝑖 is sorted with each element ≤ 𝑘𝑘𝑘𝑘𝑘𝑘
― 𝐴𝐴 𝑖𝑖 + 1. . 𝑗𝑗 is sorted with each element ≥ 𝑘𝑘𝑘𝑘𝑘𝑘
― 𝐴𝐴 𝑖𝑖 + 1 = 𝐴𝐴 𝑖𝑖 + 2 or 𝐴𝐴 𝑖𝑖 + 1 = 𝑘𝑘𝑘𝑘𝑘𝑘

Given the facts above, line 8 does not destroy any data, and gives us
𝐴𝐴 1. . 𝑗𝑗 as the sorted permutation of the original data in 𝐴𝐴 1. . 𝑗𝑗 .

39

Loop Invariant 1: Termination

When the outer loop terminates we know that 𝑗𝑗 = 𝐴𝐴. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 1.

Hence, 𝐴𝐴 1. . 𝑗𝑗 − 1 is the entire array 𝐴𝐴 1. .𝐴𝐴. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , which is sorted and
contains the original elements of 𝐴𝐴 1. .𝐴𝐴. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 .

40

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40

