
1

CSE 548: Analysis of Algorithms

Prerequisites Review 7

(More Graph Algorithms: Basic and Beyond)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Fall 2019

Breadth-First Search (BFS)

Input: Unweighted directed or undirected graph 𝐺 = 𝑉, 𝐸 with vertex set
𝑉 and edge set 𝐸, and a source vertex 𝑠 ∈ 𝐺. 𝑉. For each 𝑣 ∈ 𝑉, the
adjacency list of 𝑣 is 𝐺. 𝐴𝑑𝑗 𝑣 .

Output: For all 𝑣 ∈ 𝐺 𝑉 , 𝑣. 𝑑 is set to the shortest distance (in terms of the
number of edges) from 𝑠 to 𝑣. Also, 𝑣. 𝜋 pointers form a breadth-first tree
rooted at 𝑠 that contains all vertices reachable from 𝑠.

BFS (𝐺, 𝑠)

1. for each vertex 𝑢 ∈ 𝐺. 𝑉 ∖ 𝑠 do

2. 𝑢. 𝑐𝑜𝑙𝑜𝑟 ← WHITE, 𝑢. 𝑑 ← ∞, 𝑢. 𝜋 ← 𝑁𝐼𝐿

3. 𝑠. 𝑐𝑜𝑙𝑜𝑟 ← GRAY, 𝑠. 𝑑 ← 0, 𝑠. 𝜋 ← 𝑁𝐼𝐿

4. Queue 𝑄 ← ∅

5. ENQUEUE(𝑄, 𝑠)

6. while 𝑄 ≠ ∅ do

7. 𝑢 ← DEQUEUE(𝑄)

8. for each 𝑣 ∈ 𝐺. 𝐴𝑑𝑗 𝑢 do

9. if 𝑣. 𝑐𝑜𝑙𝑜𝑟 = WHITE then

10. 𝑣. 𝑐𝑜𝑙𝑜𝑟 ← GRAY, 𝑣. 𝑑 ← 𝑢. 𝑑 + 1, 𝑣. 𝜋 ← 𝑢

11. ENQUEUE(𝑄, 𝑣)

12. 𝑢. 𝑐𝑜𝑙𝑜𝑟 ← BLACK
2

0

Breadth-First Search (BFS)

0 ∞ ∞

∞ ∞ ∞

ENQUEUE (𝑸, 𝒔)

3

∞

∞

𝑟 𝑠 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦

𝑠𝑄

Breadth-First Search (BFS)

0 ∞ ∞

1 ∞ ∞

4

1

∞

𝑟 𝑠 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦

1

𝑤𝑄

1

𝑟

DEQUEUE (𝑸) → 𝒔

ENQUEUE (𝑸,𝒘), ENQUEUE (𝑸, 𝒓)

Breadth-First Search (BFS)

0 2 ∞

1 2 ∞

5

1

∞

𝑟 𝑠 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦

1

𝑟𝑄

2

𝑡

2

𝑥

DEQUEUE (𝑸) → 𝒘

ENQUEUE (𝑸, 𝒕), ENQUEUE (𝑸, 𝒙)

Breadth-First Search (BFS)

0 2 ∞

1 2 ∞

6

1

2

𝑟 𝑠 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦

2

𝑡𝑄

2

𝑥

2

𝑣

DEQUEUE (𝑸) → 𝒓

ENQUEUE (𝑸, 𝒙), ENQUEUE (𝑸, 𝒗)

Breadth-First Search (BFS)

0 2 3

1 2 ∞

7

1

2

𝑟 𝑠 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦

2

𝑥𝑄

2

𝑣

3

𝑢

DEQUEUE (𝑸) → 𝒕

ENQUEUE (𝑸,𝒖)

Breadth-First Search (BFS)

0 2 3

1 2 3

8

1

2

𝑟 𝑠 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦

2

𝑣𝑄

3

𝑢

3

𝑦

DEQUEUE (𝑸) → 𝒙

ENQUEUE (𝑸, 𝒚)

Breadth-First Search (BFS)

0 2 3

1 2 3

9

1

2

𝑟 𝑠 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦

3

𝑢𝑄

3

𝑦

DEQUEUE (𝑸) → 𝒗

Breadth-First Search (BFS)

0 2 3

1 2 3

10

1

2

𝑟 𝑠 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦

3

𝑦𝑄

DEQUEUE (𝑸) → 𝒖

Breadth-First Search (BFS)

