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Insertion Sort
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1 2 3 4 5 6 7 8 9 10

A 7 4 1 15 9 5 12 3 18 11

1 2 3 4 5 6 7 8 9 10

A 1 4 7 9 15 5 12 3 18 11

1 2 3 4 5 6 7 8 9 10

A 1 4 5 7 9 15 12 3 18 11

sorted unchanged

sorted unchanged

State 1
Input array

State 5
Suppose somehow
we have this:

State 6
Now from state 5 we 
want to reach this:

1 2 3 4 5 6 7 8 9 10

A 7 4 1 15 9 5 12 3 18 11Input array

Let State 𝒋𝒋 be a state of the array 𝐴𝐴 in which all numbers that were originally in 
𝐴𝐴[1. . 𝑗𝑗] are placed in sorted order (i.e., nondecreasing order of value) in 𝐴𝐴[1. . 𝑗𝑗].



Insertion Sort
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1 2 3 4 5 6 7 8 9 10

A 1 4 7 9 15 5 12 3 18 11

1 2 3 4 5 6 7 8 9 10

A 1 4 5 7 9 15 12 3 18 11

sorted unchanged

sorted unchanged

State 5
Suppose somehow
we have this:

State 6
Now from state 5 
we want reach this:

To reach state 6 put 
𝐴𝐴 6  in sorted order 
among the sorted 
numbers in 𝐴𝐴 1. . 5 .



Insertion Sort
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1 2 3 4 5 6 7 8 9 10

A 1 4 7 9 15 5 12 3 18 11

State 5
Suppose somehow
we have this:

Compare 𝐴𝐴 6  with 𝐴𝐴 5 .

1 2 3 4 5 6 7 8 9 10

A 1 4 7 9 5 15 12 3 18 11

Since 𝐴𝐴 5 > 𝐴𝐴 6 , swap.

Compare 𝐴𝐴 5  with 𝐴𝐴 4 .

1 2 3 4 5 6 7 8 9 10

A 1 4 7 5 9 15 12 3 18 11

Since 𝐴𝐴 4 > 𝐴𝐴 5 , swap.

Compare 𝐴𝐴 4  with 𝐴𝐴 3 .

1 2 3 4 5 6 7 8 9 10

A 1 4 5 7 9 15 12 3 18 11

Since 𝐴𝐴 3 > 𝐴𝐴 4 , swap.

Compare 𝐴𝐴 3  with 𝐴𝐴 2 .

1 2 3 4 5 6 7 8 9 10

A 1 4 5 7 9 15 12 3 18 11

Since 𝐴𝐴 2 ≤ 𝐴𝐴 3 , stop.

State 6



Insertion Sort
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1 2 3 4 5 6 7 8 9 10

A 7 4 1 15 9 5 12 3 18 11
State 1
𝐴𝐴 1  is trivially sorted

1 2 3 4 5 6 7 8 9 10

A 7 4 1 15 9 5 12 3 18 11Input array

1 2 3 4 5 6 7 8 9 10

A 4 7 1 15 9 5 12 3 18 11
State 2
𝐴𝐴 1. . 2  is now sorted

Insert 𝐴𝐴 2  in sorted order into 𝐴𝐴 1

1 2 3 4 5 6 7 8 9 10

A 1 4 7 15 9 5 12 3 18 11
State 3
𝐴𝐴 1. . 3  is now sorted

Insert 𝐴𝐴 3  in sorted order into 𝐴𝐴 1. . 2

1 2 3 4 5 6 7 8 9 10

A 1 4 7 15 9 5 12 3 18 11
State 4
𝐴𝐴 1. . 4  is now sorted

Insert 𝐴𝐴 4  in sorted order into 𝐴𝐴 1. . 3

1 2 3 4 5 6 7 8 9 10

A 1 4 7 9 15 5 12 3 18 11
State 5
𝐴𝐴 1. . 5  is now sorted

Insert 𝐴𝐴 5  in sorted order into 𝐴𝐴 1. . 4



Insertion Sort
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1 2 3 4 5 6 7 8 9 10

