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Breadth-First Search (BFS)

Input: Unweighted directed or undirected graph 𝐺 = 𝑉, 𝐸 with vertex set 
𝑉 and edge set 𝐸, and a source vertex 𝑠 ∈ 𝐺. 𝑉. For each 𝑣 ∈ 𝑉, the 
adjacency list of 𝑣 is 𝐺. 𝐴𝑑𝑗 𝑣 .

Output: For all 𝑣 ∈ 𝐺 𝑉 , 𝑣. 𝑑 is set to the shortest distance (in terms of the 
number of edges) from 𝑠 to 𝑣. Also, 𝑣. 𝜋 pointers form a breadth-first tree 
rooted at 𝑠 that contains all vertices reachable from 𝑠.

BFS ( 𝐺, 𝑠 )

1. for each vertex 𝑢 ∈ 𝐺. 𝑉 ∖ 𝑠 do

2. 𝑢. 𝑐𝑜𝑙𝑜𝑟 ← WHITE,  𝑢. 𝑑 ← ∞,  𝑢. 𝜋 ← 𝑁𝐼𝐿

3. 𝑠. 𝑐𝑜𝑙𝑜𝑟 ← GRAY,  𝑠. 𝑑 ← 0,  𝑠. 𝜋 ← 𝑁𝐼𝐿

4. Queue 𝑄 ← ∅

5. ENQUEUE( 𝑄, 𝑠 )

6. while 𝑄 ≠ ∅ do

7. 𝑢 ← DEQUEUE( 𝑄 )

8. for each 𝑣 ∈ 𝐺. 𝐴𝑑𝑗 𝑢 do

9. if 𝑣. 𝑐𝑜𝑙𝑜𝑟 = WHITE then

10. 𝑣. 𝑐𝑜𝑙𝑜𝑟 ← GRAY,  𝑣. 𝑑 ← 𝑢. 𝑑 + 1,  𝑣. 𝜋 ← 𝑢

11. ENQUEUE( 𝑄, 𝑣 )

12. 𝑢. 𝑐𝑜𝑙𝑜𝑟 ← BLACK
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Breadth-First Search (BFS)

BFS ( 𝐺, 𝑠 )

1. for each vertex 𝑢 ∈ 𝐺. 𝑉 ∖ 𝑠 do

2. 𝑢. 𝑐𝑜𝑙𝑜𝑟 ← WHITE,  𝑢. 𝑑 ← ∞,  𝑢. 𝜋 ← 𝑁𝐼𝐿

3. 𝑠. 𝑐𝑜𝑙𝑜𝑟 ← GRAY,  𝑠. 𝑑 ← 0,  𝑠. 𝜋 ← 𝑁𝐼𝐿

4. Queue 𝑄 ← ∅

5. ENQUEUE( 𝑄, 𝑠 )

6. while 𝑄 ≠ ∅ do

7. 𝑢 ← DEQUEUE( 𝑄 )

8. for each 𝑣 ∈ 𝐺. 𝐴𝑑𝑗 𝑢 do

9. if 𝑣. 𝑐𝑜𝑙𝑜𝑟 = WHITE then

10. 𝑣. 𝑐𝑜𝑙𝑜𝑟 ← GRAY,  𝑣. 𝑑 ← 𝑢. 𝑑 + 1,  𝑣. 𝜋 ← 𝑢

11. ENQUEUE( 𝑄, 𝑣 )

12. 𝑢. 𝑐𝑜𝑙𝑜𝑟 ← BLACK
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Let 𝑛 = 𝐺. 𝑉 and 𝑚 = 𝐺. 𝐸

Time spent 
− initializing = Θ 𝑛
− enqueuing / dequeuing 

= Θ 𝑛
− scanning the adjacency lists

= Θ σ𝑣∈G.𝑉 𝐺. 𝐴𝑑𝑗 𝑣

= Θ 𝑚

∴ Total cost = Θ 𝑚 + 𝑛



Depth-First Search (DFS)

Input: Unweighted directed or undirected graph 𝐺 = 𝑉, 𝐸 with vertex set 
𝑉 and edge set 𝐸. For each 𝑣 ∈ 𝑉, the adjacency list of 𝑣 is 𝐺. 𝐴𝑑𝑗 𝑣 .

Output: For each 𝑣 ∈ 𝐺 𝑉 , 𝑣. 𝑑 is set to the time when 𝑣 was first 
discovered and 𝑣. 𝑓 is set to the time when 𝑣’s adjacency list has been 
examined completely. Also, 𝑣. 𝜋 pointers form a breadth-first tree rooted at 
𝑠 that contains all vertices reachable from 𝑠.

DFS-VISIT ( 𝐺, 𝑢 )

1. 𝑡𝑖𝑚𝑒 ← 𝑡𝑖𝑚𝑒 + 1

2. 𝑢. 𝑑 ← 𝑡𝑖𝑚𝑒

3. 𝑢. 𝑐𝑜𝑙𝑜𝑟 ← GRAY

4. for each 𝑣 ∈ 𝐺. 𝐴𝑑𝑗 𝑢 do

5. if 𝑣. 𝑐𝑜𝑙𝑜𝑟 = WHITE then

6. 𝑣. 𝜋 ← 𝑢

7. DFS-VISIT( 𝐺, 𝑣 )

8. 𝑢. 𝑐𝑜𝑙𝑜𝑟 ← BLACK

9. 𝑡𝑖𝑚𝑒 ← 𝑡𝑖𝑚𝑒 + 1

10. 𝑢. 𝑓 ← 𝑡𝑖𝑚𝑒
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DFS ( 𝐺 )

1. for each vertex 𝑢 ∈ 𝐺. 𝑉 do

2. 𝑢. 𝑐𝑜𝑙𝑜𝑟 ← WHITE,  𝑢. 𝜋 ← 𝑁𝐼𝐿

3. 𝑡𝑖𝑚𝑒 ← 0

4. for each 𝑢 ∈ 𝐺. 𝑉 do

5. if 𝑢. 𝑐𝑜𝑙𝑜𝑟 = WHITE then

6. DFS-VISIT( 𝐺, 𝑢 )



Depth-First Search (DFS)
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Depth-First Search (DFS)

2/
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1/

𝑢 𝑣 𝑤

𝑥 𝑦 𝑧

Tree Edge ( T ): These are edges in the depth-first forest 𝐺𝜋. Edge 

𝑢, 𝑣 is a tree edge if 𝑣 was first discovered by exploring that edge. 

In the example above, we will make all tree edges green and thick.
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Depth-First Search (DFS)
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Back Edge ( B ): A back edge goes from a vertex to its ancestor in a 

depth-first tree. Self-loops are also considered back edges.



Depth-First Search (DFS)
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Depth-First Search (DFS)
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Depth-First Search (DFS)
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Depth-First Search (DFS)

2/7
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BF

Forward Edge ( F ): A forward edge is a nontree edge that connects 

a vertex to a descendant in a depth-first tree.
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Depth-First Search (DFS)
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Depth-First Search (DFS)

2/7 9/
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BF C

Cross Edge ( C ): If a non-tree edge is neither a back edge nor a  

forward edge then it’s a cross edge. Cross edges can go between 

vertices in the same depth-first tree or in different depth-first trees.
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Depth-First Search (DFS)
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Depth-First Search (DFS)
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Depth-First Search (DFS)

30

Let 𝑛 = 𝐺. 𝑉 and 𝑚 = 𝐺. 𝐸

Time spent 

− in DFS (exclusive of calls to DFS-
VISIT) = Θ 𝑛

− in DFS-VISIT scanning the adjacency 

lists = Θ σ𝑣∈G.𝑉 𝐺. 𝐴𝑑𝑗 𝑣

= Θ 𝑚

∴ Total cost = Θ 𝑚 + 𝑛

DFS-VISIT ( 𝐺, 𝑢 )