0 2 3

1 2 3

11

1

2

𝑟 𝑠 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦

𝑄

DEQUEUE (𝑸) → 𝒚

∅

Breadth-First Search (BFS)

BFS (𝐺, 𝑠)

1. for each vertex 𝑢 ∈ 𝐺. 𝑉 ∖ 𝑠 do

2. 𝑢. 𝑐𝑜𝑙𝑜𝑟 ← WHITE, 𝑢. 𝑑 ← ∞, 𝑢. 𝜋 ← 𝑁𝐼𝐿

3. 𝑠. 𝑐𝑜𝑙𝑜𝑟 ← GRAY, 𝑠. 𝑑 ← 0, 𝑠. 𝜋 ← 𝑁𝐼𝐿

4. Queue 𝑄 ← ∅

5. ENQUEUE(𝑄, 𝑠)

6. while 𝑄 ≠ ∅ do

7. 𝑢 ← DEQUEUE(𝑄)

8. for each 𝑣 ∈ 𝐺. 𝐴𝑑𝑗 𝑢 do

9. if 𝑣. 𝑐𝑜𝑙𝑜𝑟 = WHITE then

10. 𝑣. 𝑐𝑜𝑙𝑜𝑟 ← GRAY, 𝑣. 𝑑 ← 𝑢. 𝑑 + 1, 𝑣. 𝜋 ← 𝑢

11. ENQUEUE(𝑄, 𝑣)

12. 𝑢. 𝑐𝑜𝑙𝑜𝑟 ← BLACK

12

Let 𝑛 = 𝐺. 𝑉 and 𝑚 = 𝐺. 𝐸

Time spent
− initializing = Θ 𝑛
− enqueuing / dequeuing

= Θ 𝑛
− scanning the adjacency lists

= Θ σ𝑣∈G.𝑉 𝐺. 𝐴𝑑𝑗 𝑣

= Θ 𝑚

∴ Total cost = Θ 𝑚 + 𝑛

Depth-First Search (DFS)

Input: Unweighted directed or undirected graph 𝐺 = 𝑉, 𝐸 with vertex set
𝑉 and edge set 𝐸. For each 𝑣 ∈ 𝑉, the adjacency list of 𝑣 is 𝐺. 𝐴𝑑𝑗 𝑣 .

Output: For each 𝑣 ∈ 𝐺 𝑉 , 𝑣. 𝑑 is set to the time when 𝑣 was first
discovered and 𝑣. 𝑓 is set to the time when 𝑣’s adjacency list has been
examined completely. Also, 𝑣. 𝜋 pointers form a breadth-first tree rooted at
𝑠 that contains all vertices reachable from 𝑠.

DFS-VISIT (𝐺, 𝑢)

1. 𝑡𝑖𝑚𝑒 ← 𝑡𝑖𝑚𝑒 + 1

2. 𝑢. 𝑑 ← 𝑡𝑖𝑚𝑒

3. 𝑢. 𝑐𝑜𝑙𝑜𝑟 ← GRAY

4. for each 𝑣 ∈ 𝐺. 𝐴𝑑𝑗 𝑢 do

5. if 𝑣. 𝑐𝑜𝑙𝑜𝑟 = WHITE then

6. 𝑣. 𝜋 ← 𝑢

7. DFS-VISIT(𝐺, 𝑣)

8. 𝑢. 𝑐𝑜𝑙𝑜𝑟 ← BLACK

9. 𝑡𝑖𝑚𝑒 ← 𝑡𝑖𝑚𝑒 + 1

10. 𝑢. 𝑓 ← 𝑡𝑖𝑚𝑒

13

DFS (𝐺)

1. for each vertex 𝑢 ∈ 𝐺. 𝑉 do

2. 𝑢. 𝑐𝑜𝑙𝑜𝑟 ← WHITE, 𝑢. 𝜋 ← 𝑁𝐼𝐿

3. 𝑡𝑖𝑚𝑒 ← 0

4. for each 𝑢 ∈ 𝐺. 𝑉 do

5. if 𝑢. 𝑐𝑜𝑙𝑜𝑟 = WHITE then

6. DFS-VISIT(𝐺, 𝑢)

Depth-First Search (DFS)

14

1/

𝑢 𝑣 𝑤

𝑥 𝑦 𝑧

Depth-First Search (DFS)

2/

15

1/

𝑢 𝑣 𝑤

𝑥 𝑦 𝑧

Tree Edge (T): These are edges in the depth-first forest 𝐺𝜋. Edge

𝑢, 𝑣 is a tree edge if 𝑣 was first discovered by exploring that edge.

