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Markov’s Inequality
Theorem 1: Let 𝑋𝑋 be a random variable that assumes only 
nonnegative values. Then for all 𝛿𝛿 > 0, 

Pr 𝑋𝑋 ≥ 𝛿𝛿 ≤
𝐸𝐸 𝑋𝑋
𝛿𝛿

.

Proof: For 𝛿𝛿 > 0, let

𝐼𝐼 = � 1 if 𝑋𝑋 ≥ 𝛿𝛿;
 0 otherwise.

Since 𝑋𝑋 ≥ 0,  𝐼𝐼 ≤ 𝑋𝑋
𝛿𝛿

.

We also have, 𝐸𝐸 𝐼𝐼 = Pr 𝐼𝐼 = 1 = Pr 𝑋𝑋 ≥ 𝛿𝛿 .

Then  Pr 𝑋𝑋 ≥ 𝛿𝛿 = 𝐸𝐸 𝐼𝐼 ≤ 𝐸𝐸 𝑋𝑋
𝛿𝛿

 ≤ 𝐸𝐸 𝑋𝑋
𝛿𝛿

.
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Example: Coin Flipping

Let us bound the probability of obtaining more than 3𝑛𝑛
4

 heads in a 

sequence of 𝑛𝑛 fair coin flips. 

Let

𝑋𝑋𝑖𝑖 = � 1 if the 𝑖𝑖th coin flip is heads;
 0 otherwise.

Then the number of heads in 𝑛𝑛 flips, 𝑋𝑋 = ∑𝑖𝑖=1𝑛𝑛 𝑋𝑋𝑖𝑖.

We know, 𝐸𝐸 𝑋𝑋𝑖𝑖 = Pr 𝑋𝑋𝑖𝑖 = 1 = 1
2
.

Hence, 𝐸𝐸 𝑋𝑋 = ∑𝑖𝑖=1𝑛𝑛 𝐸𝐸 𝑋𝑋𝑖𝑖 = 𝑛𝑛
2

.

Then applying Markov’s inequality,

Pr 𝑋𝑋 ≥ 3𝑛𝑛
4

≤ 𝐸𝐸 𝑋𝑋
⁄3𝑛𝑛 4

= ⁄𝑛𝑛 2
⁄3𝑛𝑛 4

= 2
3
.
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Chebyshev’s Inequality
Theorem 2: For any 𝛿𝛿 > 0, 

Pr 𝑋𝑋 − 𝐸𝐸 𝑋𝑋 ≥ 𝛿𝛿 ≤
𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋
𝛿𝛿2

.

Proof: Observe that Pr 𝑋𝑋 − 𝐸𝐸 𝑋𝑋 ≥ 𝛿𝛿 = Pr 𝑋𝑋 − 𝐸𝐸 𝑋𝑋 2 ≥ 𝛿𝛿2 . 

Since 𝑋𝑋 − 𝐸𝐸 𝑋𝑋 2 is a nonnegative random variable, we can use 
Markov’s inequality, 

Pr 𝑋𝑋 − 𝐸𝐸 𝑋𝑋 2 ≥ 𝛿𝛿2 ≤ 𝐸𝐸 𝑋𝑋−𝐸𝐸 𝑋𝑋 2

𝛿𝛿2
= 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋

𝛿𝛿2
.
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Example: 𝒏𝒏 Fair Coin Flips

𝑋𝑋𝑖𝑖 = � 1 if the 𝑖𝑖th coin flip is heads;
 0 otherwise.

Then the number of heads in 𝑛𝑛 flips, 𝑋𝑋 = ∑𝑖𝑖=1𝑛𝑛 𝑋𝑋𝑖𝑖.

We know, 𝐸𝐸 𝑋𝑋𝑖𝑖 = Pr 𝑋𝑋𝑖𝑖 = 1 = 1
2
  and  𝐸𝐸 𝑋𝑋𝑖𝑖 2 = 𝐸𝐸 𝑋𝑋𝑖𝑖 = 1

2
.

Then 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋𝑖𝑖 = 𝐸𝐸 𝑋𝑋𝑖𝑖 2 − 𝐸𝐸 𝑋𝑋𝑖𝑖 2 = 1
2
− 1

4
= 1

4
.

Hence, 𝐸𝐸 𝑋𝑋 = ∑𝑖𝑖=1𝑛𝑛 𝐸𝐸 𝑋𝑋𝑖𝑖 = 𝑛𝑛
2

  and  𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 = ∑𝑖𝑖=1𝑛𝑛 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋𝑖𝑖 = 𝑛𝑛
4

.

Then applying Chebyshev’s inequality,

Pr 𝑋𝑋 ≥ 3𝑛𝑛
4

≤ Pr 𝑋𝑋 − 𝐸𝐸 𝑋𝑋 ≥ 𝑛𝑛
4
≤ 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋

⁄𝑛𝑛 4 2 = ⁄𝑛𝑛 4
⁄𝑛𝑛 4 2 = 4

𝑛𝑛
.
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Coin Flipping and Randomized Algorithms
Suppose we have an algorithm that is

− correct ( heads ) only with probability 𝑝𝑝 ∈ 0,1 , and

− incorrect ( tails ) with probability 1 − 𝑝𝑝.

Question: How many times should we run the algorithm to be 
reasonably confident that it returns at least one correct solution?

− Las Vegas Algorithm: You keep running the algorithm until you get 
a correct solution. What is the bound on running time?

− Monte Carlo Algorithm: You stop after a certain number of 
iterations no matter whether you found a correct solution or not. 
What is the probability that your solution is correct ( or you found 
a solution )?
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Coin Flipping and Randomized Algorithms
Suppose we have an algorithm that is

− correct ( heads ) only with probability 𝑝𝑝 ∈ 0,1 , and

− incorrect ( tails ) with probability 1 − 𝑝𝑝.

