
CSE 548: Analysis of Algorithms

Lecture 8
(Amortized Analysis)

Rezaul A. Chowdhury
Department of Computer Science

SUNY Stony Brook
Fall 2023

1

A Binary Counter

0 0 0 0 0 0 0 00
0 0 0 0 0 0 0 1 11 0 1
0 0 0 0 0 0 1 0 22 1 1
0 0 0 0 0 0 1 1 13 0 1
0 0 0 0 0 1 0 0 34 2 1
0 0 0 0 0 1 0 1 15 0 1
0 0 0 0 0 1 1 0 26 1 1
0 0 0 0 0 1 1 1 17 0 1
0 0 0 0 1 0 0 0 48 3 1
0 0 0 0 1 0 0 1 19 0 1
0 0 0 0 1 0 1 0 210 1 1
0 0 0 0 1 0 1 1 111 0 1
0 0 0 0 1 1 0 0 312 2 1
0 0 0 0 1 1 0 1 113 0 1
0 0 0 0 1 1 1 0 214 1 1
0 0 0 0 1 1 1 1 115 0 1
0 0 0 1 0 0 0 0 516 4 1

counter
value counter

#bit
flips

#bit resets
(1→ 0)

#bit sets
(0 → 1)

2

Consider a 𝑘𝑘-bit counter initialized to 0 (i.e., all bits are 0’s).
Suppose we increment the counter 𝑛𝑛 times.
 and cost of an increment = #bits flipped

Question: What is the worst-case total cost of 𝑛𝑛 increments?

Worst-case cost of a single increment:
 #bit sets (0 → 1), 𝑏𝑏1 ≤ 1
 #bit resets (1 → 0), 𝑏𝑏0 ≤ 𝑘𝑘 − 𝑏𝑏1
 #bit flips = 𝑏𝑏1 + 𝑏𝑏0 ≤ 𝑘𝑘

Worst-case cost of 𝒏𝒏 increments:
 #bit flips ≤ 𝑛𝑛𝑛𝑛

This turns out to be a very loose upper bound!

A Binary Counter 3

A better upper bound can be obtained as follows.

Each increment sets (0 → 1) at most one bit, i.e., 𝑏𝑏1 ≤ 1
So, total number of bits set by 𝑛𝑛 increments, 𝐵𝐵1 = 𝑏𝑏1𝑛𝑛 ≤ 𝑛𝑛

Since at most 𝑛𝑛 bits are set, there cannot be more than 𝑛𝑛 bit resets
(1 → 0), i.e., 𝐵𝐵0 ≤ 𝐵𝐵1 ≤ 𝑛𝑛

So, total number of bit flips = 𝐵𝐵1 + 𝐵𝐵0 ≤ 𝑛𝑛 + 𝑛𝑛 = 2𝑛𝑛

Thus worst-case cost of a sequence of 𝑛𝑛 increments, 𝑇𝑇 𝑛𝑛 ≤ 2𝑛𝑛

Hence, in the worst case, average cost of an increment = 𝑇𝑇 𝑛𝑛
𝑛𝑛

≤ 2

This worst-case average cost is called the amortized cost of an
increment in a sequence of 𝑛𝑛 increments.

Aggregate Analysis 4

A Binary Counter

0 0 0 0 0 0 0 00
0 0 0 0 0 0 0 1 1 11 0 1
0 0 0 0 0 0 1 0 2 32 1 1
0 0 0 0 0 0 1 1 1 43 0 1
0 0 0 0 0 1 0 0 3 74 2 1
0 0 0 0 0 1 0 1 1 85 0 1
0 0 0 0 0 1 1 0 2 106 1 1
0 0 0 0 0 1 1 1 1 117 0 1
0 0 0 0 1 0 0 0 4 158 3 1
0 0 0 0 1 0 0 1 1 169 0 1
0 0 0 0 1 0 1 0 2 1810 1 1
0 0 0 0 1 0 1 1 1 1911 0 1
0 0 0 0 1 1 0 0 3 2212 2 1
0 0 0 0 1 1 0 1 1 2313 0 1
0 0 0 0 1 1 1 0 2 2514 1 1
0 0 0 0 1 1 1 1 1 2615 0 1
0 0 0 1 0 0 0 0 5 3116 4 1

counter
value counter

#bit
flips

#bit resets
(1→ 0)