In the example above, we will make all tree edges green and thick.

Depth-First Search (DFS)

2/

3/

16

1/

𝑢 𝑣 𝑤

𝑥 𝑦 𝑧

Depth-First Search (DFS)

2/

3/

17

1/

4/

𝑢 𝑣 𝑤

𝑥 𝑦 𝑧

Depth-First Search (DFS)

2/

3/

18

1/

4/

𝑢 𝑣 𝑤

𝑥 𝑦 𝑧

B

Back Edge (B): A back edge goes from a vertex to its ancestor in a

depth-first tree. Self-loops are also considered back edges.

Depth-First Search (DFS)

2/

3/

19

1/

4/5

𝑢 𝑣 𝑤

𝑥 𝑦 𝑧

B

Depth-First Search (DFS)

2/

3/6

20

1/

4/5

𝑢 𝑣 𝑤

𝑥 𝑦 𝑧

B

Depth-First Search (DFS)

2/7

3/6

21

1/

4/5

𝑢 𝑣 𝑤

𝑥 𝑦 𝑧

B

Depth-First Search (DFS)

2/7

3/6

22

1/

4/5

𝑢 𝑣 𝑤

𝑥 𝑦 𝑧

BF

Forward Edge (F): A forward edge is a nontree edge that connects

a vertex to a descendant in a depth-first tree.

Depth-First Search (DFS)

2/7

3/6

23

1/8

4/5

𝑢 𝑣 𝑤

𝑥 𝑦 𝑧

BF

Depth-First Search (DFS)

2/7 9/

3/6

24

1/8

4/5

𝑢 𝑣 𝑤

𝑥 𝑦 𝑧

BF

Depth-First Search (DFS)

2/7 9/

3/6

25

1/8

4/5

𝑢 𝑣 𝑤

𝑥 𝑦 𝑧

BF C

Cross Edge (C): If a non-tree edge is neither a back edge nor a

forward edge then it’s a cross edge. Cross edges can go between

vertices in the same depth-first tree or in different depth-first trees.

Depth-First Search (DFS)

2/7 9/

3/6 10/

26

1/8

4/5

𝑢 𝑣 𝑤

𝑥 𝑦 𝑧

BF C

Depth-First Search (DFS)

2/7 9/

3/6 10/

27

1/8

4/5

𝑢 𝑣 𝑤

𝑥 𝑦 𝑧

BF C

B

Depth-First Search (DFS)

2/7 9/

3/6 10/11

28

1/8

4/5

𝑢 𝑣 𝑤

𝑥 𝑦 𝑧

BF C

B

Depth-First Search (DFS)

2/7 9/12

3/6 10/11

29

1/8

4/5

𝑢 𝑣 𝑤

𝑥 𝑦 𝑧

BF C

B

Depth-First Search (DFS)

30

Let 𝑛 = 𝐺. 𝑉 and 𝑚 = 𝐺. 𝐸

Time spent

− in DFS (exclusive of calls to DFS-
VISIT) = Θ 𝑛

− in DFS-VISIT scanning the adjacency

lists = Θ σ𝑣∈G.𝑉 𝐺. 𝐴𝑑𝑗 𝑣

= Θ 𝑚

∴ Total cost = Θ 𝑚 + 𝑛

DFS-VISIT (𝐺, 𝑢)

1. 𝑡𝑖𝑚𝑒 ← 𝑡𝑖𝑚𝑒 + 1

2. 𝑢. 𝑑 ← 𝑡𝑖𝑚𝑒

3. 𝑢. 𝑐𝑜𝑙𝑜𝑟 ← GRAY

4. for each 𝑣 ∈ 𝐺. 𝐴𝑑𝑗 𝑢 do

5. if 𝑣. 𝑐𝑜𝑙𝑜𝑟 = WHITE then

6. 𝑣. 𝜋 ← 𝑢

7. DFS-VISIT(𝐺, 𝑣)

8. 𝑢. 𝑐𝑜𝑙𝑜𝑟 ← BLACK

9. 𝑡𝑖𝑚𝑒 ← 𝑡𝑖𝑚𝑒 + 1

10. 𝑢. 𝑓 ← 𝑡𝑖𝑚𝑒

DFS (𝐺)

1. for each vertex 𝑢 ∈ 𝐺. 𝑉 do

2. 𝑢. 𝑐𝑜𝑙𝑜𝑟 ← WHITE, 𝑢. 𝜋 ← 𝑁𝐼𝐿

3. 𝑡𝑖𝑚𝑒 ← 0

4. for each 𝑢 ∈ 𝐺. 𝑉 do

5. if 𝑢. 𝑐𝑜𝑙𝑜𝑟 = WHITE then

6. DFS-VISIT(𝐺, 𝑢)

Topological Sort

A topological sort of a DAG (i.e., directed acyclic graph) 𝐺 = 𝑉, 𝐸 is a

linear ordering of all its vertices such that if 𝐺 contains an edge 𝑢, 𝑣 , then

𝑢 appears before 𝑣 in the ordering.