Suppose we run the algorithm 𝑘𝑘 times. 

Then probability that no run produces a correct solution is 1 − 𝑝𝑝 𝑘𝑘.

∴ probability of getting at least one correct solution is 1 − 1 − 𝑝𝑝 𝑘𝑘.

Set 𝑘𝑘 = ln 1
1−𝑝𝑝

𝑛𝑛𝛼𝛼

𝑐𝑐
, where 𝛼𝛼 ≥ 1 and 𝑐𝑐 > 0 is a constant.

Then the probability that at least one run produces a correct solution 

is 1 − 1 − 𝑝𝑝 𝑘𝑘 = 1 − 𝑐𝑐
𝑛𝑛𝛼𝛼

 .

An event Π is said to occur with high probability if Pr Π ≥ 1 − 𝑐𝑐
𝑛𝑛𝛼𝛼

 .

w.h.p.
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Example: A Coloring Problem
Let 𝑆𝑆 be a set of 𝑛𝑛 items.

For 1 ≤ 𝑙𝑙 ≤ 𝑘𝑘, let 𝑆𝑆𝑙𝑙 ⊆ 𝑆𝑆 such that for every pair of 𝑖𝑖, 𝑗𝑗 ∈ [1,𝑘𝑘] with 
𝑖𝑖 ≠ 𝑗𝑗, 𝑆𝑆𝑖𝑖 ≠ 𝑆𝑆𝑗𝑗  but not necessarily 𝑆𝑆𝑖𝑖 ∩ 𝑆𝑆𝑗𝑗 = ∅.

For each 𝑙𝑙 ∈ 1,𝑘𝑘 , let 𝑆𝑆𝑙𝑙 = 𝑟𝑟, where 𝑘𝑘 ≤ 2𝑟𝑟−2.

Problem: Color each item of 𝑆𝑆 with one of two colors, red and blue, 
such that each 𝑆𝑆𝑙𝑙 contains at least one red and one blue item.

Algorithm: Take each item of 𝑆𝑆 and color it either red or blue 

independently at random ( with probability 1
2
 ).

Clearly, the algorithm does not always lead to a valid coloring 
( i.e., satisfy the constraints given in our problem statement ).

What is the probability that it produces a valid coloring?
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Example: A Coloring Problem
For 1 ≤ 𝑙𝑙 ≤ 𝑘𝑘, let 𝑅𝑅𝑙𝑙 and 𝐵𝐵𝑙𝑙 be the events that all items of 𝑆𝑆𝑙𝑙 are 
colored red and blue, respectively.

Then Pr 𝑅𝑅𝑙𝑙 = Pr 𝐵𝐵𝑙𝑙 = 1
2

𝑟𝑟
= 2−𝑟𝑟 for every 𝑙𝑙 ∈ 1,𝑘𝑘 .

∴ Pr ⋃𝑙𝑙=1
𝑘𝑘 𝑅𝑅𝑙𝑙 = Pr ⋃𝑙𝑙=1

𝑘𝑘 𝐵𝐵𝑙𝑙 ≤ 𝑘𝑘2−𝑟𝑟 ≤ 2𝑟𝑟−22−𝑟𝑟 = 1
4
.

Thus Pr ⋃𝑙𝑙=1
𝑘𝑘 𝑅𝑅𝑙𝑙 ∪ 𝐵𝐵𝑙𝑙 ≤ 2 × 1

4
= 1

2
.

∴ Pr ⋂𝑙𝑙=1
𝑘𝑘 �𝑅𝑅𝑙𝑙 ∩ �𝐵𝐵𝑙𝑙 = 1 − Pr ⋃𝑙𝑙=1

𝑘𝑘 𝑅𝑅𝑙𝑙 ∪ 𝐵𝐵𝑙𝑙 ≥ 1 − 1
2

= 1
2
.

Hence, the algorithm is correct with probability at least 1
2
.

To check if the algorithm has produced a correct result we simply 
check the items in each 𝑆𝑆𝑙𝑙 to verify that neither 𝑅𝑅𝑙𝑙 nor 𝐵𝐵𝑙𝑙 holds.

Hence, we can use this simple algorithm to design a Las Vegas 
algorithm for solving the coloring problem!
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Example: The Min-Cut Problem

Let 𝐺𝐺 = 𝑉𝑉,𝐸𝐸  be a connected, undirected multigraph with 𝑉𝑉 = 𝑛𝑛.

A cut in 𝐺𝐺 is a set 𝐶𝐶 ⊆ 𝐸𝐸, such that 𝐺𝐺′ = 𝑉𝑉,𝐸𝐸 ∖ 𝐶𝐶  is not connected.

A min-cut is a cut of minimum cardinality.

The multigraph on the right has a min-cut
of size 2: 𝑎𝑎, 𝑒𝑒 , 𝑏𝑏, 𝑐𝑐  and 𝑐𝑐,𝑑𝑑 , 𝑑𝑑, 𝑒𝑒 .

Most deterministic algorithms for finding min-cuts are based on 
network flows and hence are quite complicated.

Instead in this lecture we will look at a very simple probabilistic 
algorithm that finds min-cuts with some probability 𝑝𝑝 > 0.
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Example: The Min-Cut Problem
We apply the following contraction step 𝑛𝑛 − 2 times on 𝐺𝐺 = 𝑉𝑉,𝐸𝐸 :
 Select an edge ( say, 𝑢𝑢, 𝑣𝑣  ) from 𝐸𝐸 uniformly at random.

 Merge 𝑢𝑢 and 𝑣𝑣 into a single super vertex. 

 Remove all edges between 𝑢𝑢 and 𝑣𝑣 from 𝐸𝐸.

 If as a result of the contraction there are more than one edges 
 between some pairs of super vertices retain them all.