#bit sets
(0 → 1)

total
#bit flips

5

− often obtains a tighter worst-case upper bound on the cost of a
sequence of operations on a data structure by reasoning about
the interactions among those operations

− the actual cost of any given operation may be very high, but that
operation may change the state of the data structure in such a
way that similar high-cost operations cannot appear for a while

− tries to show that there must be enough low-cost operations in
the sequence to average out the impact of high-cost operations

− unlike average case analysis proves a worst-case upper bound on
the total cost of the sequence of operations

− unlike expected case analysis no probabilities are involved

Amortized Analysis 6

Accounting Method (Banker’s View)
Consider a 𝑘𝑘-bit counter initialized to 0 (i.e., all bits are 0’s).

Worst-case cost of a single increment:
 #bit sets (0 → 1), 𝑏𝑏1 ≤ 1
 #bit resets (1 → 0), 𝑏𝑏0 ≤ 𝑘𝑘 − 𝑏𝑏1
 #bit flips = 𝑏𝑏1 + 𝑏𝑏0 ≤ 𝑘𝑘

Thus each increment is paying for the bit it sets (fair).
But also paying for resetting bits set by prior increments (unfair)!

A fairer cost accounting for each increment:
(1) Pay for the bit it sets.
(2) Pay in advance for resetting this bit (by some other increment)
in the future. Store this advanced payment as a credit associated
with that bit position.
(3) When resetting a bit use the credit stored in that bit position.

7

Accounting Method (Banker’s View)

0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 1 1 21 2 1

0 0 0 0 0 0 1 0 2 42 2 3

0 0 0 0 0 0 1 1 1 63 2 4

0 0 0 0 0 1 0 0 3 84 2 7

0 0 0 0 0 1 0 1 1 105 2 8

0 0 0 0 0 1 1 0 2 126 2 10

0 0 0 0 0 1 1 1 1 147 2 11

0 0 0 0 1 0 0 0 4 168 2 15

0 0 0 0 1 0 0 1 1 189 2 16

counter
value counter

actual
cost (𝑐𝑐𝑖𝑖)

amortized
cost (𝑐̂𝑐𝑖𝑖)

�𝑐𝑐𝑖𝑖 �𝑐̂𝑐𝑖𝑖

(overcharged)

(overcharged)

(undercharged)

(overcharged)

(overcharged)

(undercharged)

(overcharged)

≤

≤

≤

≤

≤

≤

≤

≤

≤

≤

9

Accounting Method (Banker’s View)

0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 1 1 21 2 1

0 0 0 0 0 0 1 0 2 42 2 3

0 0 0 0 0 0 1 1 1 63 2 4

0 0 0 0 0 1 0 0 3 84 2 7

counter
value counter

actual
cost (𝑐𝑐𝑖𝑖)

amortized
cost (𝑐̂𝑐𝑖𝑖)

�𝑐𝑐𝑖𝑖 �𝑐̂𝑐𝑖𝑖

(overcharged)

(overcharged)

(undercharged)

≤

≤

≤

≤

≤

Total credits remaining after 𝑛𝑛 increments, Δ𝑛𝑛 = ∑𝑖𝑖=1𝑛𝑛 𝑐̂𝑐𝑖𝑖 − ∑𝑖𝑖=1𝑛𝑛 𝑐𝑐𝑖𝑖
We must make sure that for all 𝑛𝑛, Δ𝑛𝑛 ≥ 0

 ⇒ ∑𝑖𝑖=1𝑛𝑛 𝑐̂𝑐𝑖𝑖 ≥ ∑𝑖𝑖=1𝑛𝑛 𝑐𝑐𝑖𝑖
This will ensure that the total amortized cost is always an upper
bound on the total actual cost.