1. 𝑡𝑖𝑚𝑒 ← 𝑡𝑖𝑚𝑒 + 1

2. 𝑢. 𝑑 ← 𝑡𝑖𝑚𝑒

3. 𝑢. 𝑐𝑜𝑙𝑜𝑟 ← GRAY

4. for each 𝑣 ∈ 𝐺. 𝐴𝑑𝑗 𝑢 do

5. if 𝑣. 𝑐𝑜𝑙𝑜𝑟 = WHITE then

6. 𝑣. 𝜋 ← 𝑢

7. DFS-VISIT( 𝐺, 𝑣 )

8. 𝑢. 𝑐𝑜𝑙𝑜𝑟 ← BLACK

9. 𝑡𝑖𝑚𝑒 ← 𝑡𝑖𝑚𝑒 + 1

10. 𝑢. 𝑓 ← 𝑡𝑖𝑚𝑒

DFS ( 𝐺 )

1. for each vertex 𝑢 ∈ 𝐺. 𝑉 do

2. 𝑢. 𝑐𝑜𝑙𝑜𝑟 ← WHITE,  𝑢. 𝜋 ← 𝑁𝐼𝐿

3. 𝑡𝑖𝑚𝑒 ← 0

4. for each 𝑢 ∈ 𝐺. 𝑉 do

5. if 𝑢. 𝑐𝑜𝑙𝑜𝑟 = WHITE then

6. DFS-VISIT( 𝐺, 𝑢 )



Topological Sort

A topological sort of a DAG (i.e., directed acyclic graph) 𝐺 = 𝑉, 𝐸 is a 

linear ordering of all its vertices such that if 𝐺 contains an edge 𝑢, 𝑣 , then 

𝑢 appears before 𝑣 in the ordering. 

We can view a topological sort of a graph as an ordering of its vertices along 

a horizontal line so that all directed edges go from left to right.

31
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Topological Sort
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TOPOLOGICAL-SORT ( 𝐺 )

1. call DFS ( 𝐺 ) to compute the finish times 𝑣. 𝑓 for each vertex 𝑣 ∈ 𝐺. 𝑉

2. as each vertex is finished, insert it into the front of a linked list

3. return the linked list of vertices
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Strongly Connected Components

A strongly connected component of a directed graph 𝐺 = 𝑉, 𝐸 is a 

maximal set of vertices 𝐶 ⊆ 𝑉 such that for every pair of vertices 𝑢 and 𝑣 in 

𝐶, we have both 𝑢 ⤳ 𝑣 and 𝑣 ⤳ 𝑢; that is, vertices 𝑢 and 𝑣 are reachable 

from each other. 
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Strongly Connected Components

A strongly connected component of a directed graph 𝐺 = 𝑉, 𝐸 is a 

maximal set of vertices 𝐶 ⊆ 𝑉 such that for every pair of vertices 𝑢 and 𝑣 in 

𝐶, we have both 𝑢 ⤳ 𝑣 and 𝑣 ⤳ 𝑢; that is, vertices 𝑢 and 𝑣 are reachable 

from each other. 
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Strongly Connected Components

A strongly connected component of a directed graph 𝐺 = 𝑉, 𝐸 is a 

maximal set of vertices 𝐶 ⊆ 𝑉 such that for every pair of vertices 𝑢 and 𝑣 in 

𝐶, we have both 𝑢 ⤳ 𝑣 and 𝑣 ⤳ 𝑢; that is, vertices 𝑢 and 𝑣 are reachable 

from each other. 

35

𝑏 𝑐 𝑑

𝑓 𝑔 ℎ

𝑎

𝑒



Strongly Connected Components
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STRONGLY-CONNECTED-COMPONENTS ( 𝐺 )

1. call DFS ( 𝐺 ) to compute the finish times 𝑣. 𝑓 for each vertex 𝑣 ∈ 𝐺. 𝑉

2. compute 𝐺𝑇

3. call DFS ( 𝐺𝑇 ), but in the main loop of DFS, consider the vertices in order 

of decreasing 𝑣. 𝑓 (as computed in line 1)

4. output the vertices of each tree in the depth-first forest formed in line 3 as 

a separate strongly connected component



Strongly Connected Components
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STRONGLY-CONNECTED-COMPONENTS ( 𝐺 )

1. call DFS ( 𝐺 ) to compute the finish times 𝑣. 𝑓 for each vertex 𝑣 ∈ 𝐺. 𝑉

2. compute 𝐺𝑇

3. call DFS ( 𝐺𝑇 ), but in the main loop of DFS, consider the vertices in order 

of decreasing 𝑣. 𝑓 (as computed in line 1)

4. output the vertices of each tree in the depth-first forest formed in line 3 as 

a separate strongly connected component
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𝑎

𝑒



Strongly Connected Components
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𝑒

STRONGLY-CONNECTED-COMPONENTS ( 𝐺 )

1. call DFS ( 𝐺 ) to compute the finish times 𝑣. 𝑓 for each vertex 𝑣 ∈ 𝐺. 𝑉

2. compute 𝐺𝑇

3. call DFS ( 𝐺𝑇 ), but in the main loop of DFS, consider the vertices in order 

of decreasing 𝑣. 𝑓 (as computed in line 1)

4. output the vertices of each tree in the depth-first forest formed in line 3 as 

a separate strongly connected component



𝑏 𝑐 𝑑

𝑓 𝑔 ℎ

𝑎
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Strongly Connected Components
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STRONGLY-CONNECTED-COMPONENTS ( 𝐺 )

1. call DFS ( 𝐺 ) to compute the finish times 𝑣. 𝑓 for each vertex 𝑣 ∈ 𝐺. 𝑉

2. compute 𝐺𝑇

3. call DFS ( 𝐺𝑇 ), but in the main loop of DFS, consider the vertices in order 

of decreasing 𝑣. 𝑓 (as computed in line 1)

4. output the vertices of each tree in the depth-first forest formed in line 3 as 

a separate strongly connected component



Strongly Connected Components
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𝑏 𝑐 𝑑

𝑓 𝑔 ℎ

𝑎

𝑒

STRONGLY-CONNECTED-COMPONENTS ( 𝐺 )

1. call DFS ( 𝐺 ) to compute the finish times 𝑣. 𝑓 for each vertex 𝑣 ∈ 𝐺. 𝑉

2. compute 𝐺𝑇

3. call DFS ( 𝐺𝑇 ), but in the main loop of DFS, consider the vertices in order 

of decreasing 𝑣. 𝑓 (as computed in line 1)

4. output the vertices of each tree in the depth-first forest formed in line 3 as 

a separate strongly connected component



Strongly Connected Components
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𝑏 𝑐 𝑑

𝑓 𝑔 ℎ

𝑎

𝑒

STRONGLY-CONNECTED-COMPONENTS ( 𝐺 )

1. call DFS ( 𝐺 ) to compute the finish times 𝑣. 𝑓 for each vertex 𝑣 ∈ 𝐺. 𝑉

2. compute 𝐺𝑇

3. call DFS ( 𝐺𝑇 ), but in the main loop of DFS, consider the vertices in order 

of decreasing 𝑣. 𝑓 (as computed in line 1)

4. output the vertices of each tree in the depth-first forest formed in line 3 as 

a separate strongly connected component



Strongly Connected Components

42

𝑐𝑑

ℎ𝑓𝑔

𝑎𝑏𝑒

STRONGLY-CONNECTED-COMPONENTS ( 𝐺 )

1. call DFS ( 𝐺 ) to compute the finish times 𝑣. 𝑓 for each vertex 𝑣 ∈ 𝐺. 𝑉

2. compute 𝐺𝑇

3. call DFS ( 𝐺𝑇 ), but in the main loop of DFS, consider the vertices in order 

of decreasing 𝑣. 𝑓 (as computed in line 1)

4. output the vertices of each tree in the depth-first forest formed in line 3 as 

a separate strongly connected component



The Single-Source Shortest Paths (SSSP) Problem

We are given a weighted, directed graph 𝐺 = 𝑉, 𝐸 with vertex 

set 𝑉 and edge set 𝐸, and a weight function 𝑤 such that for each 

edge 𝑢, 𝑣 ∈ 𝐸, 𝑤 𝑢, 𝑣 represents its weight. 