Let the initial graph be 𝐺𝐺0 = 𝑉𝑉0,𝐸𝐸0 , where 𝑉𝑉0 = 𝑉𝑉 and 𝐸𝐸0 = 𝐸𝐸.

Let 𝐺𝐺𝑖𝑖 = 𝑉𝑉𝑖𝑖 ,𝐸𝐸𝑖𝑖  be the multigraph after step 𝑖𝑖 ∈ 1,𝑛𝑛 − 2 .

Then clearly, 𝑉𝑉𝑖𝑖 = 𝑛𝑛 − 𝑖𝑖 and thus 𝑉𝑉𝑛𝑛−2 = 2.

We return 𝐸𝐸𝑛𝑛−2 as our solution.
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Example: The Min-Cut Problem
Let us fix our attention on a particular min-cut 𝐶𝐶 of 𝐺𝐺.

What is the probability that 𝐸𝐸𝑛𝑛−2 = 𝐶𝐶?

Suppose 𝐶𝐶 = 𝑘𝑘. 

Then each vertex of 𝐺𝐺0 = 𝐺𝐺 must have degree at least 𝑘𝑘 as 
otherwise 𝐺𝐺0 can be disconnected by removing fewer than 𝑘𝑘 edges. 

Hence, 𝐸𝐸 = 𝐸𝐸0 ≥ 𝑘𝑘 𝑉𝑉0 /2 = 𝑘𝑘𝑘𝑘/2.

Let Π𝑖𝑖 be the event of not picking an edge of 𝐶𝐶 for contraction in 
step 𝑖𝑖 ∈ 1,𝑛𝑛 − 2 .

Then clearly, Pr Π1 = 1 − 𝑘𝑘
𝐸𝐸0

≥ 1 − 𝑘𝑘
𝑘𝑘𝑘𝑘/2

= 1 − 2
𝑛𝑛

Also Pr Π2|Π1 = 1 − 𝑘𝑘
𝐸𝐸1

≥ 1 − 𝑘𝑘
𝑘𝑘 𝑛𝑛−1 /2

= 1 − 2
𝑛𝑛−1

In general, Pr Π𝑖𝑖| ∩𝑗𝑗=1𝑖𝑖−1 Π𝑗𝑗 = 1 − 𝑘𝑘
𝐸𝐸𝑖𝑖−1

≥ 1 − 𝑘𝑘
𝑘𝑘 𝑛𝑛−𝑖𝑖+1 /2

= 1 − 2
𝑛𝑛−𝑖𝑖+1
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Example: The Min-Cut Problem
The probability that no edge of 𝐶𝐶 was ever picked by the algorithm is:

 Pr ∩𝑖𝑖=1𝑛𝑛−2 Π𝑖𝑖 ≥ ∏𝑖𝑖=1
𝑛𝑛−2 1 − 2

𝑛𝑛−𝑖𝑖+1
= 2

𝑛𝑛 𝑛𝑛−1
> 2

𝑛𝑛2
 .

So Pr 𝐸𝐸𝑛𝑛−2 = 𝐶𝐶 > 2
𝑛𝑛2

, and Pr 𝐸𝐸𝑛𝑛−2 ≠ 𝐶𝐶 < 1 − 2
𝑛𝑛2

.

Suppose we run the algorithm 𝑛𝑛2/2 times, and return the smallest 
cut, say 𝐶𝐶′, obtained from those 𝑛𝑛2/2 attempts.

Then Pr 𝐶𝐶′ ≠ 𝐶𝐶 < 1 − 2
𝑛𝑛2

𝑛𝑛2/2
< 1

𝑒𝑒
⇒ Pr 𝐶𝐶′ = 𝐶𝐶 > 1 − 1

𝑒𝑒
 .

Hence, the algorithm will return a min-cut with probability > 1 − 1
𝑒𝑒
 .

But we do not know how to detect if the cut returned by the 
algorithm is, indeed, a min-cut.

Still we can design a Monte-Carlo algorithm based on this simple idea 
to produce a min-cut with high probability!
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When Only One Success is Not Enough
In both examples we have looked at so far, we were happy with only 
one success. The analysis was easy.

But sometimes we need the algorithm to be successful for at least or 
at most a certain number of times ( we will see a very familiar such 
example shortly ). 

The number of successful runs required often depends on the size of 
the input. 

How do we analyze those algorithms?
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Preparing for Chernoff Bounds
Lemma 1: Let 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 be independent Poisson trials, that is, each 
𝑋𝑋𝑖𝑖  is a 0-1 random variable with Pr 𝑋𝑋𝑖𝑖 = 1 = 𝑝𝑝𝑖𝑖 for some 𝑝𝑝𝑖𝑖. Let 
𝑋𝑋 = ∑𝑖𝑖=1𝑛𝑛 𝑋𝑋𝑖𝑖  and 𝜇𝜇 = 𝐸𝐸 𝑋𝑋 . Then for any 𝑡𝑡 > 0, 

𝐸𝐸 𝑒𝑒𝑡𝑡𝑡𝑡 ≤ 𝑒𝑒 𝑒𝑒𝑡𝑡−1 𝜇𝜇.

Proof:  𝐸𝐸 𝑒𝑒𝑡𝑡𝑋𝑋𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑒𝑒𝑡𝑡×1 + 1 − 𝑝𝑝𝑖𝑖 𝑒𝑒𝑡𝑡×0 = 𝑝𝑝𝑖𝑖𝑒𝑒𝑡𝑡 + 1 − 𝑝𝑝𝑖𝑖
= 1 + 𝑝𝑝𝑖𝑖 𝑒𝑒𝑡𝑡 − 1

But for any 𝑦𝑦, 1 + 𝑦𝑦 ≤ 𝑒𝑒𝑦𝑦. Hence, 𝐸𝐸 𝑒𝑒𝑡𝑡𝑋𝑋𝑖𝑖 ≤ 𝑒𝑒𝑝𝑝𝑖𝑖 𝑒𝑒𝑡𝑡−1 .

