Homework #2
(Due: Nov 8)

Steps:
2. Partition: Use a stable partitioning algorithm to rearrange the numbers of $A[1:n]$ such that $A[k] = x$ for some $k \in [1,n]$, each number in $A[1:k-1]$ is smaller than x, and each in $A[k+1:n]$ is larger than x.

Figure 1: [Task 1] The deterministic Quicksort algorithm we analyzed in the class.

Task 1. [100 Points] The Variance of the #Comparisons Performed by Quicksort
[Do not panic. This task is not as scary as it seems. A lot of work has already been done for you. The amount of work you will need to do for each part is often quite small and straightforward.]

This task asks you to precisely compute the variance of the number of element comparisons performed by the Quicksort algorithm shown in Figure 1.

Let t_n be the number of comparisons performed by our Quicksort algorithm averaged over all $n!$ permutations of an input of size n, and let v_n be its variance.

Let $f_{n,k}$ be the fraction of all possible inputs of size n for which the algorithm performs exactly k comparisons. Then by definitions of mean and variance,

$$t_n = \sum_k k f_{n,k} \quad \text{and} \quad v_n = \sum_k k^2 f_{n,k} - t_n^2$$

(a) [5 Points] Consider the following generating function for $f_{n,k}$’s.

$$F_n(z) = f_{n,0} + f_{n,1}z + f_{n,2}z^2 + \ldots + f_{n,k}z^k + \ldots$$

Show that $t_n = F'_n(1)$ and $v_n = F''_n(1) + F'_n(1) - (F'_n(1))^2$.

(b) [10 Points] Argue that $F_n(z)$ can be described by the following recurrence relation:

$$F_n(z) = \begin{cases}
1, & \text{if } n \leq 1, \\
\frac{1}{n} \sum_{k=1}^{n-1} F_{k-1}(z)F_{n-k}(z), & \text{otherwise.}
\end{cases}$$
(c) [10 Points] Using parts (a) and (b) derive the following recurrence relation for \(t_n \):

\[
t_n = \begin{cases}
0, & \text{if } n \leq 1, \\
 -1 + \frac{1}{n} \sum_{k=1}^{n} (t_{k-1} + t_{n-k}), & \text{otherwise.}
\end{cases}
\]

Recall that we already solved this recurrence in the class to show that \(t_n = 2(n+1)H_n - 4n \). You do not need to solve it here.

(d) [10 Points] Let \(s_n = F_n''(1) \). Show that \(s_n = 0 \) for \(n \leq 2 \), and the following recurrence holds for \(n > 2 \):

\[
s_n = (n-1)(n-2) + \frac{1}{n} \left(\sum_{k=1}^{n} (s_{k-1} + s_{n-k}) + 2(n-1) \sum_{k=1}^{n} (t_{k-1} + t_{n-k}) + 2 \sum_{k=1}^{n} t_{k-1} t_{n-k} \right)
\]

(e) [5 Points] Show that the recurrence for \(s_n \) from part (d) can be simplified to:

\[
s_n = \begin{cases}
0, & \text{if } n \leq 2, \\
 -\frac{2}{n} \sum_{k=0}^{n-1} k + \frac{2}{n} \sum_{k=1}^{n} t_{k-1} t_{n-k} + (n-1)(2t_n - n), & \text{otherwise.}
\end{cases}
\]

(f) [25 Points] Using \(t_n = 2(n+1)H_n - 4n \) (proved in the class) and the definitions and mathematical identities involving harmonic numbers given in Table 1, show that the recurrence from part (e) can be written as:

\[
s_n = \begin{cases}
0, & \text{if } n \leq 2, \\
 -\frac{2}{n} \sum_{k=0}^{n-1} s_k + \frac{2}{n} \sum_{k=1}^{n} t_{k-1} t_{n-k} + (n-1)(2t_n - n), & \text{otherwise.}
\end{cases}
\]

(g) [10 Points] Using part (f) show that for \(n \geq 0 \):

\[
\frac{s_{n+1}}{n+2} = \frac{s_n}{n+1} + 4 \left((H_n)^2 - H_n^{(2)} \right) - \frac{8n}{n+1} H_n + 7 - \frac{10}{n+1} + \frac{6}{n+2}
\]

(h) [20 Points] Solve the recurrence from part (g) to show that for \(n \geq 0 \):

\[
s_n = 4(n+1)^2 \left((H_n)^2 - H_n^{(2)} \right) - 4(n+1)(4n+1)H_n + n(23n+17)
\]

Use of generating functions is optional for this part.

(i) [5 Points] Finally, combine your result from part (h) with the solution for \(t_n \) we proved in the class to show that for \(n \geq 0 \):