10

Potential Method (Physicist’s View)

Banker’s View: Store prepaid work as credit with specific objects
in the data structure.

Physicist’s View: Represent total remaining credit in the data
structure as a single potential function.

Suppose: state of the initial data structure = 𝐷𝐷0
 state of the data structure after the 𝑖𝑖-th operation = 𝐷𝐷𝑖𝑖
 potential associated with 𝐷𝐷𝑖𝑖 is = Φ 𝐷𝐷𝑖𝑖

Then amortized cost of the 𝑖𝑖-th operation,
 𝑐̂𝑐𝑖𝑖 = actual cost + potential change due to that operation
 = 𝑐𝑐𝑖𝑖 + Φ 𝐷𝐷𝑖𝑖 − Φ(𝐷𝐷𝑖𝑖−1)

12

Potential Method (Physicist’s View)

Then amortized cost of the 𝑖𝑖-th operation,
 𝑐̂𝑐𝑖𝑖 = actual cost + potential change due to that operation
 = 𝑐𝑐𝑖𝑖 + Φ 𝐷𝐷𝑖𝑖 − Φ(𝐷𝐷𝑖𝑖−1)

 �
𝑖𝑖=1

𝑛𝑛

𝑐̂𝑐𝑖𝑖 = �
𝑖𝑖=1

𝑛𝑛

𝑐𝑐𝑖𝑖 + Φ 𝐷𝐷𝑖𝑖 − Φ(𝐷𝐷𝑖𝑖−1) = �
𝑖𝑖=1

𝑛𝑛

𝑐𝑐𝑖𝑖 + Φ 𝐷𝐷𝑛𝑛 −Φ(𝐷𝐷0)

Since we do not know 𝑛𝑛 in advance, if we make sure that for all 𝑛𝑛,
Φ(𝐷𝐷𝑛𝑛) ≥ Φ(𝐷𝐷0), we ensure that always ∑𝑖𝑖=1𝑛𝑛 𝑐̂𝑐𝑖𝑖 ≥ ∑𝑖𝑖=1𝑛𝑛 𝑐𝑐𝑖𝑖.

In other words, in that case, the total amortized cost will always be
an upper bound on the total actual cost.

One way of achieving that is to find a Φ such that Φ 𝐷𝐷0 = 0 and
for all 𝑛𝑛, Φ(𝐷𝐷𝑛𝑛) ≥ 0.

13

Potential Method (Physicist’s View)

0 0 0 0 0 0 0 1 1 21 2 1(overcharged)1

0 0 0 0 0 0 1 0 2 42 2 31

0 0 0 0 0 0 1 1 1 63 2 4(overcharged)2

0 0 0 0 0 1 0 0 3 84 2 7(undercharged)1

0 0 0 0 0 1 0 1 1 105 2 8(overcharged)2

0 0 0 0 0 1 1 0 2 126 2 102

0 0 0 0 0 1 1 1 1 147 2 11(overcharged)3

0 0 0 0 1 0 0 0 4 168 2 15(undercharged)1

≤

≤

≤

≤

≤

≤

≤

≤

≤

0 0 0 0 0 0 0 00

counter
value counter

actual
cost (𝑐𝑐𝑖𝑖)

amortized
cost (𝑐̂𝑐𝑖𝑖)

�𝑐𝑐𝑖𝑖 �𝑐̂𝑐𝑖𝑖Φ 𝐷𝐷𝑖𝑖

0

For the binary counter,
 Φ 𝐷𝐷𝑖𝑖 = number of set bits (i.e., 1 bits) after the 𝑖𝑖-th operation

17

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 9
	Slide Number 10
	Slide Number 12
	Slide Number 13
	Slide Number 17