A 1 4 7 9 15 5 12 3 18 11
State 5
𝐴𝐴 1. . 5  is now sorted

1 2 3 4 5 6 7 8 9 10

A 1 4 5 7 9 15 12 3 18 11
State 6
𝐴𝐴 1. . 6  is now sorted

Insert 𝐴𝐴 6  in sorted order into 𝐴𝐴 1. . 5

1 2 3 4 5 6 7 8 9 10

A 1 4 5 7 9 12 15 3 18 11
State 7
𝐴𝐴 1. . 7  is now sorted

Insert 𝐴𝐴 7  in sorted order into 𝐴𝐴 1. . 6

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 7 9 12 15 18 11
State 8
𝐴𝐴 1. . 8  is now sorted

Insert 𝐴𝐴 8  in sorted order into 𝐴𝐴 1. . 7

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 7 9 12 15 18 11
State 9
𝐴𝐴 1. . 9  is now sorted

Insert 𝐴𝐴 9  in sorted order into 𝐴𝐴 1. . 8

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 7 9 11 12 15 18
State 10
𝐴𝐴 1. . 10  is now sorted

Insert 𝐴𝐴 10  in sorted order into 𝐴𝐴 1. . 9



Insertion Sort
Input: An array 𝐴𝐴[ 1 ∶  𝑛𝑛 ] of 𝑛𝑛 numbers.
 

Output: Elements of 𝐴𝐴[ 1 ∶  𝑛𝑛 ] rearranged in non-decreasing order of value.

INSERTION-SORT ( A )

1.  for 𝑗𝑗 = 2 to 𝐴𝐴. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

2.      // insert 𝐴𝐴 𝑗𝑗  into the sorted sequence 𝐴𝐴 1. . 𝑗𝑗 − 1

3.      𝑖𝑖 = 𝑗𝑗 − 1

4.      while 𝑖𝑖 > 0 and 𝐴𝐴 𝑖𝑖 > 𝐴𝐴 𝑖𝑖 + 1

5.           𝐴𝐴 𝑖𝑖 + 1 ↔ 𝐴𝐴 𝑖𝑖           // swap 𝐴𝐴 𝑖𝑖  and 𝐴𝐴 𝑖𝑖 + 1

6.           𝑖𝑖 = 𝑖𝑖 − 1
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INSERTION-SORT ( A )

1.  for 𝑗𝑗 = 2 to 𝐴𝐴. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

2.      // insert 𝐴𝐴 𝑗𝑗  into the sorted sequence 𝐴𝐴 1. . 𝑗𝑗 − 1

3.      𝑖𝑖 = 𝑗𝑗 − 1

4.      while 𝑖𝑖 > 0 and 𝐴𝐴 𝑖𝑖 > 𝐴𝐴 𝑖𝑖 + 1

5.           𝐴𝐴 𝑖𝑖 + 1 ↔ 𝐴𝐴 𝑖𝑖           // swap 𝐴𝐴 𝑖𝑖  and 𝐴𝐴 𝑖𝑖 + 1

6.           𝑖𝑖 = 𝑖𝑖 − 1

Worst Case Runtime of Insertion Sort ( Upper Bound )

Running time, 𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐1𝑛𝑛 + 𝑐𝑐3 𝑛𝑛 − 1
  +𝑐𝑐4 ∑𝑗𝑗=2𝑛𝑛 𝑗𝑗 + 𝑐𝑐5 ∑𝑗𝑗=2𝑛𝑛 𝑗𝑗 − 1 + 𝑐𝑐6 ∑𝑗𝑗=2𝑛𝑛 𝑗𝑗 − 1

= 0.5 𝑐𝑐4 + 𝑐𝑐5 + 𝑐𝑐6 𝑛𝑛2 + 0.5 2𝑐𝑐1 + 2𝑐𝑐3 + 𝑐𝑐4 − 𝑐𝑐5 − 𝑐𝑐6 𝑛𝑛 − 𝑐𝑐3 + 𝑐𝑐4

⇒ 𝑇𝑇 𝑛𝑛 = 𝑂𝑂 𝑛𝑛2

𝑐𝑐1
0

𝑐𝑐3
𝑐𝑐4
𝑐𝑐5
𝑐𝑐6

𝑛𝑛

𝑛𝑛 − 1

�
2≤𝑗𝑗≤𝑛𝑛

𝑗𝑗

�
2≤𝑗𝑗≤𝑛𝑛

𝑗𝑗 − 1

cost times
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INSERTION-SORT ( A )