We can view a topological sort of a graph as an ordering of its vertices along

a horizontal line so that all directed edges go from left to right.

31

undershorts

pants

belt

shirt

tie

jacket

socks

shoes

watch

socks undershorts pants shoes watch shirt belt tie jacket

A Directed Acyclic

Graph (DAG)

A topological sort

of the DAG nodes

Topological Sort

32

TOPOLOGICAL-SORT (𝐺)

1. call DFS (𝐺) to compute the finish times 𝑣. 𝑓 for each vertex 𝑣 ∈ 𝐺. 𝑉

2. as each vertex is finished, insert it into the front of a linked list

3. return the linked list of vertices

undershorts

pants

belt

shirt

tie

jacket

socks

shoes

watch

1/8

2/5

3/4

6/7

11/16

12/15

17/18

13/14

9/10

socks undershorts pants shoes watch shirt belt tie jacket

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4

Strongly Connected Components

A strongly connected component of a directed graph 𝐺 = 𝑉, 𝐸 is a

maximal set of vertices 𝐶 ⊆ 𝑉 such that for every pair of vertices 𝑢 and 𝑣 in

𝐶, we have both 𝑢 ⤳ 𝑣 and 𝑣 ⤳ 𝑢; that is, vertices 𝑢 and 𝑣 are reachable

from each other.

33

Strongly Connected Components

A strongly connected component of a directed graph 𝐺 = 𝑉, 𝐸 is a

maximal set of vertices 𝐶 ⊆ 𝑉 such that for every pair of vertices 𝑢 and 𝑣 in

𝐶, we have both 𝑢 ⤳ 𝑣 and 𝑣 ⤳ 𝑢; that is, vertices 𝑢 and 𝑣 are reachable

from each other.

34

𝑏 𝑐 𝑑

𝑓 𝑔 ℎ

𝑎

𝑒

Strongly Connected Components

A strongly connected component of a directed graph 𝐺 = 𝑉, 𝐸 is a

maximal set of vertices 𝐶 ⊆ 𝑉 such that for every pair of vertices 𝑢 and 𝑣 in

𝐶, we have both 𝑢 ⤳ 𝑣 and 𝑣 ⤳ 𝑢; that is, vertices 𝑢 and 𝑣 are reachable

from each other.

35

𝑏 𝑐 𝑑

𝑓 𝑔 ℎ

𝑎

𝑒

Strongly Connected Components

36

STRONGLY-CONNECTED-COMPONENTS (𝐺)

1. call DFS (𝐺) to compute the finish times 𝑣. 𝑓 for each vertex 𝑣 ∈ 𝐺. 𝑉

2. compute 𝐺𝑇

3. call DFS (𝐺𝑇), but in the main loop of DFS, consider the vertices in order

of decreasing 𝑣. 𝑓 (as computed in line 1)

4. output the vertices of each tree in the depth-first forest formed in line 3 as

a separate strongly connected component

Strongly Connected Components

37

STRONGLY-CONNECTED-COMPONENTS (𝐺)

1. call DFS (𝐺) to compute the finish times 𝑣. 𝑓 for each vertex 𝑣 ∈ 𝐺. 𝑉

2. compute 𝐺𝑇

3. call DFS (𝐺𝑇), but in the main loop of DFS, consider the vertices in order

of decreasing 𝑣. 𝑓 (as computed in line 1)

4. output the vertices of each tree in the depth-first forest formed in line 3 as

a separate strongly connected component

𝑏 𝑐 𝑑

𝑓 𝑔 ℎ

𝑎

𝑒

Strongly Connected Components

38

1/10 8/9

2/7 5/6

11/16

3/4

𝑏 𝑐 𝑑

𝑓 𝑔 ℎ

13/14

12/15

𝑎

𝑒

STRONGLY-CONNECTED-COMPONENTS (𝐺)