We are also given a source vertex 𝑠 ∈ 𝑉.

Our goal is to find a shortest path (i.e., a path of the smallest total 

edge weight) from 𝑠 to each vertex 𝑣 ∈ 𝑉.
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SSSP: Relxation

INITIALIZE-SINGLE-SOURCE ( 𝐺 = 𝑉, 𝐸 , 𝑠 )

1. for each vertex 𝑣 ∈ 𝐺. 𝑉 do

2. 𝑣. 𝑑 ← ∞

3. 𝑣. 𝜋 ← 𝑁𝐼𝐿

4. 𝑠. 𝑑 ← 0

RELAX ( 𝑢, 𝑣, 𝑤 )

1. if 𝑢. 𝑑 + 𝑤 𝑢, 𝑣 < 𝑣. 𝑑 then

2. 𝑣. 𝑑 ← 𝑢. 𝑑 + 𝑤 𝑢, 𝑣

3. 𝑣. 𝜋 ← 𝑢
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SSSP: Properties of Shortest Paths and Relxation

The weight 𝑤 𝑝 of path 𝑝 = ⟨𝑣0, 𝑣1, … , 𝑣𝑘⟩ is the sum of the 

weights of its constituent edges:  

𝑤 𝑝 =෍

𝑖=1

𝑘

𝑤 𝑣𝑖−1, 𝑣𝑖

We define the shortest-path weight 𝛿 𝑢, 𝑣 from 𝑢 to 𝑣 by

𝛿 𝑢, 𝑣 = ቊ
min 𝑤 𝑝 : 𝑝 is 𝑢 ~ 𝑣 , if there is a path from 𝑢 to 𝑣,

∞, otherwise.

A shortest path from vertex 𝑢 to vertex 𝑣 is then defined as any 

path 𝑝 with weight 𝑤 𝑝 = 𝛿 𝑢, 𝑣 .
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SSSP: Properties of Shortest Paths and Relxation

Triangle inequality (Lemma 24.10 of CLRS)

For any edge 𝑢, 𝑣 ∈ 𝐸, we have 𝛿 𝑠, 𝑣 ≤ 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣 .

Upper-bound inequality (Lemma 24.11 of CLRS)

We always have 𝑣. 𝑑 ≥ 𝛿 𝑠, 𝑣 for all vertices 𝑣 ∈ 𝑉, and once

𝑣. 𝑑 achieves the value 𝛿 𝑢, 𝑣 , it never changes.

No-path property (Corollary 24.12 of CLRS)

If there is no path from 𝑠 to 𝑣, then we always have 

𝑣. 𝑑 = 𝛿 𝑠, 𝑣 = ∞.

Convergence property (Lemma 24.14 of CLRS)

If 𝑠 ⤳ 𝑢 → 𝑣 is a shortest path in 𝐺 for some 𝑢, 𝑣 ∈ 𝑉, and if

𝑢. 𝑑 = 𝛿 𝑠, 𝑢 at any time prior to relaxing edge 𝑢, 𝑣 , then 

𝑣. 𝑑 = 𝛿 𝑠, 𝑣 at all times afterward.
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SSSP: Properties of Shortest Paths and Relxation

Path-relaxation property (Lemma 24.15 of CLRS)

If 𝑝 = ⟨𝑣0, 𝑣1, … , 𝑣𝑘⟩ is a shortest path from 𝑠 = 𝑣0 to 𝑣𝑘, 

and we relax the edges of 𝑝 in the order 𝑣0, 𝑣1 , 𝑣1, 𝑣2 ,

… , 𝑣𝑘−1, 𝑣𝑘 , then 𝑣𝑘 . 𝑑 = 𝛿 𝑠, 𝑣𝑘 . This property holds    

regardless of any other relaxation steps that occur, even if 

they are intermixed with relaxations on the edges of 𝑝.

Predecessor-subgraph property (Lemma 24.17 of CLRS)

Once 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 for all 𝑣 ∈ 𝑉, the predecessor subgraph 

is a shortest-paths tree rooted at 𝑠.
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Dijkstra’s SSSP Algorithm with a Min-Heap
( SSSP: Single-Source Shortest Paths )

48

Since we already discussed Dijkstra’s SSSP algorithm when we 

talked about greedy algorithms, we will skip over it in this lecture.
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Dijkstra’s SSSP Algorithm with a Min-Heap
( SSSP: Single-Source Shortest Paths )

Input: Weighted graph 𝐺 = 𝑉, 𝐸 with vertex set 𝑉 and edge set 𝐸, a 
non-negative weight function 𝑤, and a source vertex 𝑠 ∈ 𝐺 𝑉 . 

Output: For all 𝑣 ∈ 𝐺 𝑉 , 𝑣. 𝑑 is set to the shortest distance from 𝑠 to 𝑣.

Let 𝑛 = 𝐺 𝑉 and 𝑚 = 𝐺 𝐸

Worst-case running time: 

Using a binary min-heap
=  (𝑚 + 𝑛) log 𝑛

Using a Fibonacci heap
=  𝑚 + 𝑛 log 𝑛



The Bellman-Ford (SSSP) Algorithm
( SSSP: Single-Source Shortest Paths )
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Input: Weighted graph 𝐺 = 𝑉, 𝐸 with vertex set 𝑉 and edge set 𝐸, a 
weight function 𝑤, and a source vertex 𝑠 ∈ 𝐺 𝑉 . Negative-weight edges 
are allowed (unlike Dijkstra’s SSSP algorithm).

Output: Returns FALSE if a negative-weight cycle is reachable from 𝑠, 
otherwise returns TRUE and for all 𝑣 ∈ 𝐺 𝑉 , sets 𝑣. 𝑑 to the shortest 
distance from 𝑠 to 𝑣.

BELLMAN-FORD ( 𝐺 = 𝑉, 𝐸 , 𝑤, 𝑠 )

1. INITIALIZE-SINGLE-SOURCE( 𝐺, 𝑠 )

2. for 𝑖 ← 1 to 𝐺. 𝑉 − 1 do

3. for each 𝑢, 𝑣 ∈ 𝐺. 𝐸 do

4. RELAX( 𝑢, 𝑣, 𝑤 )

5. for each 𝑢, 𝑣 ∈ 𝐺. 𝐸 do

6. if 𝑢. 𝑑 + 𝑤 𝑢, 𝑣 < 𝑣. 𝑑 then

7. return FALSE

8. return TRUE

INITIALIZE-SINGLE-SOURCE ( 𝐺 = 𝑉, 𝐸 , 𝑠 )

1. for each vertex 𝑣 ∈ 𝐺. 𝑉 do

2. 𝑣. 𝑑 ← ∞

3. 𝑣. 𝜋 ← 𝑁𝐼𝐿

4. 𝑠. 𝑑 ← 0

RELAX ( 𝑢, 𝑣, 𝑤 )

1. if 𝑢. 𝑑 + 𝑤 𝑢, 𝑣 < 𝑣. 𝑑 then

2. 𝑣. 𝑑 ← 𝑢. 𝑑 + 𝑤 𝑢, 𝑣

3. 𝑣. 𝜋 ← 𝑢



The Bellman-Ford (SSSP) Algorithm
( SSSP: Single-Source Shortest Paths )
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Initial State (with initial tentative distances)
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The Bellman-Ford (SSSP) Algorithm
( SSSP: Single-Source Shortest Paths )
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Iteration 1
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The Bellman-Ford (SSSP) Algorithm
( SSSP: Single-Source Shortest Paths )
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Iteration 2
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The Bellman-Ford (SSSP) Algorithm
( SSSP: Single-Source Shortest Paths )
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Iteration 3
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The Bellman-Ford (SSSP) Algorithm
( SSSP: Single-Source Shortest Paths )
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Iteration 4
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Done!
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The Bellman-Ford (SSSP) Algorithm
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BELLMAN-FORD ( 𝐺 = 𝑉, 𝐸 , 𝑤, 𝑠 )