1.  for 𝑗𝑗 = 2 to 𝐴𝐴. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

2.      // insert 𝐴𝐴 𝑗𝑗  into the sorted sequence 𝐴𝐴 1. . 𝑗𝑗 − 1

3.      𝑖𝑖 = 𝑗𝑗 − 1

4.      while 𝑖𝑖 > 0 and 𝐴𝐴 𝑖𝑖 > 𝐴𝐴 𝑖𝑖 + 1

5.           𝐴𝐴 𝑖𝑖 + 1 ↔ 𝐴𝐴 𝑖𝑖           // swap 𝐴𝐴 𝑖𝑖  and 𝐴𝐴 𝑖𝑖 + 1

6.           𝑖𝑖 = 𝑖𝑖 − 1

Best Case Runtime of Insertion Sort ( Lower Bound )

𝑛𝑛

𝑛𝑛 − 1

0

𝑐𝑐1
0

𝑐𝑐3
𝑐𝑐4
𝑐𝑐5
𝑐𝑐6

cost times
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Running time, 𝑇𝑇 𝑛𝑛 ≥ 𝑐𝑐1𝑛𝑛 + 𝑐𝑐3 𝑛𝑛 − 1 + 𝑐𝑐4 𝑛𝑛 − 1

= 𝑐𝑐1 + 𝑐𝑐3 + 𝑐𝑐4 𝑛𝑛 − 𝑐𝑐3 + 𝑐𝑐4

⇒ 𝑇𝑇 𝑛𝑛 = Ω 𝑛𝑛



Insertion Sort 
(Slightly Optimized but Same Asymptotic Bounds)
Input: An array 𝐴𝐴[ 1 ∶  𝑛𝑛 ] of 𝑛𝑛 numbers.
 

Output: Elements of 𝐴𝐴[ 1 ∶  𝑛𝑛 ] rearranged in non-decreasing order of value.

INSERTION-SORT ( A )

1.  for 𝑗𝑗 = 2 to 𝐴𝐴. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

2.      𝑘𝑘𝑘𝑘𝑘𝑘 = 𝐴𝐴 𝑗𝑗  

3.      // insert 𝐴𝐴 𝑗𝑗  into the sorted sequence 𝐴𝐴 1. . 𝑗𝑗 − 1

4.      𝑖𝑖 = 𝑗𝑗 − 1

5.      while 𝑖𝑖 > 0 and 𝐴𝐴 𝑖𝑖 > 𝑘𝑘𝑘𝑘𝑘𝑘

6.           𝐴𝐴 𝑖𝑖 + 1 = 𝐴𝐴 𝑖𝑖

7.           𝑖𝑖 = 𝑖𝑖 − 1

8.      𝐴𝐴 𝑖𝑖 + 1 = 𝑘𝑘𝑘𝑘𝑘𝑘

10



Selection Sort
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1 2 3 4 5 6 7 8 9 10

A 7 4 1 15 9 5 12 3 18 11

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 9 15 12 7 18 11

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 7 15 12 9 18 11

State 0
Input array

State 4
Suppose somehow
we have this:

State 5
Now from state 4 we 
want to reach this:

1 2 3 4 5 6 7 8 9 10

A 7 4 1 15 9 5 12 3 18 11Input array

Let State 𝒋𝒋 be a state of the array 𝐴𝐴 in which the smallest 𝑗𝑗 numbers of 𝐴𝐴[1. .𝑛𝑛] 
are placed in sorted order (i.e., nondecreasing order of value) in 𝐴𝐴[1. . 𝑗𝑗], and 
the remaining numbers placed in arbitrary order in 𝐴𝐴[𝑗𝑗 + 1. . 𝑛𝑛].

smallest 4 numbers 
in sorted order

remaining
6 numbers

smallest 5 numbers 
in sorted order

remaining
5 numbers



Selection Sort
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1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 9 15 12 7 18 11

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 7 15 12 9 18 11

State 4
Suppose somehow
we have this:

State 5
Now from state 4 
we want reach this:

smallest 4 numbers 
in sorted order

remaining
6 numbers

smallest 5 numbers 
in sorted order

remaining
5 numbers

To reach state 5 find 
the smallest number 
in 𝐴𝐴 5. . 10  and 
swap that with 𝐴𝐴 5 .