1. call DFS (𝐺) to compute the finish times 𝑣. 𝑓 for each vertex 𝑣 ∈ 𝐺. 𝑉

2. compute 𝐺𝑇

3. call DFS (𝐺𝑇), but in the main loop of DFS, consider the vertices in order

of decreasing 𝑣. 𝑓 (as computed in line 1)

4. output the vertices of each tree in the depth-first forest formed in line 3 as

a separate strongly connected component

𝑏 𝑐 𝑑

𝑓 𝑔 ℎ

𝑎

𝑒

Strongly Connected Components

39

STRONGLY-CONNECTED-COMPONENTS (𝐺)

1. call DFS (𝐺) to compute the finish times 𝑣. 𝑓 for each vertex 𝑣 ∈ 𝐺. 𝑉

2. compute 𝐺𝑇

3. call DFS (𝐺𝑇), but in the main loop of DFS, consider the vertices in order

of decreasing 𝑣. 𝑓 (as computed in line 1)

4. output the vertices of each tree in the depth-first forest formed in line 3 as

a separate strongly connected component

Strongly Connected Components

40

𝑏 𝑐 𝑑

𝑓 𝑔 ℎ

𝑎

𝑒

STRONGLY-CONNECTED-COMPONENTS (𝐺)

1. call DFS (𝐺) to compute the finish times 𝑣. 𝑓 for each vertex 𝑣 ∈ 𝐺. 𝑉

2. compute 𝐺𝑇

3. call DFS (𝐺𝑇), but in the main loop of DFS, consider the vertices in order

of decreasing 𝑣. 𝑓 (as computed in line 1)

4. output the vertices of each tree in the depth-first forest formed in line 3 as

a separate strongly connected component

Strongly Connected Components

41

𝑏 𝑐 𝑑

𝑓 𝑔 ℎ

𝑎

𝑒

STRONGLY-CONNECTED-COMPONENTS (𝐺)

1. call DFS (𝐺) to compute the finish times 𝑣. 𝑓 for each vertex 𝑣 ∈ 𝐺. 𝑉

2. compute 𝐺𝑇

3. call DFS (𝐺𝑇), but in the main loop of DFS, consider the vertices in order

of decreasing 𝑣. 𝑓 (as computed in line 1)

4. output the vertices of each tree in the depth-first forest formed in line 3 as

a separate strongly connected component

Strongly Connected Components

42

𝑐𝑑

ℎ𝑓𝑔

𝑎𝑏𝑒

STRONGLY-CONNECTED-COMPONENTS (𝐺)

1. call DFS (𝐺) to compute the finish times 𝑣. 𝑓 for each vertex 𝑣 ∈ 𝐺. 𝑉

2. compute 𝐺𝑇

3. call DFS (𝐺𝑇), but in the main loop of DFS, consider the vertices in order

of decreasing 𝑣. 𝑓 (as computed in line 1)

4. output the vertices of each tree in the depth-first forest formed in line 3 as

a separate strongly connected component

The Single-Source Shortest Paths (SSSP) Problem

We are given a weighted, directed graph 𝐺 = 𝑉, 𝐸 with vertex

set 𝑉 and edge set 𝐸, and a weight function 𝑤 such that for each

edge 𝑢, 𝑣 ∈ 𝐸, 𝑤 𝑢, 𝑣 represents its weight.

We are also given a source vertex 𝑠 ∈ 𝑉.

Our goal is to find a shortest path (i.e., a path of the smallest total

edge weight) from 𝑠 to each vertex 𝑣 ∈ 𝑉.

43

SSSP: Relxation

INITIALIZE-SINGLE-SOURCE (𝐺 = 𝑉, 𝐸 , 𝑠)

1. for each vertex 𝑣 ∈ 𝐺. 𝑉 do

2. 𝑣. 𝑑 ← ∞

3. 𝑣. 𝜋 ← 𝑁𝐼𝐿

4. 𝑠. 𝑑 ← 0

RELAX (𝑢, 𝑣, 𝑤)

1. if 𝑢. 𝑑 + 𝑤 𝑢, 𝑣 < 𝑣. 𝑑 then

2. 𝑣. 𝑑 ← 𝑢. 𝑑 + 𝑤 𝑢, 𝑣

3. 𝑣. 𝜋 ← 𝑢

44

SSSP: Properties of Shortest Paths and Relxation

The weight 𝑤 𝑝 of path 𝑝 = ⟨𝑣0, 𝑣1, … , 𝑣𝑘⟩ is the sum of the

weights of its constituent edges:

𝑤 𝑝 =෍

𝑖=1

𝑘

𝑤 𝑣𝑖−1, 𝑣𝑖

We define the shortest-path weight 𝛿 𝑢, 𝑣 from 𝑢 to 𝑣 by

𝛿 𝑢, 𝑣 = ቊ
min 𝑤 𝑝 : 𝑝 is 𝑢 ~ 𝑣 , if there is a path from 𝑢 to 𝑣,

∞, otherwise.