Now,  𝐸𝐸 𝑒𝑒𝑡𝑡𝑋𝑋 = 𝐸𝐸 𝑒𝑒𝑡𝑡 ∑𝑖𝑖=1
𝑛𝑛 𝑋𝑋𝑖𝑖 = 𝐸𝐸 ∏𝑖𝑖=1

𝑛𝑛 𝑒𝑒𝑡𝑡𝑋𝑋𝑖𝑖 = ∏𝑖𝑖=1
𝑛𝑛 𝐸𝐸 𝑒𝑒𝑡𝑡𝑋𝑋𝑖𝑖

≤�
𝑖𝑖=1

𝑛𝑛
𝑒𝑒𝑝𝑝𝑖𝑖 𝑒𝑒𝑡𝑡−1 = 𝑒𝑒 𝑒𝑒𝑡𝑡−1 ∑𝑖𝑖=1

𝑛𝑛 𝑝𝑝𝑖𝑖

But 𝜇𝜇 = 𝐸𝐸 𝑋𝑋 = 𝐸𝐸 ∑𝑖𝑖=1𝑛𝑛 𝑋𝑋𝑖𝑖 = ∑𝑖𝑖=1𝑛𝑛 𝐸𝐸 𝑋𝑋𝑖𝑖 = ∑𝑖𝑖=1𝑛𝑛 𝑝𝑝𝑖𝑖 .

Hence, 𝐸𝐸 𝑒𝑒𝑡𝑡𝑡𝑡 ≤ 𝑒𝑒 𝑒𝑒𝑡𝑡−1 𝜇𝜇.
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Chernoff Bound 1
Theorem 3: Let 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 be independent Poisson trials, that is, 
each 𝑋𝑋𝑖𝑖  is a 0-1 random variable with Pr 𝑋𝑋𝑖𝑖 = 1 = 𝑝𝑝𝑖𝑖 for some 𝑝𝑝𝑖𝑖. 
Let 𝑋𝑋 = ∑𝑖𝑖=1𝑛𝑛 𝑋𝑋𝑖𝑖  and 𝜇𝜇 = 𝐸𝐸 𝑋𝑋 . Then for any 𝛿𝛿 > 0, 

Pr 𝑋𝑋 ≥ 1 + 𝛿𝛿 𝜇𝜇 ≤ 𝑒𝑒𝛿𝛿

1+𝛿𝛿 1+𝛿𝛿

𝜇𝜇
.

Proof: Applying Markov’s inequality for any 𝑡𝑡 > 0, 

Pr 𝑋𝑋 ≥ 1 + 𝛿𝛿 𝜇𝜇 = Pr 𝑒𝑒𝑡𝑡𝑋𝑋 ≥ 𝑒𝑒𝑡𝑡 1+𝛿𝛿 𝜇𝜇 ≤
𝐸𝐸 𝑒𝑒𝑡𝑡𝑡𝑡

𝑒𝑒𝑡𝑡 1+𝛿𝛿 𝜇𝜇

     ≤ 𝑒𝑒 𝑒𝑒𝑡𝑡−1 𝜇𝜇

𝑒𝑒𝑡𝑡 1+𝛿𝛿 𝜇𝜇       [ Lemma 1 ]

Setting 𝑡𝑡 = ln 1 + 𝛿𝛿 > 0, i.e., 𝑒𝑒𝑡𝑡 = 1 + 𝛿𝛿, we get,

Pr 𝑋𝑋 ≥ 1 + 𝛿𝛿 𝜇𝜇 ≤ 𝑒𝑒𝛿𝛿

1+𝛿𝛿 1+𝛿𝛿

𝜇𝜇
. 
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Chernoff Bound 2
Theorem 4:  For 0 < 𝛿𝛿 < 1, Pr 𝑋𝑋 ≥ 1 + 𝛿𝛿 𝜇𝜇 ≤ 𝑒𝑒−

𝜇𝜇𝛿𝛿2

3 .

Proof: From Theorem 3, for 𝛿𝛿 > 0, Pr 𝑋𝑋 ≥ 1 + 𝛿𝛿 𝜇𝜇 ≤ 𝑒𝑒𝛿𝛿

1+𝛿𝛿 1+𝛿𝛿

𝜇𝜇
. 

We will show that for 0 < 𝛿𝛿 < 1, 𝑒𝑒𝛿𝛿

1+𝛿𝛿 1+𝛿𝛿 ≤ 𝑒𝑒−
𝛿𝛿2

3

⇒ 𝛿𝛿 − 1 + 𝛿𝛿 ln 1 + 𝛿𝛿 ≤ − 𝛿𝛿2

3
 

That is, 𝑓𝑓 𝛿𝛿 = 𝛿𝛿 − 1 + 𝛿𝛿 ln 1 + 𝛿𝛿 + 𝛿𝛿2

3
≤0

We have, 𝑓𝑓′ 𝛿𝛿 = − ln 1 + 𝛿𝛿 + 2
3
𝛿𝛿, and 𝑓𝑓𝑓𝑓 𝛿𝛿 = − 1

1+𝛿𝛿
+ 2

3

Observe that 𝑓𝑓𝑓𝑓 𝛿𝛿 < 0 for 0 ≤ 𝛿𝛿 ≤ 1
2
 , and 𝑓𝑓𝑓𝑓 𝛿𝛿 > 0 for 𝛿𝛿 > 1

2
 .
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 .

Hence, 𝑓𝑓′ 𝛿𝛿  first decreases and then increases over 0,1 . 