Selection Sort
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1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 9 15 12 7 18 11

State 4
Suppose somehow
we have this:

smallest 4 numbers 
in sorted order

remaining
6 numbers

𝑚𝑚𝑚𝑚𝑚𝑚 = 5 𝐴𝐴 6 ≥ 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚



Selection Sort

14

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 9 15 12 7 18 11

State 4
Suppose somehow
we have this:

smallest 4 numbers 
in sorted order

remaining
6 numbers

𝑚𝑚𝑚𝑚𝑚𝑚 = 5 𝐴𝐴 6 ≥ 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚  
Move on



Selection Sort

15

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 9 15 12 7 18 11

State 4
Suppose somehow
we have this:

smallest 4 numbers 
in sorted order

remaining
6 numbers

𝑚𝑚𝑚𝑚𝑚𝑚 = 5 𝐴𝐴 7 ≥ 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚  



Selection Sort
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1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 9 15 12 7 18 11

State 4
Suppose somehow
we have this:

smallest 4 numbers 
in sorted order

remaining
6 numbers

𝑚𝑚𝑚𝑚𝑚𝑚 = 5 𝐴𝐴 7 ≥ 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚  
Move on



Selection Sort

17

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 9 15 12 7 18 11

State 4
Suppose somehow
we have this:

smallest 4 numbers 
in sorted order

remaining
6 numbers

𝑚𝑚𝑚𝑚𝑚𝑚 = 5 𝐴𝐴 8 < 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚  



Selection Sort
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1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 9 15 12 7 18 11

State 4
Suppose somehow
we have this:

smallest 4 numbers 
in sorted order

remaining
6 numbers

𝑚𝑚𝑚𝑚𝑚𝑚 = 8 𝐴𝐴 8 < 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚  
𝑚𝑚𝑚𝑚𝑚𝑚 = 8
Move on



Selection Sort

19

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 9 15 12 7 18 11

State 4
Suppose somehow
we have this:

smallest 4 numbers 
in sorted order

remaining
6 numbers

𝑚𝑚𝑚𝑚𝑚𝑚 = 8 𝐴𝐴 9 ≥ 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚  



Selection Sort

20

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 9 15 12 7 18 11

State 4
Suppose somehow
we have this:

smallest 4 numbers 
in sorted order

remaining
6 numbers

𝑚𝑚𝑚𝑚𝑚𝑚 = 8 𝐴𝐴 9 ≥ 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚  
Move on



Selection Sort

21

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 9 15 12 7 18 11

State 4
Suppose somehow
we have this:

smallest 4 numbers 
in sorted order

remaining
6 numbers

𝑚𝑚𝑚𝑚𝑚𝑚 = 8 𝐴𝐴 10 ≥ 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚  



Selection Sort

22

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 9 15 12 7 18 11

State 4
Suppose somehow
we have this:

smallest 4 numbers 
in sorted order

remaining
6 numbers

𝑚𝑚𝑚𝑚𝑚𝑚 = 8 𝐴𝐴 10 ≥ 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚  
Done scanning



Selection Sort
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1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 9 15 12 7 18 11

State 4
Suppose somehow
we have this:

smallest 4 numbers 
in sorted order

remaining
6 numbers

𝑚𝑚𝑚𝑚𝑚𝑚 = 8
Swap 𝐴𝐴 5  and 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚



Selection Sort

24

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 7 15 12 9 18 11

State 5

smallest 5 numbers 
in sorted order

remaining
5 numbers

𝑚𝑚𝑚𝑚𝑚𝑚 = 8
Swap 𝐴𝐴 5  and 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚



Selection Sort

25

1 2 3 4 5 6 7 8 9 10

A 7 4 1 15 9 5 12 3 18 11
State 0
Input array

1 2 3 4 5 6 7 8 9 10

A 1 4 7 15 9 5 12 3 18 11
State 1
𝐴𝐴 1  is now sorted

Swap 𝐴𝐴 1  with the smallest number in 𝐴𝐴 1. . 10

1 2 3 4 5 6 7 8 9 10

A 1 3 7 15 9 5 12 4 18 11
State 2
𝐴𝐴 1. . 2  is now sorted

Swap 𝐴𝐴 2  with the smallest number in 𝐴𝐴 2. . 10

1 2 3 4 5 6 7 8 9 10

A 1 3 4 15 9 5 12 7 18 11
State 3
𝐴𝐴 1. . 3  is now sorted

Swap 𝐴𝐴 3  with the smallest number in 𝐴𝐴 3. . 10

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 9 15 12 7 18 11
State 4
𝐴𝐴 1. . 4  is now sorted

