CSE548, AMS542: Analysis of Algorithms, Fall 2023 Date: Sep 22

Homework #1

(Due: Oct 6)

X 0000000000000 000 i e 00 0 e ole
0000000000000 000 . oo el o000
000000000000 0000 . ool oo e
000000000000 0000 . ool o0 0
0000000000000 000 . o o e ele.

[9900000000000 000 JEN oeosll iheee,
0000000000000 000 LN LN e o
0000000000000 000 | o LN e oe
00000000000 00000 | . v o ool teole.
9000000000000 000 i, L3 ro o lm 'eeial
200000000000 0000 I . o eSS

IAARARARIEEEEEEE IR < e ¢e eje
k¢ n >l¢ n > 0 90° 180°

Figure 1: [Task 1] Our 2n x (T + 1) space-time grid can be viewed as wrapped around a cylinder
making the first and the last columns of the grid neighbors.

Task 1. [50 Points | 1D Heat Diffusion in a Segmented Ring

Consider the following partial differential equation that describes heat diffusion in 1D space:

8héi:c) . <a2§;gx)> |

where, hi(x) is the heat at a point = at time ¢ and « is the thermal diffusivity of the material.

By discretizing space and time, the equation above can be solved approximately by using the
following update equation:
alAt

Given a 1D grid A of length n with heat values at time step 0, Figure 2 shows how to update h to
heat values at time step T" under periodic boundary conditions, that is, assuming that the spatial
dimension of the grid wraps around and thus forms a ring. Clearly, the algorithm runs in © (nT)
time, that is, in © (n2) time when T = n.

In this task, however, we are interested in heat diffusion in a ring that is composed of two segments
of equal length connected end to end. The two segments are made of two different materials and
thus have different thermal diffusivity values. Figure 3 shows how to update such a grid h of length
2n to compute heat values at time step 1" under periodic boundary conditions. We assume that
the first and second halves (h[1..n] and hln + 1..2n], respectively) of the grid are made of different

1D-HEAT-DIFFUSION-1-SEG(h, n, T, @) {Given a 1D grid h of length n with heat values at
time step 0 and @ = aAt/Ax?*, where o is the thermal

diffusivity of the material, update h to the heat values

at time step T under periodic boundary conditions.}

1. allocate new grid g [1..n]

2. fort=1to T do

3. g[l] « hll]+ @ (h[n] —2h[1] + A [2])

4. gln] < hln]+@- (h[n—1] —2h[n] + h[1])
5 for t=2ton—1do

6

glz]l < hlz]+a@- (hjx — 1] — 2h[z] + h [z + 1])

7. for x =1 to n do

8. hlz] < g[z]

9. deallocate g

Figure 2: [Task 1] Heat diffusion in a 1D grid under periodic boundary conditions assuming that
the entire grid is made of the same material.

1D-HEAT-DIFFUSION-2-SEG(h, n, T, @1, a2) {Given a 1D grid h of length 2n with heat values at time
step 0, a; = ()zlAt/A{L‘Q and o = ongt/A:I;Z, update h to

heat values at time step T under periodic boundary conditions.

We assume that h[1..n] and h[n + 1..2n] are made of different

materials with thermal diffusivity a1 and a2, respectively.}

1. allocate new grid g [1..2n]

2. fort=1to T do

3 g[l] + hll]+ @1 - (h[2n] —2R[1] + R [2])

4 g[2n] < h2n] + @2 - (h[2n — 1] — 2k [2n] + h[1])
5. for x =2 to n do

6 glz] < hlz]+ @1 - (h[z — 1] —2h[z] + h[z + 1])
7 fort=n+1to 2n—1do

8 glz] < hlz] + @z - (h[z — 1] —2h[z] + h [z + 1])

9. for x =1 to 2n do
10. hlz] < g[z]

11. deallocate g

Figure 3: [Task 1] Heat diffusion in a 1D grid under periodic boundary conditions assuming that
the grid is composed of two segments made of two different materials.

materials and so will have to be updated differently. Since the boundary condition is periodic, the
entire space-time grid can be viewed as wrapped around a cylinder as shown in Figure 1. This
algorithm, too, runs in © (nT") time, that is, in © (n2) time when T = n.

Now, given a 1D grid h[l..2n] composed of two segments of equal length as explained above and
initialized with heat values at time step 0, design a recursive divide-and-conquer algorithm to
calculate the heat values at time step 7' = n in O (n log? n) time. You can assume that n is a
power of 2.

Task 2. [50 Points | Beyond 2-way Divide and Conquer for Computing DFT

The FFT algorithm we have seen in the class uses 2-way recursive divide and conquer to compute the
Discrete Fourier Transform (DFT) of an input vector. This task asks you to extend the algorithm
to decompose the problem into more than two sub-problems in each recursive call.

(a) [20 Points] Assuming that the length n of the input vector is a power of 3, that is, n = 3F
for some nonnegative integer k, extend the FFT algorithm we have seen in the class to use
3-way recursive divide and conquer. Analyze its running time.

(b) [20 Points] Assuming that n = b* for some integer £ > 0 and a fixed integer b > 2, extend
the FFT algorithm to use b-way recursive divide and conquer. Express its asymptotic run
time in terms of both n and b, that is, do not eliminate b treating it as a constant.