1. INITIALIZE-SINGLE-SOURCE( 𝐺, 𝑠 )

2. for 𝑖 ← 1 to 𝐺. 𝑉 − 1 do

3. for each 𝑢, 𝑣 ∈ 𝐺. 𝐸 do

4. RELAX( 𝑢, 𝑣, 𝑤 )

5. for each 𝑢, 𝑣 ∈ 𝐺. 𝐸 do

6. if 𝑢. 𝑑 + 𝑤 𝑢, 𝑣 < 𝑣. 𝑑 then

7. return FALSE

8. return TRUE

INITIALIZE-SINGLE-SOURCE ( 𝐺 = 𝑉, 𝐸 , 𝑠 )

1. for each vertex 𝑣 ∈ 𝐺. 𝑉 do

2. 𝑣. 𝑑 ← ∞

3. 𝑣. 𝜋 ← 𝑁𝐼𝐿

4. 𝑠. 𝑑 ← 0

RELAX ( 𝑢, 𝑣, 𝑤 )

1. if 𝑢. 𝑑 + 𝑤 𝑢, 𝑣 < 𝑣. 𝑑 then

2. 𝑣. 𝑑 ← 𝑢. 𝑑 + 𝑤 𝑢, 𝑣

3. 𝑣. 𝜋 ← 𝑢

Let 𝑛 = 𝑉 and 𝑚 = 𝐸

Time taken by: Line 1: Θ 𝑛
Lines 2 − 4: Θ 𝑚𝑛
Lines 5 − 7: Θ 𝑚

Total time: Θ 𝑚𝑛



Correctness of the Bellman-Ford Algorithm

58

LEMMA 24.2 (CLRS): Let 𝐺 = 𝑉, 𝐸 be a weighted, directed graph 

with source 𝑠 and weight function 𝑤:𝐸 → ℝ, and suppose 𝐺

contains no negative-weight cycles reachable from 𝑠. Then, after 

the 𝑉 − 1 iterations of the for loop of lines 2– 4 of BELLMAN-FORD, 

we have 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 for all vertices 𝑣 that are reachable from 𝑠.

PROOF: The proof is based on the path-relaxation property.

Consider any 𝑣 ∈ 𝐺. 𝑉 reachable from 𝑠, and let 𝑝 = ⟨𝑣0, 𝑣1, … , 𝑣𝑘⟩, 

where 𝑣0 = 𝑠 and 𝑣𝑘 = 𝑣, be any shortest path from 𝑠 to 𝑣.  

Because shortest paths are simple, 𝑝 has at most 𝑉 − 1 edges, and 

so 𝑘 ≤ 𝑉 − 1. Each of the 𝑉 − 1 iterations of the for loop of lines 

2– 4 relaxes all 𝐸 edges. Among the edges relaxed in the 𝑖𝑡ℎ

iteration, for 𝑖 = 1,2,… , 𝑘, is 𝑣𝑖−1, 𝑣𝑖 . By the path-relaxation 

property, therefore, 𝑣. 𝑑 = 𝑣𝑘. 𝑑 = 𝛿 𝑠, 𝑣𝑘 = 𝛿 𝑠, 𝑣 .



Correctness of the Bellman-Ford Algorithm
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COROLLARY 24.3 (CLRS): Let 𝐺 = 𝑉, 𝐸 be a weighted, directed 

graph with source 𝑠 and weight function 𝑤:𝐸 → ℝ, and suppose 𝐺

contains no negative-weight cycles reachable from 𝑠. Then, for each 

𝑣 ∈ 𝑉, there is a path from 𝑠 to 𝑣 if and only if BELLMAN-FORD

terminates with 𝑣. 𝑑 < ∞ when it is run on 𝐺.



Correctness of the Bellman-Ford Algorithm
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THEOREM 24.4 (CLRS): Let BELLMAN-FORD be run on a weighted, 

directed graph 𝐺 = 𝑉, 𝐸 with source 𝑠 and weight function 

𝑤:𝐸 → ℝ. If 𝐺 contains no negative-weight cycles reachable from 𝑠, 

then the algorithm returns TRUE, we have 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 for all 𝑣 ∈

𝑉, and the predecessor subgraph 𝐺𝜋 is a shortest-paths tree rooted 

at 𝑠. If 𝐺 does contain a negative-weight cycle reachable from 𝑠, 

then the algorithm returns FALSE.



Correctness of the Bellman-Ford Algorithm
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PROOF OF THEOREM 24.4: Two cases:

𝑮 contains no negative-weight cycles reachable from 𝒔:

If 𝑣 ∈ 𝐺. 𝑉 is reachable from 𝑠 then according to Lemma 24.2 we 

have 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 at termination. Otherwise, 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 = ∞

follows from the no-path property. 

The predecessor-subgraph property, along with 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 , 

implies that 𝐺𝜋 is a shortest-paths tree.

Now, since at termination, for all edges 𝑢, 𝑣 ∈ 𝐺. 𝐸, we have, 

𝑣. 𝑑 = 𝛿 𝑠, 𝑣 and 𝑢. 𝑑 = 𝛿 𝑠, 𝑢 , then by triangle inequality:

𝑣. 𝑑 = 𝛿 𝑠, 𝑣 ≤ 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣 = 𝑢. 𝑑 + 𝑤 𝑢, 𝑣 .

So, none of the tests in line 6 causes BELLMAN-FORD to return FALSE. 

Therefore, it returns TRUE.
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PROOF OF THEOREM 24.4 (CONTINUED):

𝐺 contains a negative-weight cycle reachable from 𝑠: 

Let 𝑐 = 𝑣0, 𝑣1, … , 𝑣𝑘 be the cycle, where 𝑣0 = 𝑣𝑘. Then

σ𝑖=1
𝑘 𝑤 𝑣𝑖−1, 𝑣𝑖 < 0.

Assume for the sake of contradiction that BELLMAN-FORD returns TRUE.  

Then 𝑣𝑖 . 𝑑 ≤ 𝑣𝑖−1. 𝑑 + 𝑤 𝑣𝑖−1, 𝑣𝑖 for 𝑖 = 1,2,… , 𝑘. Thus,

෍

𝑖=1

𝑘

𝑣𝑖 . 𝑑 ≤෍

𝑖=1

𝑘

𝑣𝑖−1. 𝑑 + 𝑤 𝑣𝑖−1, 𝑣𝑖 =෍

𝑖=1

𝑘

𝑣𝑖−1. 𝑑 +෍

𝑖=1

𝑘

𝑤 𝑣𝑖−1, 𝑣𝑖

But σ𝑖=1
𝑘 𝑣𝑖 . 𝑑 = σ𝑖=1

𝑘 𝑣𝑖−1. 𝑑, and by Corollary 24.3, each 𝑣𝑖 . 𝑑 is finite.  

Thus, σ𝑖=1
𝑘 𝑤 𝑣𝑖−1, 𝑣𝑖 ≥ 0, which contradicts our initial assumption 

that 𝑐 = 𝑣0, 𝑣1, … , 𝑣𝑘 is a negative-weight cycle.
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DAG-SHORTEST-PATHS ( 𝐺 = 𝑉, 𝐸 , 𝑤, 𝑠 )

1. topologically sort the vertices of 𝐺

2. INITIALIZE-SINGLE-SOURCE( 𝐺, 𝑠 )

3. for each 𝑣 ∈ 𝑉. 𝐺 taken in topologically sorted order do

4. for each 𝑢, 𝑣 ∈ 𝐺. 𝐸 do

5. RELAX( 𝑢, 𝑣, 𝑤 )

INITIALIZE-SINGLE-SOURCE ( 𝐺 = 𝑉, 𝐸 , 𝑠 )

1. for each vertex 𝑣 ∈ 𝐺. 𝑉 do

2. 𝑣. 𝑑 ← ∞

3. 𝑣. 𝜋 ← 𝑁𝐼𝐿

4. 𝑠. 𝑑 ← 0

RELAX ( 𝑢, 𝑣, 𝑤 )

1. if 𝑢. 𝑑 + 𝑤 𝑢, 𝑣 < 𝑣. 𝑑 then

2. 𝑣. 𝑑 ← 𝑢. 𝑑 + 𝑤 𝑢, 𝑣

3. 𝑣. 𝜋 ← 𝑢

Input: Weighted DAG 𝐺 = 𝑉, 𝐸 with vertex set 𝑉 and edge set 𝐸, a 
weight function 𝑤, and a source vertex 𝑠 ∈ 𝐺 𝑉 . Negative-weight edges 
are allowed (unlike Dijkstra’s SSSP algorithm).