Swap 𝐴𝐴 4  with the smallest number in 𝐴𝐴 4. . 10

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 7 15 12 9 18 11
State 5
𝐴𝐴 1. . 5  is now sorted

Swap 𝐴𝐴 5  with the smallest number in 𝐴𝐴 5. . 10



1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 7 9 11 12 15 18

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 7 9 11 12 15 18

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 7 9 11 12 18 15

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 7 9 11 15 18 12

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 7 9 12 15 18 11

1 2 3 4 5 6 7 8 9 10

A 1 3 4 5 7 15 12 9 18 11

Selection Sort

26

State 5
𝐴𝐴 1. . 5  is now sorted

State 6
𝐴𝐴 1. . 6  is now sorted

Swap 𝐴𝐴 6  with the smallest number in 𝐴𝐴 6. . 10

State 7
𝐴𝐴 1. . 7  is now sorted

Swap 𝐴𝐴 7  with the smallest number in 𝐴𝐴 7. . 10

State 8
𝐴𝐴 1. . 8  is now sorted

Swap 𝐴𝐴 8  with the smallest number in 𝐴𝐴 8. . 10

State 9
𝐴𝐴 1. . 9  is now sorted

Swap 𝐴𝐴 9  with the smallest number in 𝐴𝐴 9. . 10

State 10
𝐴𝐴 1. . 10  is now sorted

Do nothing!



Selection Sort
Input: An array 𝐴𝐴[ 1 ∶  𝑛𝑛 ] of 𝑛𝑛 numbers.
 

Output: Elements of 𝐴𝐴[ 1 ∶  𝑛𝑛 ] rearranged in non-decreasing order of value.

SELECTION-SORT ( A )

1.  for 𝑗𝑗 = 1 to 𝐴𝐴. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 1

2.      // find the index of an entry with the smallest value in 𝐴𝐴 𝑗𝑗. .𝐴𝐴. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

3.      𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑗𝑗 

4.      for 𝑖𝑖 = 𝑗𝑗 + 1 to 𝐴𝐴. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

5.           if 𝐴𝐴 𝑖𝑖 < 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚

6.                𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑖𝑖

7.      // swap 𝐴𝐴 𝑗𝑗  and 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚

8.      𝐴𝐴 𝑗𝑗 ↔ 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚
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[ Optional ]
Proof of Correctness

of Insertion Sort

28



Loop Invariants
We use loop invariants to prove correctness of iterative algorithms

A loop invariant is associated with a given loop of an algorithm, 
and it is a formal statement about the relationship among variables 
of the algorithm such that

― [ Initialization ] It is true prior to the first iteration of the loop

― [ Maintenance ] If it is true before an iteration of the loop, it 
remains true before the next iteration

― [ Termination ] When the loop terminates, the invariant gives us 
a useful property that helps show that the algorithm is correct

29



Loop Invariants for Insertion Sort

INSERTION-SORT ( A )

1.  for 𝑗𝑗 = 2 to 𝐴𝐴. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

2.      𝑘𝑘𝑘𝑘𝑘𝑘 = 𝐴𝐴 𝑗𝑗  

3.      // insert 𝐴𝐴 𝑗𝑗  into the sorted sequence 𝐴𝐴 1. . 𝑗𝑗 − 1

4.      𝑖𝑖 = 𝑗𝑗 − 1

5.      while 𝑖𝑖 > 0 and 𝐴𝐴 𝑖𝑖 > 𝑘𝑘𝑘𝑘𝑘𝑘

6.           𝐴𝐴 𝑖𝑖 + 1 = 𝐴𝐴 𝑖𝑖

7.           𝑖𝑖 = 𝑖𝑖 − 1

8.      𝐴𝐴 𝑖𝑖 + 1 = 𝑘𝑘𝑘𝑘𝑘𝑘
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Loop Invariants for Insertion Sort

INSERTION-SORT ( A )