Since 𝑓𝑓′ 0 = 0 and 𝑓𝑓′ 1 < 0, we have 𝑓𝑓′ 𝛿𝛿 ≤ 0 over 0,1 .
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Chernoff Bound 3

Corollary 1:  For 0 < 𝛾𝛾 < 𝜇𝜇, Pr 𝑋𝑋 ≥ 𝜇𝜇 + 𝛾𝛾 ≤ 𝑒𝑒−
𝛾𝛾2

3𝜇𝜇 .

Proof: From Theorem 2, for 0 < 𝛿𝛿 < 1, Pr 𝑋𝑋 ≥ 1 + 𝛿𝛿 𝜇𝜇 < 𝑒𝑒−
𝜇𝜇𝛿𝛿2

3 . 

Setting 𝛾𝛾 = 𝜇𝜇𝜇𝜇,  we get, Pr 𝑋𝑋 ≥ 𝜇𝜇 + 𝛾𝛾 ≤ 𝑒𝑒−
𝛾𝛾2

3𝜇𝜇 for 0 < 𝛾𝛾 < 𝜇𝜇.
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Example: 𝒏𝒏 Fair Coin Flips

𝑋𝑋𝑖𝑖 = � 1 if the 𝑖𝑖th coin flip is heads;
 0 otherwise.

Then the number of heads in 𝑛𝑛 flips, 𝑋𝑋 = ∑𝑖𝑖=1𝑛𝑛 𝑋𝑋𝑖𝑖.

We know, 𝐸𝐸 𝑋𝑋𝑖𝑖 = Pr 𝑋𝑋𝑖𝑖 = 1 = 1
2
.

Hence, 𝜇𝜇 = 𝐸𝐸 𝑋𝑋 = ∑𝑖𝑖=1𝑛𝑛 𝐸𝐸 𝑋𝑋𝑖𝑖 = 𝑛𝑛
2

.

Now putting 𝛿𝛿 = 1
2
 in Chernoff bound 2, we have,

Pr 𝑋𝑋 ≥ 3𝑛𝑛
4

≤ 𝑒𝑒−
𝑛𝑛
24 = 1

𝑒𝑒
𝑛𝑛
24

.
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Chernoff Bounds 4, 5 and 6

Corollary 2:  For 0 < 𝛾𝛾 < 𝜇𝜇, Pr 𝑋𝑋 ≤ 𝜇𝜇 − 𝛾𝛾 ≤ 𝑒𝑒−
𝛾𝛾2

2𝜇𝜇 .

Theorem 5: For 0 < 𝛿𝛿 < 1, Pr 𝑋𝑋 ≤ 1 − 𝛿𝛿 𝜇𝜇 ≤ 𝑒𝑒−𝛿𝛿

1−𝛿𝛿 1−𝛿𝛿

𝜇𝜇
.

Theorem 6:  For 0 < 𝛿𝛿 < 1, Pr 𝑋𝑋 ≤ 1 − 𝛿𝛿 𝜇𝜇 ≤ 𝑒𝑒−
𝜇𝜇𝛿𝛿2

2 .
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Chernoff Bounds
Lower Tail Upper Tail

𝟎𝟎 < 𝜹𝜹 < 𝟏𝟏:  Pr 𝑋𝑋 ≤ 1 − 𝛿𝛿 𝜇𝜇 ≤
𝑒𝑒−𝛿𝛿

1 − 𝛿𝛿 1−𝛿𝛿

𝜇𝜇

𝜹𝜹 > 𝟎𝟎:  Pr 𝑋𝑋 ≥ 1 + 𝛿𝛿 𝜇𝜇 ≤
𝑒𝑒𝛿𝛿

1 + 𝛿𝛿 1+𝛿𝛿

𝜇𝜇

𝟎𝟎 < 𝜹𝜹 < 𝟏𝟏:  Pr 𝑋𝑋 ≤ 1 − 𝛿𝛿 𝜇𝜇 ≤ 𝑒𝑒−
𝜇𝜇𝛿𝛿2
2 𝟎𝟎 < 𝜹𝜹 < 𝟏𝟏: Pr 𝑋𝑋 ≥ 1 + 𝛿𝛿 𝜇𝜇 ≤ 𝑒𝑒−

𝜇𝜇𝛿𝛿2

3

𝟎𝟎 < 𝜸𝜸 < 𝝁𝝁: Pr 𝑋𝑋 ≤ 𝜇𝜇 − 𝛾𝛾 ≤ 𝑒𝑒
−
𝛾𝛾2

2𝜇𝜇 𝟎𝟎 < 𝜸𝜸 < 𝝁𝝁: Pr 𝑋𝑋 ≥ 𝜇𝜇 + 𝛾𝛾 ≤ 𝑒𝑒−
𝛾𝛾2

3𝜇𝜇

Source 
greedyalgs.info
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Randomized Quicksort 
( RANDQS )
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Randomized Quicksort ( RANDQS )

Input: A set of numbers 𝑆𝑆. ( i.e., all numbers are distinct )

Output: The numbers of 𝑆𝑆 sorted in increasing order.

Steps: 
1. Pivot Selection: Select a number 𝑥𝑥 ∈ 𝑆𝑆 uniformly at random.

2. Partition: Compare each number of 𝑆𝑆 with 𝑥𝑥, and determine sets 𝑆𝑆𝑙𝑙 =
𝑦𝑦 ∈ 𝑆𝑆| 𝑦𝑦 < 𝑥𝑥  and 𝑆𝑆𝑟𝑟 = 𝑦𝑦 ∈ 𝑆𝑆| 𝑦𝑦 > 𝑥𝑥 . 

3. Recursion: Recursively sort 𝑆𝑆𝑙𝑙 and 𝑆𝑆𝑟𝑟.

4. Output: Output the sorted version of 𝑆𝑆𝑙𝑙, followed by 𝑥𝑥, followed by the 
sorted version of 𝑆𝑆𝑟𝑟.
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Randomized Quicksort ( RANDQS )

Assumption: RANDQS is called only on nonempty 𝑆𝑆. 