A shortest path from vertex 𝑢 to vertex 𝑣 is then defined as any

path 𝑝 with weight 𝑤 𝑝 = 𝛿 𝑢, 𝑣 .

45

SSSP: Properties of Shortest Paths and Relxation

Triangle inequality (Lemma 24.10 of CLRS)

For any edge 𝑢, 𝑣 ∈ 𝐸, we have 𝛿 𝑠, 𝑣 ≤ 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣 .

Upper-bound inequality (Lemma 24.11 of CLRS)

We always have 𝑣. 𝑑 ≥ 𝛿 𝑠, 𝑣 for all vertices 𝑣 ∈ 𝑉, and once

𝑣. 𝑑 achieves the value 𝛿 𝑢, 𝑣 , it never changes.

No-path property (Corollary 24.12 of CLRS)

If there is no path from 𝑠 to 𝑣, then we always have

𝑣. 𝑑 = 𝛿 𝑠, 𝑣 = ∞.

Convergence property (Lemma 24.14 of CLRS)

If 𝑠 ⤳ 𝑢 → 𝑣 is a shortest path in 𝐺 for some 𝑢, 𝑣 ∈ 𝑉, and if

𝑢. 𝑑 = 𝛿 𝑠, 𝑢 at any time prior to relaxing edge 𝑢, 𝑣 , then

𝑣. 𝑑 = 𝛿 𝑠, 𝑣 at all times afterward.

46

SSSP: Properties of Shortest Paths and Relxation

Path-relaxation property (Lemma 24.15 of CLRS)

If 𝑝 = ⟨𝑣0, 𝑣1, … , 𝑣𝑘⟩ is a shortest path from 𝑠 = 𝑣0 to 𝑣𝑘,

and we relax the edges of 𝑝 in the order 𝑣0, 𝑣1 , 𝑣1, 𝑣2 ,

… , 𝑣𝑘−1, 𝑣𝑘 , then 𝑣𝑘 . 𝑑 = 𝛿 𝑠, 𝑣𝑘 . This property holds

regardless of any other relaxation steps that occur, even if

they are intermixed with relaxations on the edges of 𝑝.

Predecessor-subgraph property (Lemma 24.17 of CLRS)

Once 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 for all 𝑣 ∈ 𝑉, the predecessor subgraph

is a shortest-paths tree rooted at 𝑠.

47

Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

48

Since we already discussed Dijkstra’s SSSP algorithm when we

talked about greedy algorithms, we will skip over it in this lecture.

49

Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

Input: Weighted graph 𝐺 = 𝑉, 𝐸 with vertex set 𝑉 and edge set 𝐸, a
non-negative weight function 𝑤, and a source vertex 𝑠 ∈ 𝐺 𝑉 .

Output: For all 𝑣 ∈ 𝐺 𝑉 , 𝑣. 𝑑 is set to the shortest distance from 𝑠 to 𝑣.

Let 𝑛 = 𝐺 𝑉 and 𝑚 = 𝐺 𝐸

Worst-case running time:

Using a binary min-heap
=  (𝑚 + 𝑛) log 𝑛

Using a Fibonacci heap
=  𝑚 + 𝑛 log 𝑛

The Bellman-Ford (SSSP) Algorithm
(SSSP: Single-Source Shortest Paths)

50

Input: Weighted graph 𝐺 = 𝑉, 𝐸 with vertex set 𝑉 and edge set 𝐸, a
weight function 𝑤, and a source vertex 𝑠 ∈ 𝐺 𝑉 . Negative-weight edges
are allowed (unlike Dijkstra’s SSSP algorithm).

Output: Returns FALSE if a negative-weight cycle is reachable from 𝑠,
otherwise returns TRUE and for all 𝑣 ∈ 𝐺 𝑉 , sets 𝑣. 𝑑 to the shortest
distance from 𝑠 to 𝑣.