1.  for 𝑗𝑗 = 2 to 𝐴𝐴. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

             Invariant 1: 𝐴𝐴 1. . 𝑗𝑗 − 1  consists of the elements 

                                originally in 𝐴𝐴 1. . 𝑗𝑗 − 1 , but in sorted order 

2.      𝑘𝑘𝑘𝑘𝑘𝑘 = 𝐴𝐴 𝑗𝑗  

3.      // insert 𝐴𝐴 𝑗𝑗  into the sorted sequence 𝐴𝐴 1. . 𝑗𝑗 − 1

4.      𝑖𝑖 = 𝑗𝑗 − 1

5.      while 𝑖𝑖 > 0 and 𝐴𝐴 𝑖𝑖 > 𝑘𝑘𝑘𝑘𝑘𝑘

6.           𝐴𝐴 𝑖𝑖 + 1 = 𝐴𝐴 𝑖𝑖

7.           𝑖𝑖 = 𝑖𝑖 − 1

8.      𝐴𝐴 𝑖𝑖 + 1 = 𝑘𝑘𝑘𝑘𝑘𝑘

31



Loop Invariants for Insertion Sort

INSERTION-SORT ( A )

1.  for 𝑗𝑗 = 2 to 𝐴𝐴. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

             Invariant 1: 𝐴𝐴 1. . 𝑗𝑗 − 1  consists of the elements 

                                originally in 𝐴𝐴 1. . 𝑗𝑗 − 1 , but in sorted order 

2.      𝑘𝑘𝑘𝑘𝑘𝑘 = 𝐴𝐴 𝑗𝑗  

3.      // insert 𝐴𝐴 𝑗𝑗  into the sorted sequence 𝐴𝐴 1. . 𝑗𝑗 − 1

4.      𝑖𝑖 = 𝑗𝑗 − 1

5.      while 𝑖𝑖 > 0 and 𝐴𝐴 𝑖𝑖 > 𝑘𝑘𝑘𝑘𝑘𝑘

                 Invariant 2: 𝐴𝐴 𝑖𝑖. . 𝑗𝑗  are each ≥ 𝑘𝑘𝑘𝑘𝑘𝑘 

6.           𝐴𝐴 𝑖𝑖 + 1 = 𝐴𝐴 𝑖𝑖

7.           𝑖𝑖 = 𝑖𝑖 − 1

8.      𝐴𝐴 𝑖𝑖 + 1 = 𝑘𝑘𝑘𝑘𝑘𝑘
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Loop Invariant 1: Initialization

At the start of the first iteration of the loop ( in lines 1 − 8 ): 𝑗𝑗 = 2

Hence, subarray 𝐴𝐴 1. . 𝑗𝑗 − 1  consists of a single element 𝐴𝐴 1 , which is 
in fact the original element in 𝐴𝐴 1 .

The subarray consisting of a single element is trivially sorted.

Hence, the invariant holds initially.
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Loop Invariant 1: Maintenance

We assume that invariant 1 holds before the start of the current iteration.

Hence, the following holds: 𝐴𝐴 1. . 𝑗𝑗 − 1  consists of the elements originally 
                      in 𝐴𝐴 1. . 𝑗𝑗 − 1 , but in sorted order.

For invariant 1 to hold before the start of the next iteration, the following 
must hold at the end of the current iteration:

 𝐴𝐴 1. . 𝑗𝑗  consists of the elements originally in 𝐴𝐴 1. . 𝑗𝑗 , but in sorted order.

We use invariant 2 to prove this. 34



Loop Invariant 1: Maintenance
Loop Invariant 2: Initialization

At the start of the first iteration of the loop ( in lines 5 − 7 ): 𝑖𝑖 = 𝑗𝑗 − 1

Hence, subarray 𝐴𝐴 𝑖𝑖. . 𝑗𝑗  consists of only two entries: 𝐴𝐴 𝑖𝑖  and 𝐴𝐴 𝑗𝑗 .

We know the following:
― 𝐴𝐴 𝑖𝑖 > 𝑘𝑘𝑘𝑘𝑘𝑘 ( explicitly tested in line 5 )
― 𝐴𝐴 𝑗𝑗 = 𝑘𝑘𝑘𝑘𝑘𝑘 ( from line 2 )

Hence, invariant 2 holds initially.
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Loop Invariant 1: Maintenance
Loop Invariant 2: Maintenance

We assume that invariant 2 holds before the start of the current iteration.

