Midterm Exam 2
(7:05 PM – 8:20 PM : 75 Minutes)

• This exam will account for either 15% or 30% of your overall grade depending on your relative performance in midterm exam 1 and midterm exam 2. The higher of the two scores will be worth 30% of your grade, and the lower one 15%.

• There are three (3) questions worth 75 points in total. Please answer all of them in the spaces provided.

• There are twenty-two (22) pages, including nine (9) blank pages and one (1) page of appendices. Please use the blank pages if you need additional space for your answers.

• The exam is open slides and open notes (including scribe notes). But no books and no computers are allowed.

Good Luck!

<table>
<thead>
<tr>
<th>Question</th>
<th>Pages</th>
<th>Parts</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. “Probabilistic” Staircase Numbers</td>
<td>2 – 6</td>
<td>(a) – (c)</td>
<td>5 + 10 + 10 = 25</td>
<td></td>
</tr>
<tr>
<td>2. Parallel Recursive Selection Sort</td>
<td>8 – 11</td>
<td>(a) – (b)</td>
<td>10 + 15 = 25</td>
<td></td>
</tr>
<tr>
<td>3. Store-Retrieve Lockers</td>
<td>14 – 19</td>
<td>(a) – (d)</td>
<td>5 + 5 + 3 + 12 = 25</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>75</td>
<td></td>
</tr>
</tbody>
</table>

Name: __

SBU ID: __
Figure 1: When called with an integer $n \geq 0$ as a parameter, `Prob-Staircase(n)` will return what we will call the n-th “probabilistic” staircase number.

Question 1. [25 Points] “Probabilistic” Staircase Numbers. The function given in Figure 1 computes what we will call “probabilistic” staircase numbers. When supplied with an integer $n \geq 0$ as a parameter, it will return the n-th probabilistic staircase number s_n. Clearly, $s_0 = 0$ and $s_1 = 1$, but for $n > 1$, s_n does not have a fixed value.

This question asks you to compute the expected running time of `Prob-Staircase(n)` for $n \geq 0$.

(a) [5 Points] Let t_n be the expected running time of `Prob-Staircase(n)` for $n \geq 0$. We claim that t_n can be described by the following recurrence relation, where c_1 and c_2 are positive constants:

$$t_n \leq \begin{cases} c_1, & \text{if } n \leq 1, \\ \frac{1}{2} t_{n-1} + \frac{1}{2} t_{n-2} + c_2, & \text{otherwise}, \end{cases}$$

Justify this recurrence.

1Let us not confuse these with “Polite Numbers” which are also called “Staircase Numbers.”
(b) [10 Points] Let us simplify the recurrence from part (a) to the following (by choosing \(c_1 = c_2 = 1 \) and replacing the ‘\(\leq \)’ with an ‘\(= \)’).

\[
 t_n = \begin{cases}
 1, & \text{if } n \leq 1, \\
 \frac{1}{2} t_{n-1} + \frac{1}{2} t_{n-2} + 1, & \text{otherwise,}
\end{cases}
\]

Let \(T(z) \) be the ordinary generating function for \(t_n \), i.e.,

\[
 T(z) = t_0 + t_1 z + t_2 z^2 + \ldots + t_n z^n + \ldots
\]

Show that \(T(z) = \frac{z^2 - z + 2}{(z-1)^2(z+2)} \).
(c) [10 Points] We observe the following (you do not need to prove it):

\[\frac{z^2 - z + 2}{(z - 1)^2(z + 2)} = \frac{2}{3(1 - z)^2} - \frac{1}{9(1 - z)} + \frac{4}{9(1 + \frac{z}{2})}. \]

Use the above and part (b) to show that

\[t_n = \frac{1}{9} \left(6n + 5 + 4 \left(-\frac{1}{2} \right)^n \right). \]
Partition(A, B, n)

Input: Two non-overlapping arrays A and B containing n numbers each, where n is a power of two.

Output: Rearrange the numbers in A and B such that no number in A is larger than any number in B.