Observation: If 𝑆𝑆 = 𝑛𝑛, fewer than 𝑛𝑛 recursive calls to RANDQS will be 
made during the sorting of 𝑆𝑆. ( why? )

Observation: If 𝑆𝑆 = 𝑛𝑛, and 𝑋𝑋 is the total number of comparisons 
made in step 2 ( Partition ) across all ( original and recursive ) calls to 
RANDQS, then RANDQS sorts 𝑆𝑆 in Ο 𝑛𝑛 + 𝑋𝑋  time.
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Expected Running Time of RANDQS
Observation: If 𝑆𝑆 = 𝑛𝑛, and 𝑋𝑋 is the total number of comparisons 
made in step 2 ( Partition ) across all ( original and recursive ) calls to 
RANDQS, then RANDQS sorts 𝑆𝑆 in Ο 𝑛𝑛 + 𝑋𝑋  time.

Then all we need to do is determine 𝐸𝐸 𝑋𝑋 .

Let 𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛 be the elements of 𝑆𝑆 in sorted order. 

Let 𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑖𝑖+1, … , 𝑠𝑠𝑗𝑗  for all 1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑛𝑛.

Observe that each pair of elements of 𝑆𝑆 is compared at most once 
during the entire execution of the algorithm. ( why? )

For 1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑛𝑛, let 𝑋𝑋𝑖𝑖𝑖𝑖 = � 1 if 𝑠𝑠𝑖𝑖 is compared to 𝑠𝑠𝑗𝑗;
 0 otherwise.

Then 𝑋𝑋 = ∑𝑖𝑖=1𝑛𝑛−1∑𝑗𝑗=𝑖𝑖+1𝑛𝑛 𝑋𝑋𝑖𝑖𝑖𝑖  .
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Expected Running Time of RANDQS

For 1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑛𝑛, let 𝑋𝑋𝑖𝑖𝑖𝑖 = � 1 if 𝑠𝑠𝑖𝑖 is compared to 𝑠𝑠𝑗𝑗;
 0 otherwise.

Then 𝑋𝑋 = ∑𝑖𝑖=1𝑛𝑛−1∑𝑗𝑗=𝑖𝑖+1𝑛𝑛 𝑋𝑋𝑖𝑖𝑖𝑖
⇒ 𝐸𝐸 𝑋𝑋 = ∑𝑖𝑖=1𝑛𝑛−1∑𝑗𝑗=𝑖𝑖+1𝑛𝑛 𝐸𝐸 𝑋𝑋𝑖𝑖𝑖𝑖  

               = ∑𝑖𝑖=1𝑛𝑛−1∑𝑗𝑗=𝑖𝑖+1𝑛𝑛 Pr 𝑋𝑋𝑖𝑖𝑖𝑖 = 1

Observations: 
 𝑿𝑿𝒊𝒊𝒊𝒊 = 𝟎𝟎: Once a pivot 𝑥𝑥 with 𝑠𝑠𝑖𝑖 < 𝑥𝑥 < 𝑠𝑠𝑗𝑗  is chosen, 𝑠𝑠𝑖𝑖  and 𝑠𝑠𝑗𝑗  will 
     never be compared at any subsequent time. ( why? )
 𝑿𝑿𝒊𝒊𝒊𝒊 = 𝟏𝟏: If either 𝑠𝑠𝑖𝑖  or 𝑠𝑠𝑗𝑗  is chosen as a pivot before any other 
                       item in 𝑆𝑆𝑖𝑖𝑖𝑖  then 𝑠𝑠𝑖𝑖  will be compared with 𝑠𝑠𝑗𝑗. ( why? )
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Expected Running Time of RANDQS

Since each element of 𝑆𝑆𝑖𝑖𝑖𝑖  is equally likely to be chosen as a pivot:

  Pr 𝑋𝑋𝑖𝑖𝑖𝑖 = 1 ≤ 1
𝑗𝑗−𝑖𝑖+1

+ 1
𝑗𝑗−𝑖𝑖+1

= 2
𝑗𝑗−𝑖𝑖+1

 .

Hence, 𝐸𝐸 𝑋𝑋 = ∑𝑖𝑖=1𝑛𝑛−1∑𝑗𝑗=𝑖𝑖+1𝑛𝑛 Pr 𝑋𝑋𝑖𝑖𝑖𝑖 = 1

      ≤ ∑𝑖𝑖=1𝑛𝑛−1∑𝑗𝑗=𝑖𝑖+1𝑛𝑛 2
𝑗𝑗−𝑖𝑖+1

 

      = ∑𝑖𝑖=1𝑛𝑛−1∑𝑘𝑘=1𝑛𝑛−𝑖𝑖 2
𝑘𝑘+1

 

     < ∑𝑖𝑖=1𝑛𝑛−1∑𝑘𝑘=1𝑛𝑛 2
𝑘𝑘

 

     = ∑𝑖𝑖=1𝑛𝑛−1Ο log𝑛𝑛  
     = Ο 𝑛𝑛 log𝑛𝑛

Thus expected running time of RANDQS is Ο 𝑛𝑛 log𝑛𝑛 .
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High Probability Bound for RANDQS

We will prove that w.h.p. the running time of RANDQS does not 
exceed its expected running time by more than a constant factor.

In other words, we show that w.h.p. RANDQS runs in Ο 𝑛𝑛 log𝑛𝑛  time.
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High Probability Bound for RANDQS

Let us fix an element 𝑧𝑧 in the original input set of size 𝑛𝑛. 

We will trace the partition containing 𝑧𝑧 for 𝑐𝑐 ln𝑛𝑛 levels of recursion, 
where 𝑐𝑐 is a constant to be determined later.