Output: For all 𝑣 ∈ 𝐺 𝑉 , sets 𝑣. 𝑑 to the shortest distance from 𝑠 to 𝑣.
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Given DAG
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After Topological Sorting (with initial tentative distances)
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After Iteration 1

5 72

3

−1

6

2

4

−2

1

𝑟 𝑠 𝑡 𝑥 𝑦 𝑧

∞ 0 ∞ ∞ ∞ ∞



SSSP in Directed Acyclic Graphs (DAGs)
( SSSP: Single-Source Shortest Paths )

67

After Iteration 2
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After Iteration 3
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After Iteration 4
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After Iteration 5
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Done!
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DAG-SHORTEST-PATHS ( 𝐺 = 𝑉, 𝐸 , 𝑤, 𝑠 )

1. topologically sort the vertices of 𝐺

2. INITIALIZE-SINGLE-SOURCE( 𝐺, 𝑠 )

3. for each 𝑣 ∈ 𝑉. 𝐺 taken in topologically sorted order do

4. for each 𝑢, 𝑣 ∈ 𝐺. 𝐸 do

5. RELAX( 𝑢, 𝑣, 𝑤 )

INITIALIZE-SINGLE-SOURCE ( 𝐺 = 𝑉, 𝐸 , 𝑠 )

1. for each vertex 𝑣 ∈ 𝐺. 𝑉 do

2. 𝑣. 𝑑 ← ∞

3. 𝑣. 𝜋 ← 𝑁𝐼𝐿

4. 𝑠. 𝑑 ← 0

RELAX ( 𝑢, 𝑣, 𝑤 )

1. if 𝑢. 𝑑 + 𝑤 𝑢, 𝑣 < 𝑣. 𝑑 then

2. 𝑣. 𝑑 ← 𝑢. 𝑑 + 𝑤 𝑢, 𝑣

3. 𝑣. 𝜋 ← 𝑢

Let 𝑛 = 𝑉 and 
𝑚 = 𝐸

Time taken by: Line 1: Θ 𝑛 +𝑚
Line 2: Θ 𝑛
Lines 3 − 5: Θ 𝑚

Total time: Θ 𝑛 +𝑚
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THEOREM 24.5 (CLRS): If a weighted, directed graph 𝐺 = 𝑉, 𝐸 has a 

source vertex 𝑠 and no cycles, then at the termination of the DAG-

SHORTEST-PATHS procedure, 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 for all vertices 𝑣 ∈ 𝐺. 𝑉, 

and the predecessor subgraph 𝐺𝜋 is a shortest-paths tree.

PROOF: Consider any 𝑣 ∈ 𝐺. 𝑉. 

If 𝑣 is not reachable from 𝑠 then 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 = ∞ follows from 

the no-path property. 

If 𝑣 is reachable from 𝑠, and let 𝑝 = ⟨𝑣0, 𝑣1, … , 𝑣𝑘⟩, where 𝑣0 = 𝑠

and 𝑣𝑘 = 𝑣, be any shortest path from 𝑠 to 𝑣.  Since we process the 

vertices in topological order, we relax the edges on 𝑝 in the order 

𝑣0, 𝑣1 , 𝑣1, 𝑣2 , … , 𝑣𝑘−1, 𝑣𝑘 . The path-relaxation property

implies that 𝑣𝑖 . 𝑑 = 𝛿 𝑠, 𝑣𝑖 at termination for 𝑖 = 1,2,… , 𝑘.

By the predecessor-subgraph property, 𝐺𝜋 is a shortest-paths tree.
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THEOREM 24.5 (CLRS): If a weighted, directed graph 𝐺 = 𝑉, 𝐸 has a 

source vertex 𝑠 and no cycles, then at the termination of the DAG-

SHORTEST-PATHS procedure, 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 for all vertices 𝑣 ∈ 𝐺. 𝑉, 

and the predecessor subgraph 𝐺𝜋 is a shortest-paths tree.

PROOF: Consider any 𝑣 ∈ 𝐺. 𝑉. 

If 𝑣 is not reachable from 𝑠 then 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 = ∞ follows from 

the no-path property. 

If 𝑣 is reachable from 𝑠, and let 𝑝 = ⟨𝑣0, 𝑣1, … , 𝑣𝑘⟩, where 𝑣0 = 𝑠

and 𝑣𝑘 = 𝑣, be any shortest path from 𝑠 to 𝑣.  Since we process the 

vertices in topological order, we relax the edges on 𝑝 in the order 

𝑣0, 𝑣1 , 𝑣1, 𝑣2 , … , 𝑣𝑘−1, 𝑣𝑘 . The path-relaxation property

implies that 𝑣𝑖 . 𝑑 = 𝛿 𝑠, 𝑣𝑖 at termination for 𝑖 = 1,2,… , 𝑘.

By the predecessor-subgraph property, 𝐺𝜋 is a shortest-paths tree.
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THEOREM 24.5 (CLRS): If a weighted, directed graph 𝐺 = 𝑉, 𝐸 has a 

source vertex 𝑠 and no cycles, then at the termination of the DAG-

SHORTEST-PATHS procedure, 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 for all vertices 𝑣 ∈ 𝐺. 𝑉, 

and the predecessor subgraph 𝐺𝜋 is a shortest-paths tree.

PROOF: Consider any 𝑣 ∈ 𝐺. 𝑉. 

If 𝑣 is not reachable from 𝑠 then 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 = ∞ follows from 

the no-path property. 

If 𝑣 is reachable from 𝑠, and let 𝑝 = ⟨𝑣0, 𝑣1, … , 𝑣𝑘⟩, where 𝑣0 = 𝑠

and 𝑣𝑘 = 𝑣, be any shortest path from 𝑠 to 𝑣.  Since we process the 

vertices in topological order, we relax the edges on 𝑝 in the order 

𝑣0, 𝑣1 , 𝑣1, 𝑣2 , … , 𝑣𝑘−1, 𝑣𝑘 . The path-relaxation property

implies that 𝑣𝑖 . 𝑑 = 𝛿 𝑠, 𝑣𝑖 at termination for 𝑖 = 1,2,… , 𝑘.

By the predecessor-subgraph property, 𝐺𝜋 is a shortest-paths tree.



The All-Pairs Shortest Paths (APSP) Problem

We are given a weighted, directed graph 𝐺 = 𝑉, 𝐸 with vertex 

set 𝑉 and edge set 𝐸, and a weight function 𝑤 such that for each 

edge 𝑢, 𝑣 ∈ 𝐸, 𝑤 𝑢, 𝑣 represents its weight. 

Our goal is to find, for every pair of vertices 𝑢, 𝑣 ∈ 𝐺. 𝑉, a shortest 

path (i.e., a path of the smallest total edge weight) from 𝑢 to 𝑣.
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The All-Pairs Shortest Paths (APSP) Problem

One can solve the APSP problem by running an SSSP algorithm 𝑛 =

|𝐺. 𝑉| times, once for each vertex as the source.

If all edge weights are nonnegative, one can use Dijkstra’s SSSP 

algorithm. Using a binary min-heap as the priority queue, one can 

solve the problem in 𝑂 𝑛 𝑚 + 𝑛 log 𝑛 time, where 𝑚 = 𝐺. 𝐸 . 

Using a Fibonacci heap as the priority queue yields a running time 

of 𝑂 𝑛2 log 𝑛 +𝑚𝑛 . 