BELLMAN-FORD (𝐺 = 𝑉, 𝐸 , 𝑤, 𝑠)

1. INITIALIZE-SINGLE-SOURCE(𝐺, 𝑠)

2. for 𝑖 ← 1 to 𝐺. 𝑉 − 1 do

3. for each 𝑢, 𝑣 ∈ 𝐺. 𝐸 do

4. RELAX(𝑢, 𝑣, 𝑤)

5. for each 𝑢, 𝑣 ∈ 𝐺. 𝐸 do

6. if 𝑢. 𝑑 + 𝑤 𝑢, 𝑣 < 𝑣. 𝑑 then

7. return FALSE

8. return TRUE

INITIALIZE-SINGLE-SOURCE (𝐺 = 𝑉, 𝐸 , 𝑠)

1. for each vertex 𝑣 ∈ 𝐺. 𝑉 do

2. 𝑣. 𝑑 ← ∞

3. 𝑣. 𝜋 ← 𝑁𝐼𝐿

4. 𝑠. 𝑑 ← 0

RELAX (𝑢, 𝑣, 𝑤)

1. if 𝑢. 𝑑 + 𝑤 𝑢, 𝑣 < 𝑣. 𝑑 then

2. 𝑣. 𝑑 ← 𝑢. 𝑑 + 𝑤 𝑢, 𝑣

3. 𝑣. 𝜋 ← 𝑢

The Bellman-Ford (SSSP) Algorithm
(SSSP: Single-Source Shortest Paths)

51

Initial State (with initial tentative distances)

𝑡 𝑥

𝑦 𝑧

𝑠

6

5

9

7

∞ ∞

∞ ∞

0
8 4

2

−2

−3

−4

The Bellman-Ford (SSSP) Algorithm
(SSSP: Single-Source Shortest Paths)

52

Iteration 1

𝑡 𝑥

𝑦 𝑧

𝑠

6

5

9

7

6 ∞

7 ∞

0
8 4

2

−2

−3

−4

The Bellman-Ford (SSSP) Algorithm
(SSSP: Single-Source Shortest Paths)

53

Iteration 2

𝑡 𝑥

𝑦 𝑧

𝑠

6

5

9

7

6 4

7 2

0
8 4

2

−2

−3

−4

The Bellman-Ford (SSSP) Algorithm
(SSSP: Single-Source Shortest Paths)

54

Iteration 3

𝑡 𝑥

𝑦 𝑧

𝑠

6

5

9

7

2 4

7 2

0
8 4

2

−2

−3

−4

The Bellman-Ford (SSSP) Algorithm
(SSSP: Single-Source Shortest Paths)

55

Iteration 4

𝑡 𝑥

𝑦 𝑧

𝑠

6

5

9

7

2 4

7 −2

0
8 4

2

−2

−3

−4

The Bellman-Ford (SSSP) Algorithm
(SSSP: Single-Source Shortest Paths)

56

Done!

𝑡 𝑥

𝑦 𝑧

𝑠

6

5

9

7

2 4

7 −2

0
8 4

2

−2

−3

−4

The Bellman-Ford (SSSP) Algorithm
(SSSP: Single-Source Shortest Paths)

57

BELLMAN-FORD (𝐺 = 𝑉, 𝐸 , 𝑤, 𝑠)

1. INITIALIZE-SINGLE-SOURCE(𝐺, 𝑠)

2. for 𝑖 ← 1 to 𝐺. 𝑉 − 1 do

3. for each 𝑢, 𝑣 ∈ 𝐺. 𝐸 do

4. RELAX(𝑢, 𝑣, 𝑤)

5. for each 𝑢, 𝑣 ∈ 𝐺. 𝐸 do

6. if 𝑢. 𝑑 + 𝑤 𝑢, 𝑣 < 𝑣. 𝑑 then

7. return FALSE

8. return TRUE

INITIALIZE-SINGLE-SOURCE (𝐺 = 𝑉, 𝐸 , 𝑠)

1. for each vertex 𝑣 ∈ 𝐺. 𝑉 do

2. 𝑣. 𝑑 ← ∞

3. 𝑣. 𝜋 ← 𝑁𝐼𝐿

4. 𝑠. 𝑑 ← 0

RELAX (𝑢, 𝑣, 𝑤)