1. if $n = 1$ then
2. if the number in A is larger than the one in B then swap the two numbers
3. else
4. let A_L (resp. B_L) denote the left half of A (resp. B) and let A_R (resp. B_R) denote its right half
5. $\text{Partition}(A_L, B_L, \frac{n}{2})$
6. $\text{Partition}(A_R, B_R, \frac{n}{2})$
7. $\text{Partition}(A_L, B_R, \frac{n}{2})$
8. $\text{Partition}(A_R, B_L, \frac{n}{2})$
9. return

Rec-Selection-Sort(A, n)

Input: An array A containing n numbers, where n is a power of two.

Output: The numbers in A rearranged in nondecreasing order of value.

1. if $n > 1$ then
2. let A_L denote the left half of A and let A_R denote its right half
3. $\text{Partition}(A_L, A_R, \frac{n}{2})$
4. $\text{Rec-Selection-Sort}(A_L, \frac{n}{2})$
5. $\text{Rec-Selection-Sort}(A_R, \frac{n}{2})$
6. return

Question 2. [25 Points] Parallel Recursive Selection Sort. When Pramod² was a student, he designed a recursive version of the selection sort algorithm with improved I/O-complexity. Figure 2 shows the high-level structure of the serial version of the algorithm. This question asks you to parallelize it and derive its parallel performance bounds.

²Pramod Ganapathi – currently a faculty member of SBUCS.
(a) [10 Points] Parallelize the PARTITION function. You can simply put the `spawn` and `sync` keywords at appropriate locations inside the function in Figure 2 to show how to parallelize it. Analyze its work, span, parallelism, and parallel running time (under a greedy scheduler).
(b) [15 Points] Parallelize the \texttt{REC-SELECTION-SORT} function. As in part (a), you can simply put the \texttt{spawn} and \texttt{sync} keywords at appropriate locations inside the function in Figure 2 to show how to parallelize it. Analyze its work, span, parallelism, and parallel running time (under a greedy scheduler).
Question 3. [25 Points] Store-Retrieve Lockers. Figure 3 shows the locker data structure L that maintains a resizable array $L\text{.slots}$ and supports the following two operations.

- **LOCKER-STORE(L, x)** stores an item x in a random empty slot of $L\text{.slots}$, and
- **LOCKER-RETRIEVE(L)** removes an item from a random nonempty slot of $L\text{.slots}$.

Each slot stores at most one item. The total number of slots in $L\text{.slots}$ is given by $L\text{.numSlots}$,
and the number of items currently stored in the data structure is given by $L.numItems$.
The Resize-Locker (L) function resizes $L.slots$ as soon as one of the following two events occurs.

- **Locker-Store (L, x)** detects immediately after inserting x that
 \[
 L.numItems \geq \frac{2}{3} \times L.numSlots
 \] (see Line 15)

- **Locker-Retrieve (L)** detects immediately after removing an item that
 \[
 L.numItems \leq \frac{1}{3} \times L.numSlots
 \] (see Line 14)

In both cases, $L.slots$ is resized to $L.numSlots = 2 \times L.numItems$. Observe that the smallest non-zero size $L.slots$ can have is 2 (see Lines 1–5 of Locker-Store).

To insert an item into L, **Locker-Store** repeatedly chooses a slot in $L.slot$ uniformly at random until it finds an empty slot and stores the item in that slot (see Lines 6–14).

To retrieve an item from L, **Locker-Retrieve** repeatedly chooses a slot in $L.slot$ uniformly at random until it finds a nonempty slot and removes the item from that slot (see Lines 3–12).

(a) **[5 Points]** Show that the expected number of times the while loop in Lines 7–14 of Locker-Store needs to execute to find an empty spot in $L.slots$ is \(\frac{n}{n-m} \), where \(n = L.numSlots \) and \(m = L.numItems \) at the time of execution. Also, show that the loop finds an empty spot in $O(\log n)$ iterations w.h.p. in n.