If 𝐺 has negative-weight edges, then one can use the slower 

Bellman-Ford SSSP algorithm resulting in a running time of 

𝑂 𝑚𝑛2 which is 𝑂 𝑛4 for dense graphs.
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We assume that the edge-weights are given as an 𝑛 × 𝑛 adjacency 

matrix 𝑊 = 𝑤𝑖𝑗 , where

𝑤𝑖𝑗 = ቐ

0, 𝑖𝑓 𝑖 = 𝑗,

𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑒𝑑𝑔𝑒 𝑖, 𝑗 𝑖𝑓 𝑖 ≠ 𝑗 𝑎𝑛𝑑 𝑖, 𝑗 ∈ 𝐸,

∞ 𝑖𝑓 𝑖 ≠ 𝑗 𝑎𝑛𝑑 𝑖, 𝑗 ∉ 𝐸.

We allow negative-weight edges, but we assume for the time 

being that 𝐺 contains no negative-weight cycles.
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Let 𝑙𝑖𝑗
𝑚

be the minimum weight of any path from vertex 𝑖 to 

vertex 𝑗 that contains at most 𝑚 edges. Then

𝑙𝑖𝑗
𝑚

=

0, 𝑖𝑓 𝑚 = 0 𝑎𝑛𝑑 𝑖 = 𝑗,
∞ 𝑖𝑓 𝑚 = 0 𝑎𝑛𝑑 𝑖 ≠ 𝑗,

min
1≤𝑘≤𝑛

𝑙𝑖𝑘
𝑚−1

+𝑤𝑘𝑗 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑖. 𝑒. , 𝑚 > 0 .

If 𝐺 has no negative-weight cycles, then for every pair of vertices 𝑖

and 𝑗 for which 𝛿 𝑖, 𝑗 < ∞, there is a shortest path from 𝑖 to 𝑗

that is simple and thus contains at most 𝑛 − 1 edges. A path from 

vertex 𝑖 to vertex 𝑗 with more than 𝑛 − 1 edges cannot have lower 

weight than a shortest path from 𝑖 to 𝑗. Hence,

𝛿 𝑖, 𝑗 = 𝑙𝑖𝑗
𝑛−1

= 𝑙𝑖𝑗
𝑛
= 𝑙𝑖𝑗

𝑛+1
= ⋯.
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Let 𝑙𝑖𝑗
𝑚

be the minimum weight of any path from vertex 𝑖 to 

vertex 𝑗 that contains at most 𝑚 edges. Then

𝑙𝑖𝑗
𝑚

=

0, 𝑖𝑓 𝑚 = 0 𝑎𝑛𝑑 𝑖 = 𝑗,
∞ 𝑖𝑓 𝑚 = 0 𝑎𝑛𝑑 𝑖 ≠ 𝑗,

min
1≤𝑘≤𝑛

𝑙𝑖𝑘
𝑚−1

+𝑤𝑘𝑗 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑖. 𝑒. , 𝑚 > 0 .

If 𝐺 has no negative-weight cycles, then for every pair of vertices 𝑖

and 𝑗 for which 𝛿 𝑖, 𝑗 < ∞, there is a shortest path from 𝑖 to 𝑗

that is simple and thus contains at most 𝑛 − 1 edges. A path from 

vertex 𝑖 to vertex 𝑗 with more than 𝑛 − 1 edges cannot have lower 

weight than a shortest path from 𝑖 to 𝑗. Hence,

𝛿 𝑖, 𝑗 = 𝑙𝑖𝑗
𝑛−1

= 𝑙𝑖𝑗
𝑛
= 𝑙𝑖𝑗

𝑛+1
= ⋯.
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SLOW-ALL-PAIRS-SHORTEST-PATHS ( 𝑊 )

1. 𝑛 ← 𝑊. 𝑟𝑜𝑤𝑠

2. 𝐿 1 ← 𝑊

3. for 𝑚 ← 2 to 𝑛 − 1 do

4. let 𝐿 𝑚 be a new 𝑛 × 𝑛 matrix

5. 𝐿 𝑚 ← EXTEND-SHORTEST-PATHS( 𝐿 𝑚−1 , 𝑊 )

6. return 𝐿 𝑛−1

EXTEND-SHORTEST-PATHS ( 𝐿, 𝑊 )

1. 𝑛 ← 𝐿. 𝑟𝑜𝑤𝑠

2. let 𝐿′ = 𝑙𝑖𝑗
′ be a new 𝑛 × 𝑛 matrix

3. for 𝑖 ← 1 to 𝑛 do

4. for 𝑗 ← 1 to 𝑛 do

5. 𝑙𝑖𝑗
′ ← ∞

6. for 𝑘 ← 1 to 𝑛 do

7. 𝑙𝑖𝑗
′ ← min 𝑙𝑖𝑗

′ , 𝑙𝑖𝑘
′ + 𝑤𝑘𝑗

8. return 𝐿′
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2

1 3

45

3 4

−4 −5

7 1

8

6

2

𝑊 =

0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞
2 ∞ −5 0 ∞
∞ ∞ ∞ 6 0

𝐿 1 =

0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞
2 ∞ −5 0 ∞
∞ ∞ ∞ 6 0
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2

1 3

45

3 4

−4 −5

7 1

8

6

2

𝐿 2 =

0 3 8 2 −4
3 0 −4 1 7
∞ 4 0 5 11
2 −1 −5 0 −2
8 ∞ 1 6 0

𝐿 1 =

0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞
2 ∞ −5 0 ∞
∞ ∞ ∞ 6 0
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2

1 3

45

3 4

−4 −5

7 1

8

6

2

𝐿 2 =

0 3 8 2 −4
3 0 −4 1 7
∞ 4 0 5 11
2 −1 −5 0 −2
8 ∞ 1 6 0

𝐿 3 =

0 3 −3 2 −4
3 0 −4 1 −1
7 4 0 5 11
2 −1 −5 0 −2
8 5 1 6 0
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2

1 3

45

3 4

−4 −5

7 1

8

6

2

𝐿 4 =

0 1 −3 2 −4
3 0 −4 1 −1
7 4 0 5 3
2 −1 −5 0 −2
8 5 1 6 0

𝐿 3 =

0 3 −3 2 −4
3 0 −4 1 −1
7 4 0 5 11
2 −1 −5 0 −2
8 5 1 6 0



86

APSP: Extending SPs by One Edge at a Time

EXTEND-SHORTEST-PATHS ( 𝐿, 𝑊 )

1. 𝑛 ← 𝐿. 𝑟𝑜𝑤𝑠

2. let 𝐿′ = 𝑙𝑖𝑗
′ be a new 𝑛 × 𝑛 matrix

3. for 𝑖 ← 1 to 𝑛 do

4. for 𝑗 ← 1 to 𝑛 do

5. 𝑙𝑖𝑗
′ ← ∞

6. for 𝑘 ← 1 to 𝑛 do

7. 𝑙𝑖𝑗
′ ← min 𝑙𝑖𝑗

′ , 𝑙𝑖𝑘
′ + 𝑤𝑘𝑗

8. return 𝐿′

SQUARE-MATRIX-MULTIPLY ( 𝐴, 𝐵 )

1. 𝑛 ← 𝐴. 𝑟𝑜𝑤𝑠

2. let 𝐶 = 𝑐𝑖𝑗 be a new 𝑛 × 𝑛 matrix

3. for 𝑖 ← 1 to 𝑛 do

4. for 𝑗 ← 1 to 𝑛 do

5. 𝑐𝑖𝑗 ← 0

6. for 𝑘 ← 1 to 𝑛 do

7. 𝑐𝑖𝑗 ← 𝑐𝑖𝑗 + 𝑎𝑖𝑘 ⋅ 𝑏𝑘𝑗

8. return 𝐶

Note the similarity between EXTEND-SHORTEST-PATHS and SQUARE-

MATRIX-MULTIPLY:

Both have the same Θ 𝑛3 running time.
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Running time 

= Θ 𝑛3

Running time 

= 𝑛 × Θ(𝑛3)

= Θ(𝑛4)

SLOW-ALL-PAIRS-SHORTEST-PATHS ( 𝑊 )