Hence, the following holds: 𝐴𝐴 𝑖𝑖. . 𝑗𝑗  are each ≥ 𝑘𝑘𝑘𝑘𝑘𝑘.

Since line 6 copies 𝐴𝐴 𝑖𝑖  which is known to be > 𝑘𝑘𝑘𝑘𝑘𝑘 to 𝐴𝐴 𝑖𝑖 + 1  which also 
held a value ≥ 𝑘𝑘𝑘𝑘𝑘𝑘, the following holds at the end of the current iteration: 
𝐴𝐴 𝑖𝑖 + 1. . 𝑗𝑗  are each ≥ 𝑘𝑘𝑘𝑘𝑘𝑘.

Before the start of the next iteration the check 𝐴𝐴 𝑖𝑖 > 𝑘𝑘𝑘𝑘𝑘𝑘 in line 5 ensures 
that invariant 2 continues to hold.
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Loop Invariant 1: Maintenance
Loop Invariant 2: Maintenance

Observe that the inner loop ( in lines 5 − 7 ) does not destroy any data 
because though the first iteration overwrites 𝐴𝐴 𝑗𝑗 , that 𝐴𝐴 𝑗𝑗  has already 
been saved in 𝑘𝑘𝑘𝑘𝑘𝑘 in line 2.

As long as 𝑘𝑘𝑘𝑘𝑘𝑘 is copied back into a location in 𝐴𝐴 1. . 𝑗𝑗  without destroying 
any other element in that subarray, we maintain the invariant that 𝐴𝐴 1. . 𝑗𝑗  
contains the first 𝑗𝑗 elements of the original list.
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Loop Invariant 1: Maintenance
Loop Invariant 2: Termination

When the inner loop terminates we know the following.

― 𝐴𝐴 1. . 𝑖𝑖  is sorted with each element ≤ 𝑘𝑘𝑘𝑘𝑘𝑘
 if 𝑖𝑖 = 0, true by default
 if 𝑖𝑖 > 0, true because 𝐴𝐴 1. . 𝑖𝑖  is sorted and 𝐴𝐴 𝑖𝑖 ≤ 𝑘𝑘𝑘𝑘𝑘𝑘

― 𝐴𝐴 𝑖𝑖 + 1. . 𝑗𝑗  is sorted with each element ≥ 𝑘𝑘𝑘𝑘𝑘𝑘 because the following 
held before 𝑖𝑖 was decremented: 𝐴𝐴 𝑖𝑖. . 𝑗𝑗  is sorted with each item ≥ 𝑘𝑘𝑘𝑘𝑘𝑘  

― 𝐴𝐴 𝑖𝑖 + 1 = 𝐴𝐴 𝑖𝑖 + 2  if the loop was executed at least once, and  
𝐴𝐴 𝑖𝑖 + 1 = 𝑘𝑘𝑘𝑘𝑘𝑘 otherwise 38



Loop Invariant 1: Maintenance
Loop Invariant 2: Termination

When the inner loop terminates we know the following.

― 𝐴𝐴 1. . 𝑖𝑖  is sorted with each element ≤ 𝑘𝑘𝑘𝑘𝑘𝑘
― 𝐴𝐴 𝑖𝑖 + 1. . 𝑗𝑗  is sorted with each element ≥ 𝑘𝑘𝑘𝑘𝑘𝑘
― 𝐴𝐴 𝑖𝑖 + 1 = 𝐴𝐴 𝑖𝑖 + 2  or 𝐴𝐴 𝑖𝑖 + 1 = 𝑘𝑘𝑘𝑘𝑘𝑘

Given the facts above, line 8 does not destroy any data, and gives us 
𝐴𝐴 1. . 𝑗𝑗  as the sorted permutation of the original data in 𝐴𝐴 1. . 𝑗𝑗 .
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Loop Invariant 1: Termination

When the outer loop terminates we know that 𝑗𝑗 = 𝐴𝐴. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 1.

Hence, 𝐴𝐴 1. . 𝑗𝑗 − 1  is the entire array 𝐴𝐴 1. .𝐴𝐴. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , which is sorted and 
contains the original elements of 𝐴𝐴 1. .𝐴𝐴. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 .
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