If a partitioning step divides 𝑆𝑆 such that 𝑆𝑆
4
≤ 𝑆𝑆𝑙𝑙 , 𝑆𝑆𝑟𝑟 ≤ 3 𝑆𝑆

4
 , we call 

that partition a balanced partition.
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High Probability Bound for RANDQS
We will prove that among the 𝑐𝑐 ln𝑛𝑛 partitioning steps 𝑧𝑧 undergoes, 

w.h.p. at least 𝑐𝑐
4

ln𝑛𝑛 results in balanced partitions.

If at any point 𝑧𝑧 is in a partition of size 𝑘𝑘, after a balanced partitioning 

step it ends up in a partition of size at most 3
4
𝑘𝑘.

Since the input size is 𝑛𝑛, after 𝑐𝑐
4

ln𝑛𝑛 balanced partitions, 𝑧𝑧 will end up 

in a partition of size ≤ 3
4

𝑐𝑐
4 ln 𝑛𝑛 𝑛𝑛 = 𝑛𝑛

𝑛𝑛
𝑐𝑐
4 ln

4
3

 ,  which is ≤ 1 for 𝑐𝑐 ≥ 14.

That means if 𝑐𝑐 ≥ 14, then 𝑧𝑧 will end up in its final sorted position in 

the output after undergoing  𝑐𝑐
4

ln𝑛𝑛 balanced partitions.
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High Probability Bound for RANDQS
For 1 ≤ 𝑖𝑖 ≤ 𝑐𝑐 ln𝑛𝑛, let 

 𝑍𝑍𝑖𝑖 = � 1 if the partition at recursion level 𝑖𝑖 is balanced;
 0 otherwise.

But a balanced partition is obtained by choosing a pivot with rank 

between 𝑘𝑘
4
 and 3𝑘𝑘

4
, where 𝑘𝑘 is the size of the set being partitioned. 

Since each element of the set is chosen as a pivot uniformly at 

random, a balancing pivot will be chosen with probability 
3𝑘𝑘
4 −

𝑘𝑘
4

𝑘𝑘
= 1

2
. 

Hence, Pr 𝑍𝑍𝑖𝑖 = 1 = 1
2
.

Thus 𝐸𝐸 𝑍𝑍𝑖𝑖 = Pr 𝑍𝑍𝑖𝑖 = 1 = 1
2
.
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High Probability Bound for RANDQS
Total number of balanced partitions, 𝑍𝑍 = ∑𝑖𝑖=1𝑐𝑐 ln 𝑛𝑛 𝑍𝑍𝑖𝑖.

Then 𝜇𝜇 = 𝐸𝐸 𝑍𝑍 = ∑𝑖𝑖=1𝑐𝑐 ln 𝑛𝑛 𝐸𝐸 𝑍𝑍𝑖𝑖 = 𝑐𝑐 ln 𝑛𝑛
2

 .

Now applying Chernoff bound 5 ( see Theorem 6 ) with 𝛿𝛿 = 1
2
 ,

     Pr 𝑍𝑍 ≤ 1 − 𝛿𝛿 𝜇𝜇 ≤ 𝑒𝑒−
𝜇𝜇𝛿𝛿2

2

     ⇒ Pr 𝑍𝑍 ≤ 𝑐𝑐
4

ln𝑛𝑛 ≤ 𝑒𝑒−
𝜇𝜇𝛿𝛿2

2 = 𝑒𝑒−
𝑐𝑐
16 ln 𝑛𝑛 =𝑛𝑛−

𝑐𝑐
16 = 1

𝑛𝑛
𝑐𝑐
16

 .

For 𝑐𝑐 = 32, we have Pr 𝑍𝑍 ≤ 8 ln𝑛𝑛 ≤ 1
𝑛𝑛2

 .

This means that the probability that 𝑧𝑧 fails to reach its final sorted 

position even after 32 ln𝑛𝑛 levels of recursion is ≤ 1
𝑛𝑛2

 . 
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High Probability Bound for RANDQS
The probability that at least one of 𝑛𝑛 input elements fails to reach its 

final sorted position after 32 ln𝑛𝑛 levels of recursion is ≤ 𝑛𝑛 × 1
𝑛𝑛2

= 1
𝑛𝑛

 . 

∴ the probability that all 𝑛𝑛 input elements reach their final sorted 

positions after 32 ln𝑛𝑛 levels of recursion is ≥ 1 − 1
𝑛𝑛

 .

But observe that the total amount of work done in each level of 
recursion is Ο 𝑛𝑛 .

∴ total work done in 32 ln𝑛𝑛 levels of recursion is Ο 𝑛𝑛 log𝑛𝑛 .

Hence, w.h.p. RANDQS terminates in Ο 𝑛𝑛 log𝑛𝑛  time.
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Random Skip Lists
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Searching in a Sorted Linked List

𝑛𝑛 items

ℎ𝑒𝑒𝑒𝑒𝑒𝑒

𝑛𝑛ℎ𝑒𝑒𝑒𝑒𝑒𝑒

𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛

2-level Linked List:

SEARCH  𝑥𝑥 : Takes ≤ 2 𝑛𝑛 time.

Traditional Linked List:

5146423832312725201815118652

5146423832312725201815118652

3825112

SEARCH  𝑥𝑥 : Takes ≤ 𝑛𝑛 time.
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Searching in a Sorted Linked List
3-level Linked List:

SEARCH  𝑥𝑥 : Takes ≤ 33 𝑛𝑛 time.

𝒌𝒌-level Linked List: SEARCH  𝑥𝑥 takes ≤ 𝑘𝑘𝑘𝑘 𝑛𝑛 = 𝑘𝑘𝑛𝑛
1
𝑘𝑘 time.

For 𝒌𝒌 = 𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏: SEARCH  𝑥𝑥 takes ≤ log𝑛𝑛 ⋅ 𝑛𝑛
1

log 𝑛𝑛 = 2 log𝑛𝑛 time!
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Searching in a Sorted Linked List

𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏 -level Linked List: SEARCH takes ≤ log𝑛𝑛 ⋅ 𝑛𝑛
1

log 𝑛𝑛 = 2 log𝑛𝑛 time!