(c) [10 Points] Is it possible to reduce the run time of the algorithm to o (nlogn) by choosing
an appropriate fixed value for b? Explain.

Task 3. [40 Points | Multiplying 3D Matrices

Let’s define the product of three n x n x n matrices X, Y, and Z as another n X n x n matrix W
such that for all integers 4, j, k € [1,n],

Wi jk = E Lip,q " Yq,5.p ° “p,a.k
1<p,g<n

Thus, as shown in Figure 4, each entry of W is obtained as the sum of the pointwise products of
three planes of X, Y, and Z. Two n X n X n matrices can be added in © (ng) time using standard
pointwise additions of cell values the way we do it for 2D matrices.

(a) [20 Points | Give a recursive divide-and-conquer algorithm for computing matrix W in
) (n5) time.

(b) [20 Points | Suppose z; j, = 1 for all 4,5,k € [1,n]. Show that in that case, W can be
computed in O (nlog? 14) time.

=l | Z7 =
i] ;]
i ‘Wi,j,k 1 — i f ' 1 Z? 1 Z’ 1
" " " "
w X Y VA

Figure 4: [Task 3] Entry w; j ;. of the 3D matrix W is obtained as the sum of the pointwise products
of three planes of the 3D matrices X, Y, and Z.

Task 4. [40 Points | Integer Multiplication

Suppose that you are given two n-bit integers x and y that contain n, and n, nonzero bits,
respectively. This task asks you to explore whether you can take advantage of this additional
information to asymptotically improve the run times of integer multiplication algorithms.

(a) [20 Points] Design a nonrecursive algorithm to multiply z and y in O ((n + ngyny)logn)
time. Observe that this algorithm asymptotically improves over the standard © (n2) time

algorithm when n, = o (10271) and/or ny = o <$)

(b) [10 Points | Can you asymptotically improve the run-time complexity of the © (n?)-time
recursive divide-and-conquer algorithm we saw in the class for the problem in our current
task? If yes, what bound do you get? You may use your result from part (a) as a subroutine
if that helps.

(c) [10 Points | Repeat part (b) for Karatsuba’s algorithm.

Task 5. [20 Points | Fun with Programming Christmas Lights! (Idea: Tianchi (Mav-
erick) Mo)

This task asks you to do recursive divide and conquer on a string of decorative light bulbs!

You are given a string of n = 2" — 1 fancy bulbs, where m is a positive integer. If you number the
light bulbs by consecutive integers from left to right starting with 1, every even-numbered bulb is
red and the odd-numbered ones are a mix of green and yellow (see Figure 5).

The bulbs are fancy because each has a simple processing chip. Each chip has a small constant
number (independent of n) of storage bits. It also has an internal clock that ticks at a fixed rate.
With every tick of the clock, the chip reads its own bits and the storage bits of its immediate
neighbors. Based on what it has read, it can change its own storage bits and turn its bulb on or
off right before the next tick.

All chips in the string are synchronized, and so the clocks tick at the same time and at the same
rate. All chips read the storage bits at exactly the same time with every clock tick before the bits
are updated before the next clock tick.

2% — 1 light bulbs

turn on bulbs at locations
224+ kx240<k<?2°

turn on bulbs at locations
224+ kx23,0<k<2!

turn on bulbs at locations
2V +kx22,0<k<2?

turn on bulbs at locations
204+ kx2,0<k <23

Figure 5: [Task 5] An example with 2* — 1 = 15 light bulbs.

The chips are programmable. You can program what the chips do after reading the bits at every
clock tick. All chips must execute the same code. You can set the storage bits of the leftmost chip
(i.e., the one belonging to light bulb 1) before the execution starts, but all other chips start with
their bits cleared to zero. When you turn on the light string, all the chips start executing right
away.

Note that a chip knows neither n nor the index of the light bulb to which it belongs. Indeed, since
it contains only a small constant number (say < 10) of storage bits, it does not have enough space
to store either. Observe that storing n will require = logy n bits and an index can also be as large
as n. Each chip executes the code locally, and there is no global variable accessible to every chip. A
chip is only aware of its immediate neighbors, which is one or two depending on the location of the
light bulb in the string. The leftmost and the rightmost light bulbs can infer that they are at those
two extreme locations after trying and failing to read the storage bits of one of their neighbors.

Now answer the following questions.

(a) [10 Points | How do you program the chips so that after some number of clock ticks exactly
one of the bulbs lights up and that bulb is exactly at the center of the string (i.e., at location
2m=1)? At which clock tick will that happen?

(b) [10 Points] Part (a) effectively divides the string into two parts of length 2™~ — 1 each.
But your code must do more. Next, you must light up the two bulbs at the center of the two
halves (i.e., at locations 2™~2 4 k x 2™~ ! for 0 < k < 2!), which, in turn, divides the string

into four equal parts; then you must light up the four bulbs at the center of those four parts
(i.e., at locations 273 4 k x 2m~2 for 0 < k < 22), and so on. Observe that all these bulbs
that you light up are at even-numbered locations and so are red, except in the last step, when
you light up all bulbs only at odd-numbered locations, which are either green or yellow! At
exactly what clock tick does your program light up all green and yellow lights?