15
(b) [5 Points] Show that the expected number of times the while loop in Lines 4–12 of LOCKER-RETRIEVE needs to execute to find a nonempty spot in $L.slots$ is $\frac{n}{m}$, where $n = L.numSlots$ and $m = L.numItems$ at the time of execution. Also, show that the loop finds a nonempty spot in $O(\log n)$ iterations w.h.p. in n.
(c) [3 Points] In order to find the amortized costs of the operations performed on L we will use the following potential function:

$$
\Phi \left(L_i \right) = c \times \left| 2 \times L.numItems - L.numSlots \right|
$$

where, L_i is the state of L after the i-th ($i \geq 0$) operation is performed on it assuming that L was initially empty, and c is a positive constant.

Argue that this potential function guarantees that the total amortized cost will always be an upper bound on the total actual cost.
(d) [**12 Points**] Use the potential function from part (c) and your results from parts (a) and (b) to show that the amortized costs of

- **Resize-Locker** is 0,
- **Locker-Store** is $O(\log n)$ w.h.p. in n, and
- **Locker-retrieve** is $O(\log n)$ w.h.p. in n,

where, $n = L.numSlots$ at the time of execution.
Appendix I: Useful Tail Bounds

Markov’s Inequality. Let X be a random variable that assumes only nonnegative values. Then for all $\delta > 0$, $Pr \{X \geq \delta\} \leq \frac{E[X]}{\delta}$.

Chebyshev’s Inequality. Let X be a random variable with a finite mean $E[X]$ and a finite variance $Var[X]$. Then for any $\delta > 0$, $Pr \{|X - E[X]| \geq \delta\} \leq \frac{Var[X]}{\delta^2}$.

Chernoff Bounds. Let X_1, \ldots, X_n be independent Poisson trials, that is, each X_i is a 0-1 random variable with $Pr[X_i = 1] = p_i$ for some p_i. Let $X = \sum_{i=1}^{n} X_i$ and $\mu = E[X]$. Following bounds hold:

- Lower Tail:
 - for $0 < \delta < 1$, $Pr \{X \leq (1 - \delta)\mu\} \leq \left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^\mu$
 - for $0 < \delta < 1$, $Pr \{X \leq (1 - \delta)\mu\} \leq e^{-\frac{\mu \delta^2}{2}}$
 - for $0 < \gamma < \mu$, $Pr \{X \leq \mu - \gamma\} \leq e^{-\frac{\gamma^2}{2\mu}}$

- Upper Tail:
 - for any $\delta > 0$, $Pr \{X \geq (1 + \delta)\mu\} \leq \left(\frac{e^\delta}{(1+\delta)^{(1+\delta)}}\right)^\mu$
 - for $0 < \delta < 1$, $Pr \{X \geq (1 + \delta)\mu\} \leq e^{-\frac{\mu \delta^2}{2}}$
 - for $0 < \gamma < \mu$, $Pr \{X \geq \mu + \gamma\} \leq e^{-\frac{\gamma^2}{2\mu}}$

Appendix II: The Master Theorem

Let $a \geq 1$ and $b > 1$ be constants, let $f(n)$ be a function, and let $T(n)$ be defined on the nonnegative integers by the recurrence

$$T(n) = \begin{cases}
\Theta(1), & \text{if } n \leq 1, \\
aT\left(\frac{n}{b}\right) + f(n), & \text{otherwise,}
\end{cases}$$

where, $\frac{n}{b}$ is interpreted to mean either $\lfloor \frac{n}{b} \rfloor$ or $\lceil \frac{n}{b} \rceil$. Then $T(n)$ has the following bounds:

Case 1: If $f(n) = O\left(n^{\log_b a - \epsilon}\right)$ for some constant $\epsilon > 0$, then $T(n) = \Theta\left(n^{\log_b a}\right)$.

Case 2: If $f(n) = \Theta\left(n^{\log_b a \log k n}\right)$ for some constant $k \geq 0$, then $T(n) = \Theta\left(n^{\log_b a \log^{k+1} n}\right)$.

Case 3: If $f(n) = \Omega\left(n^{\log_b a + \epsilon}\right)$ for some constant $\epsilon > 0$, and $af\left(\frac{n}{b}\right) \leq cf(n)$ for some constant $c < 1$ and all sufficiently large n, then $T(n) = \Theta\left(f(n)\right)$.