5146423832312725201815118652

46383125181162

3825112

252

2

𝑛𝑛 items

ℎ𝑒𝑒𝑒𝑒𝑒𝑒

1

2

3

4

5

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

Observations: 

1. Let 𝑛𝑛𝑙𝑙 = #items in level 𝑙𝑙. Then 𝑛𝑛𝑙𝑙+1 = 𝑛𝑛𝑙𝑙
2

.

2. Let 𝑚𝑚𝑙𝑙 = 𝑛𝑛𝑙𝑙 − 𝑛𝑛𝑙𝑙+1= #items in level 𝑙𝑙 that have not 

reached level 𝑙𝑙 + 1. Then 𝑚𝑚𝑙𝑙 = 𝑛𝑛
2𝑙𝑙

.
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Searching in a Sorted Linked List

𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏 -level Linked List: SEARCH takes ≤ log𝑛𝑛 ⋅ 𝑛𝑛
1

log 𝑛𝑛 = 2 log𝑛𝑛 time!

5146423832312725201815118652

46383125181162

3825112

252

2

𝑛𝑛 items

ℎ𝑒𝑒𝑒𝑒𝑒𝑒

1

2

3

4

5

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

How do we maintain this regular structure under insertion and  
deletion of items?

Deterministic solution does not seem straightforward.

But randomization can make life really easy!

44



Random Skip Lists
ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

Construction:
1. Start with all items along with a sentinel −∞ in level 1.
2. Promote each non-sentinel item of level 𝑙𝑙 > 0 to level 𝑙𝑙 + 1 

with probability 1
2
.  

       If level 𝑙𝑙 + 1 is nonempty promote the sentinel, too.

5146423832312725201815118652 1−∞

5138312018115 2−∞

3831185 3−∞

3118 4−∞ 5

18 5−∞
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Random Skip Lists

Let 𝐿𝐿 be a skip list,

      𝐿𝐿𝑘𝑘 be the set of all items in level 𝑘𝑘 ≥ 1,

     𝑙𝑙 𝑥𝑥 = max  𝑘𝑘 | 𝑥𝑥 ∈ 𝐿𝐿𝑘𝑘 , and

     ℎ 𝐿𝐿 = max  𝑙𝑙 𝑥𝑥  | 𝑥𝑥 ∈ 𝐿𝐿0 .

ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

5146423832312725201815118652 1−∞

5138312018115 2−∞

3831185 3−∞

3118 4−∞ 5

18 5−∞
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Random Skip Lists

Clearly, for each 𝑥𝑥 ∈ 𝐿𝐿 and 𝑘𝑘 ≥ 1, Pr  𝑙𝑙 𝑥𝑥 = 𝑘𝑘 = 1
2𝑘𝑘

 .

ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

5146423832312725201815118652 1−∞

5138312018115 2−∞

3831185 3−∞

3118 4−∞ 5

18 5−∞

Then Pr  𝑙𝑙 𝑥𝑥 > 𝑘𝑘 = ∑𝑖𝑖=𝑘𝑘+1∞ Pr  𝑙𝑙 𝑥𝑥 = 𝑖𝑖 = ∑𝑖𝑖=𝑘𝑘+1∞ 1
2𝑖𝑖

= 1
2𝑘𝑘

 .

∴ Pr  ℎ 𝐿𝐿 ≤ 𝑘𝑘 = ∏𝑥𝑥∈𝐿𝐿 Pr  𝑙𝑙 𝑥𝑥 ≤ 𝑘𝑘 = 1 − 1
2𝑘𝑘

𝑛𝑛
.

∴ For constant 𝑐𝑐 > 2, Pr  ℎ 𝐿𝐿 ≤ 𝑐𝑐 log𝑛𝑛 

   = 1 − 1
2𝑐𝑐 log 𝑛𝑛

𝑛𝑛
= 1 − 1

𝑛𝑛𝑐𝑐
𝑛𝑛
≥ 1 − 𝑛𝑛

𝑛𝑛𝑐𝑐
= 1 − 1

𝑛𝑛𝑐𝑐−1
 .

Hence, w.h.p. height of a skip list is Ο log𝑛𝑛 .
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Random Skip Lists

Let us flip 4𝑐𝑐 log𝑛𝑛 fair coins and let 𝑋𝑋 be the number of heads we get. 

Then 𝜇𝜇 = 𝐸𝐸 𝑋𝑋 = 4𝑐𝑐 log𝑛𝑛 × 1
2

= 2𝑐𝑐 log𝑛𝑛 .

We know for 0 < 𝛿𝛿 < 1, Chernoff bound, Pr 𝑋𝑋 ≤ 1 − 𝛿𝛿 𝜇𝜇 ≤ 𝑒𝑒−
𝜇𝜇𝛿𝛿2

2 .

Putting 𝛿𝛿 = 1
2
 and 𝜇𝜇 = 2𝑐𝑐 log𝑛𝑛, we get, Pr 𝑋𝑋 ≤ 𝑐𝑐 log𝑛𝑛 ≤ 1

𝑛𝑛
𝑐𝑐
4
 .

For 𝑐𝑐 ≥ 4, Pr 𝑋𝑋 > 𝑐𝑐 log𝑛𝑛 ≥ 1 − 1
𝑛𝑛

 .

Hence, w.h.p. we will get more than 𝑐𝑐 log𝑛𝑛 heads.

ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

5146423832312725201815118652 1−∞

5138312018115 2−∞

3831185 3−∞

3118 4−∞ 5

18 5−∞

𝐻𝐻

𝐻𝐻

𝐻𝐻

𝐻𝐻

𝑇𝑇

𝑇𝑇

𝑇𝑇

48


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48