1. 𝑛 ← 𝑊. 𝑟𝑜𝑤𝑠

2. 𝐿 1 ← 𝑊

3. for 𝑚 ← 2 to 𝑛 − 1 do

4. let 𝐿 𝑚 be a new 𝑛 × 𝑛 matrix

5. 𝐿 𝑚 ← EXTEND-SHORTEST-PATHS( 𝐿 𝑚−1 , 𝑊 )

6. return 𝐿 𝑛−1

EXTEND-SHORTEST-PATHS ( 𝐿, 𝑊 )

1. 𝑛 ← 𝐿. 𝑟𝑜𝑤𝑠

2. let 𝐿′ = 𝑙𝑖𝑗
′ be a new 𝑛 × 𝑛 matrix

3. for 𝑖 ← 1 to 𝑛 do

4. for 𝑗 ← 1 to 𝑛 do

5. 𝑙𝑖𝑗
′ ← ∞

6. for 𝑘 ← 1 to 𝑛 do

7. 𝑙𝑖𝑗
′ ← min 𝑙𝑖𝑗

′ , 𝑙𝑖𝑘
′ + 𝑤𝑘𝑗

8. return 𝐿′
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FASTER-ALL-PAIRS-SHORTEST-PATHS ( 𝑊 )

1. 𝑛 ← 𝑊. 𝑟𝑜𝑤𝑠

2. 𝐿 1 ← 𝑊

3. 𝑚 ← 1

4. while 𝑚 < 𝑛 − 1 do

5. let 𝐿 2𝑚 be a new 𝑛 × 𝑛 matrix

6. 𝐿 2𝑚 ← EXTEND-SHORTEST-PATHS( 𝐿 𝑚 , 𝐿 𝑚 )

7. 𝑚 ← 2𝑚

8. return 𝐿 𝑚

EXTEND-SHORTEST-PATHS ( 𝐿, 𝑊 )

1. 𝑛 ← 𝐿. 𝑟𝑜𝑤𝑠

2. let 𝐿′ = 𝑙𝑖𝑗
′ be a new 𝑛 × 𝑛 matrix

3. for 𝑖 ← 1 to 𝑛 do

4. for 𝑗 ← 1 to 𝑛 do

5. 𝑙𝑖𝑗
′ ← ∞

6. for 𝑘 ← 1 to 𝑛 do

7. 𝑙𝑖𝑗
′ ← min 𝑙𝑖𝑗

′ , 𝑙𝑖𝑘
′ + 𝑤𝑘𝑗

8. return 𝐿′
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FASTER-ALL-PAIRS-SHORTEST-PATHS ( 𝑊 )

1. 𝑛 ← 𝑊. 𝑟𝑜𝑤𝑠

2. 𝐿 1 ← 𝑊

3. 𝑚 ← 1

4. while 𝑚 < 𝑛 − 1 do

5. let 𝐿 2𝑚 be a new 𝑛 × 𝑛 matrix

6. 𝐿 2𝑚 ← EXTEND-SHORTEST-PATHS( 𝐿 𝑚 , 𝐿 𝑚 )

7. 𝑚 ← 2𝑚

8. return 𝐿 𝑚

EXTEND-SHORTEST-PATHS ( 𝐿, 𝑊 )

1. 𝑛 ← 𝐿. 𝑟𝑜𝑤𝑠

2. let 𝐿′ = 𝑙𝑖𝑗
′ be a new 𝑛 × 𝑛 matrix

3. for 𝑖 ← 1 to 𝑛 do

4. for 𝑗 ← 1 to 𝑛 do

5. 𝑙𝑖𝑗
′ ← ∞

6. for 𝑘 ← 1 to 𝑛 do

7. 𝑙𝑖𝑗
′ ← min 𝑙𝑖𝑗

′ , 𝑙𝑖𝑘
′ + 𝑤𝑘𝑗

8. return 𝐿′

Running time 

= Θ 𝑛3

Running time 

= log2 𝑛 − 1

× Θ 𝑛3

= Θ(𝑛3 log 𝑛)



Let 𝑑𝑖𝑗
𝑘

be the minimum weight of any path from vertex 𝑖 to 

vertex 𝑗 for which all intermediate vertices are in 1,2,… , 𝑘 . Then

𝑑𝑖𝑗
𝑘
= ቐ

𝑤𝑖𝑗 , 𝑖𝑓 𝑘 = 0,

min{𝑑𝑖𝑗
𝑘−1

, 𝑑𝑖𝑘
𝑘−1

+ 𝑑𝑘𝑗
𝑘−1

} 𝑖𝑓 𝑘 ≥ 1.

Then 𝐷 𝑛 = 𝑑𝑖𝑗
𝑛

gives: 𝑑𝑖𝑗
𝑛
= 𝛿 𝑖, 𝑗 for all 𝑖, 𝑗 ∈ 𝐺. 𝑉.
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𝑖

𝑘

𝑗

𝑝: 𝑎𝑙𝑙 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑖𝑛 1,2, … , 𝑘

𝑝1: 𝑎𝑙𝑙 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒
𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑖𝑛 1,2, … , 𝑘 − 1

𝑝1: 𝑎𝑙𝑙 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒
𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑖𝑛 1,2, … , 𝑘 − 1

𝑝1 𝑝2



APSP: Floyd-Warshall’s Algorithm

FLOYD-WARSHALL ( 𝑊 )

1. 𝑛 ← 𝑊. 𝑟𝑜𝑤𝑠

2. 𝐷 0 ← 𝑊

3. for 𝑘 ← 1 to 𝑛 do

4. let 𝐷 𝑘 = 𝑑𝑖𝑗
𝑘

be a new 𝑛 × 𝑛 matrix

5. for 𝑖 ← 1 to 𝑛 do

6. for 𝑗 ← 1 to 𝑛 do

7. 𝑑𝑖𝑗
𝑘 ← min 𝑑𝑖𝑗

𝑘−1 , 𝑑𝑖𝑘
𝑘−1 + 𝑑𝑘𝑗

𝑘−1

8. return 𝐷 𝑛



APSP: Floyd-Warshall with Predecessor Matrix

FLOYD-WARSHALL ( 𝑊 )

1. 𝑛 ← 𝑊. 𝑟𝑜𝑤𝑠

2. 𝐷 0 ← 𝑊

3. let Π 0 = 𝜋𝑖𝑗
0

be a new 𝑛 × 𝑛 matrix

4. for 𝑖 ← 1 to 𝑛 do

5. for 𝑗 ← 1 to 𝑛 do

6. if 𝑖 = 𝑗 or 𝑤𝑖𝑗 = ∞ then 𝜋𝑖𝑗
0 ← 𝑁𝐼𝐿

7. else 𝜋𝑖𝑗
0 ← 𝑖

8. for 𝑘 ← 1 to 𝑛 do

9. let 𝐷 𝑘 = 𝑑𝑖𝑗
𝑘

and Π 𝑘 = 𝜋𝑖𝑗
𝑘

be new 𝑛 × 𝑛 matrices

10. for 𝑖 ← 1 to 𝑛 do

11. for 𝑗 ← 1 to 𝑛 do

12. if 𝑑𝑖𝑗
𝑘−1 ≤ 𝑑𝑖𝑘

𝑘−1 + 𝑑𝑘𝑗
𝑘−1

then 𝜋𝑖𝑗
𝑘 ← 𝜋𝑖𝑗

𝑘−1

13. else 𝜋𝑖𝑗
𝑘 ← 𝜋𝑘𝑗

𝑘−1

14. 𝑑𝑖𝑗
𝑘 ← min 𝑑𝑖𝑗

𝑘−1 , 𝑑𝑖𝑘
𝑘−1 + 𝑑𝑘𝑗

𝑘−1

15. return 𝐷 𝑛 and Π 𝑛



APSP: Floyd-Warshall with Predecessor Matrix

PRINT-ALL-PAIRS-SHORTEST-PATH ( Π, 𝑖, 𝑗 )