\[
v_n = 7n^2 + 13n - 2(n+1)H_n - 4(n+1)^2 H_n^{(2)}
\]
\[H_n = \sum_{k=1}^{n} \frac{1}{k} \] (1)
\[
\lim_{n \to \infty} (H_n - \ln n) = \gamma \approx 0.5772156649 \] (2)
\[H_n^{(2)} = \sum_{k=1}^{n} \frac{1}{k^2} \] (3)
\[
\lim_{n \to \infty} H_n^{(2)} = \frac{\pi^2}{6} \approx 1.644934068 \] (4)
\[
(H_{n+1})^2 - H_n^{(2)} = (H_n)^2 - H_n^{(2)} + \frac{2H_n}{n+1} \] (5)
\[
\sum_{k=1}^{n} H_{k-1} = n(H_n - 1) \] (6)
\[
\sum_{k=1}^{n} H_{n-k} = n(H_n - 1) \] (7)
\[
\sum_{k=1}^{n} H_{k-1}H_{n-k} = n \left((H_n)^2 - H_n^{(2)} - 2(H_n - 1) \right) \] (8)
\[
\sum_{k=1}^{n} kH_{k-1} = \frac{n(n+1)}{2} \left(H_n - \frac{1}{2} - \frac{1}{n+1} \right) \] (9)
\[
\sum_{k=1}^{n} kH_{n-k} = \frac{n(n+1)}{2} \left(H_n - \frac{3}{2} + \frac{1}{n+1} \right) \] (10)
\[
\sum_{k=1}^{n} kH_{k-1}H_{n-k} = \frac{n(n+1)}{2} \left((H_n)^2 - H_n^{(2)} - 2(H_n - 1) \right) \] (11)
\[
\sum_{k=1}^{n} k^2H_{k-1} = \frac{n(n+1)(2n+1)}{6}H_n - \frac{n}{36}(4n^2 + 15n + 17) \] (12)
\[
\sum_{k=1}^{n} k^2H_{n-k} = \frac{n(n+1)(2n+1)}{6}H_n - \frac{n}{36}(22n^2 + 15n - 1) \] (13)
\[
\sum_{k=1}^{n} k^2H_{k-1}H_{n-k} = \frac{n(n+1)(2n+1)}{6} \left((H_n)^2 - H_n^{(2)} \right) - \frac{n}{18}(13n^2 + 15n + 8)H_n \right.
\left. + \frac{n}{108}(71n^2 + 111n + 34) \] (14)
\[t_n = 2(n+1)H_n - 4n \] (15)

Table 1: [Task 1] Definitions and mathematical identities useful for Task 1.
Select(A[q : r], k, α, s₁, s₂, b)

Input: An array of distinct elements, and an integer k ∈ [1, r − q + 1]. The parameter α ∈ [0, 1] is a floating point number that gives the probability of choosing s₁ as the block size to be used at this level of recursion and 1 − α is the probability of choosing s₂. Also b is an upper bound on the size of the base case.

Output: An element x of A[q : r] such that rank(x, A[q, r]) = k.

1. n ← r − q + 1
2. if n ≤ b then
 3. sort A[q : r]
 4. return A[q + k − 1]
else
6. d ← a floating point number between 0 and 1 (inclusive) chosen uniformly at random
7. if d ≤ α then s ← s₁
else s ← s₂
9. divide A[q : r] into blocks Bᵢ’s each containing s consecutive elements (last block may contain fewer than s elements)
for i ← 1 to ⌈ n s ⌉ do
11. M[i] ← median of Bᵢ using sorting
12. x ← Select(M[1 : ⌈ n s ⌉], ⌈ n s ⌉ + 1 , α, s₁, s₂, b) {median of medians}
13. t ← Partition(A[q : r], x) {partition around x which ends up at A[t]}
14. if k = t − q + 1 then return A[t]
else if k < t − q + 1 then return Select(A[q : t − 1], k, α, s₁, s₂, b)
else return Select(A[t + 1 : r], k − t + q − 1, α, s₁, s₂, b)

Figure 2: [Task 2] Selection with probabilistic blocking.

Task 2. [50 Points] Recursive Selection with Probabilistic Blocking

Figure 2 shows a slightly generalized version of the selection algorithm we saw in the class. Instead of using a single block size (e.g., 5) at all levels of recursion, it chooses between two block sizes s₁ and s₂ with probability α and 1 − α, respectively. The base case size b is also a parameter to the algorithm. Observe that when b = 140 and s₁ = s₂ = 5 (or s₁ = 5 with α = 1, or s₂ = 5 with α = 0), the algorithm reduces to the one we saw in the class.

(a) [15 Points] Write a recurrence relation describing the running time of Select on an array of size n assuming s₁ = s₂ = 3. Using the approach we saw in the class can you reduce the running time to O(n) based on your recurrence? Why or why not?

(b) [20 Points] How about calling Select with s₁ = 3, s₂ = 5, and α = 1/3? Can you get an O(n) upper bound based on your recurrence from part (a)? Explain. If so, what is the smallest value of b you can use?

(c) [15 Points] Now, how about calling Select with s₁ = 3 and s₂ = 5, but an arbitrary value of α < 1? Can you still get down to O(n)? Explain.
Task 3. [50 Points] Three Mutually Recursive Functions

Figure 3 shows three mutually recursive functions COMP-Q, COMP-R and COMP-S. Each function accepts a nonnegative integer as the sole input. Now answer the following questions.

(a) [20 Points] Use generating functions to find the values returned by COMP-Q(\(n\)), COMP-R(\(n\)) and COMP-S(\(n\)).

(b) [20 Points] Use generating functions to find the running times of COMP-Q(\(n\)), COMP-R(\(n\)) and COMP-S(\(n\)).

(c) [10 Points] Based on part (a) can you give algorithms to compute the values returned by COMP-Q(\(n\)), COMP-R(\(n\)) and COMP-S(\(n\)) in \(O(n)\) time? Can you compute them in \(o(n)\) time? Why or why not?