1. if 𝑖 = 𝑗 then

2. print 𝑖

3. elseif 𝜋𝑖𝑗 = 𝑁𝐼𝐿 then

4. print “no path from” 𝑖 “to” 𝑗 “exists”

5. else PRINT-ALL-PAIRS-SHORTEST-PATH ( Π, 𝑖, 𝜋𝑖𝑗 )

6. print 𝑗



APSP: Floyd-Warshall with Predecessor Matrix

2

1 3

45

3 4

−4 −5

7 1

8

6

2

Π 0 =

𝑁𝐼𝐿 1 1 𝑁𝐼𝐿 1
𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿 2 2
𝑁𝐼𝐿 3 𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿
4 𝑁𝐼𝐿 4 𝑁𝐼𝐿 𝑁𝐼𝐿
𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿 5 𝑁𝐼𝐿

𝐷 0 =

0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞
2 ∞ −5 0 ∞
∞ ∞ ∞ 6 0



APSP: Floyd-Warshall with Predecessor Matrix

Π 1 =

𝑁𝐼𝐿 1 1 𝑁𝐼𝐿 1
𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿 2 2
𝑁𝐼𝐿 3 𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿
4 1 4 𝑁𝐼𝐿 1
𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿 5 𝑁𝐼𝐿

𝐷 1 =

0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞
2 5 −5 0 −2
∞ ∞ ∞ 6 0

Π 0 =

𝑁𝐼𝐿 1 1 𝑁𝐼𝐿 1
𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿 2 2
𝑁𝐼𝐿 3 𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿
4 𝑁𝐼𝐿 4 𝑁𝐼𝐿 𝑁𝐼𝐿
𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿 5 𝑁𝐼𝐿

𝐷 0 =

0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞
2 ∞ −5 0 ∞
∞ ∞ ∞ 6 0



APSP: Floyd-Warshall with Predecessor Matrix

Π 1 =

𝑁𝐼𝐿 1 1 𝑁𝐼𝐿 1
𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿 2 2
𝑁𝐼𝐿 3 𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿
4 1 4 𝑁𝐼𝐿 1
𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿 5 𝑁𝐼𝐿

𝐷 1 =

0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞
2 5 −5 0 −2
∞ ∞ ∞ 6 0

Π 2 =

𝑁𝐼𝐿 1 1 2 1
𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿 2 2
𝑁𝐼𝐿 3 𝑁𝐼𝐿 2 2
4 1 4 𝑁𝐼𝐿 1
𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿 5 𝑁𝐼𝐿

𝐷 2 =

0 3 8 4 −4
∞ 0 ∞ 1 7
∞ 4 0 5 11
2 5 −5 0 −2
∞ ∞ ∞ 6 0



APSP: Floyd-Warshall with Predecessor Matrix

Π 2 =

𝑁𝐼𝐿 1 1 2 1
𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿 2 2
𝑁𝐼𝐿 3 𝑁𝐼𝐿 2 2
4 1 4 𝑁𝐼𝐿 1
𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿 5 𝑁𝐼𝐿

𝐷 2 =

0 3 8 4 −4
∞ 0 ∞ 1 7
∞ 4 0 5 11
2 5 −5 0 −2
∞ ∞ ∞ 6 0

Π 3 =

𝑁𝐼𝐿 1 1 2 1
𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿 2 2
𝑁𝐼𝐿 3 𝑁𝐼𝐿 2 2
4 3 4 𝑁𝐼𝐿 1
𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿 5 𝑁𝐼𝐿

𝐷 3 =

0 3 8 4 −4
∞ 0 ∞ 1 7
∞ 4 0 5 11
2 −1 −5 0 −2
∞ ∞ ∞ 6 0



APSP: Floyd-Warshall with Predecessor Matrix

Π 3 =

𝑁𝐼𝐿 1 1 2 1
𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿 2 2
𝑁𝐼𝐿 3 𝑁𝐼𝐿 2 2
4 3 4 𝑁𝐼𝐿 1
𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿 5 𝑁𝐼𝐿

𝐷 3 =

0 3 8 4 −4
∞ 0 ∞ 1 7
∞ 4 0 5 11
2 −1 −5 0 −2
∞ ∞ ∞ 6 0

Π 4 =

𝑁𝐼𝐿 1 4 2 1
4 𝑁𝐼𝐿 4 2 1
4 3 𝑁𝐼𝐿 2 1
4 3 4 𝑁𝐼𝐿 1
4 3 4 5 𝑁𝐼𝐿

𝐷 4 =

0 3 −1 4 −4
3 0 −4 1 −1
7 4 0 5 3
2 −1 −5 0 −2
8 5 1 6 0



APSP: Floyd-Warshall with Predecessor Matrix

Π 5 =

𝑁𝐼𝐿 3 4 5 1
4 𝑁𝐼𝐿 4 2 1
4 3 𝑁𝐼𝐿 2 1
4 3 4 𝑁𝐼𝐿 1
4 3 4 5 𝑁𝐼𝐿

𝐷 5 =

0 1 −3 2 −4
3 0 −4 1 −1
7 4 0 5 3
2 −1 −5 0 −2
8 5 1 6 0

Π 4 =

𝑁𝐼𝐿 1 4 2 1
4 𝑁𝐼𝐿 4 2 1
4 3 𝑁𝐼𝐿 2 1
4 3 4 𝑁𝐼𝐿 1
4 3 4 5 𝑁𝐼𝐿

𝐷 4 =

0 3 −1 4 −4
3 0 −4 1 −1
7 4 0 5 3
2 −1 −5 0 −2
8 5 1 6 0



APSP: Floyd-Warshall’s Algorithm

FLOYD-WARSHALL ( 𝑊 )

1. 𝑛 ← 𝑊. 𝑟𝑜𝑤𝑠

2. 𝐷 0 ← 𝑊

3. for 𝑘 ← 1 to 𝑛 do

4. let 𝐷 𝑘 = 𝑑𝑖𝑗
𝑘

be a new 𝑛 × 𝑛 matrix

5. for 𝑖 ← 1 to 𝑛 do

6. for 𝑗 ← 1 to 𝑛 do

7. 𝑑𝑖𝑗
𝑘 ← min 𝑑𝑖𝑗

𝑘−1 , 𝑑𝑖𝑘
𝑘−1 + 𝑑𝑘𝑗

𝑘−1

8. return 𝐷 𝑛

Running Time = Θ 𝑛3

Space Complexity = Θ 𝑛3



APSP: Floyd-Warshall’s Algorithm

FLOYD-WARSHALL-QUADRATIC-SPACE ( 𝑊 )

1. 𝑛 ← 𝑊. 𝑟𝑜𝑤𝑠

2. let 𝐷 0 = 𝑑𝑖𝑗
0

and 𝐷 1 = 𝑑𝑖𝑗
1

be new 𝑛 × 𝑛 matrices

3. 𝐷 0 ← 𝑊

4. for 𝑘 ← 1 to 𝑛 do 

5. for 𝑖 ← 1 to 𝑛 do

6. for 𝑗 ← 1 to 𝑛 do

7. 𝑑𝑖𝑗
1 ← min 𝑑𝑖𝑗

0 , 𝑑𝑖𝑘
0 + 𝑑𝑘𝑗

0

8. 𝐷 0 ← 𝐷 1

9. return 𝐷 0

Running Time = Θ 𝑛3

Space Complexity = Θ 𝑛2

But 𝐷 𝑘 depends only on 𝐷 𝑘−1 .



APSP: Floyd-Warshall’s Algorithm

FLOYD-WARSHALL-IN-PLACE ( 𝑊 )

1. 𝑛 ← 𝑊. 𝑟𝑜𝑤𝑠

2. for 𝑘 ← 1 to 𝑛 do 

3. for 𝑖 ← 1 to 𝑛 do

4. for 𝑗 ← 1 to 𝑛 do

5. 𝑤𝑖𝑗 ← min 𝑤𝑖𝑗, 𝑤𝑖𝑘 + 𝑤𝑘𝑗

6. return 𝑊

Running Time = Θ 𝑛3

Space Complexity = Θ 𝑛2

Can be solved in-place!