1. if 𝑢. 𝑑 + 𝑤 𝑢, 𝑣 < 𝑣. 𝑑 then

2. 𝑣. 𝑑 ← 𝑢. 𝑑 + 𝑤 𝑢, 𝑣

3. 𝑣. 𝜋 ← 𝑢

Let 𝑛 = 𝑉 and 𝑚 = 𝐸

Time taken by: Line 1: Θ 𝑛
Lines 2 − 4: Θ 𝑚𝑛
Lines 5 − 7: Θ 𝑚

Total time: Θ 𝑚𝑛

Correctness of the Bellman-Ford Algorithm

58

LEMMA 24.2 (CLRS): Let 𝐺 = 𝑉, 𝐸 be a weighted, directed graph

with source 𝑠 and weight function 𝑤:𝐸 → ℝ, and suppose 𝐺

contains no negative-weight cycles reachable from 𝑠. Then, after

the 𝑉 − 1 iterations of the for loop of lines 2– 4 of BELLMAN-FORD,

we have 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 for all vertices 𝑣 that are reachable from 𝑠.

PROOF: The proof is based on the path-relaxation property.

Consider any 𝑣 ∈ 𝐺. 𝑉 reachable from 𝑠, and let 𝑝 = ⟨𝑣0, 𝑣1, … , 𝑣𝑘⟩,

where 𝑣0 = 𝑠 and 𝑣𝑘 = 𝑣, be any shortest path from 𝑠 to 𝑣.

Because shortest paths are simple, 𝑝 has at most 𝑉 − 1 edges, and

so 𝑘 ≤ 𝑉 − 1. Each of the 𝑉 − 1 iterations of the for loop of lines

2– 4 relaxes all 𝐸 edges. Among the edges relaxed in the 𝑖𝑡ℎ

iteration, for 𝑖 = 1,2,… , 𝑘, is 𝑣𝑖−1, 𝑣𝑖 . By the path-relaxation

property, therefore, 𝑣. 𝑑 = 𝑣𝑘. 𝑑 = 𝛿 𝑠, 𝑣𝑘 = 𝛿 𝑠, 𝑣 .

Correctness of the Bellman-Ford Algorithm

59

COROLLARY 24.3 (CLRS): Let 𝐺 = 𝑉, 𝐸 be a weighted, directed

graph with source 𝑠 and weight function 𝑤:𝐸 → ℝ, and suppose 𝐺

contains no negative-weight cycles reachable from 𝑠. Then, for each

𝑣 ∈ 𝑉, there is a path from 𝑠 to 𝑣 if and only if BELLMAN-FORD

terminates with 𝑣. 𝑑 < ∞ when it is run on 𝐺.

Correctness of the Bellman-Ford Algorithm

60

THEOREM 24.4 (CLRS): Let BELLMAN-FORD be run on a weighted,

directed graph 𝐺 = 𝑉, 𝐸 with source 𝑠 and weight function

𝑤:𝐸 → ℝ. If 𝐺 contains no negative-weight cycles reachable from 𝑠,

then the algorithm returns TRUE, we have 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 for all 𝑣 ∈

𝑉, and the predecessor subgraph 𝐺𝜋 is a shortest-paths tree rooted

at 𝑠. If 𝐺 does contain a negative-weight cycle reachable from 𝑠,

then the algorithm returns FALSE.

Correctness of the Bellman-Ford Algorithm

61

PROOF OF THEOREM 24.4: Two cases:

𝑮 contains no negative-weight cycles reachable from 𝒔:

If 𝑣 ∈ 𝐺. 𝑉 is reachable from 𝑠 then according to Lemma 24.2 we

have 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 at termination. Otherwise, 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 = ∞

follows from the no-path property.

The predecessor-subgraph property, along with 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 ,

implies that 𝐺𝜋 is a shortest-paths tree.

Now, since at termination, for all edges 𝑢, 𝑣 ∈ 𝐺. 𝐸, we have,

𝑣. 𝑑 = 𝛿 𝑠, 𝑣 and 𝑢. 𝑑 = 𝛿 𝑠, 𝑢 , then by triangle inequality:

𝑣. 𝑑 = 𝛿 𝑠, 𝑣 ≤ 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣 = 𝑢. 𝑑 + 𝑤 𝑢, 𝑣 .

So, none of the tests in line 6 causes BELLMAN-FORD to return FALSE.

Therefore, it returns TRUE.

Correctness of the Bellman-Ford Algorithm

62

PROOF OF THEOREM 24.4 (CONTINUED):

𝐺 contains a negative-weight cycle reachable from 𝑠:

Let 𝑐 = 𝑣0, 𝑣1, … , 𝑣𝑘 be the cycle, where 𝑣0 = 𝑣𝑘. Then

σ𝑖=1
𝑘 𝑤 𝑣𝑖−1, 𝑣𝑖 < 0.

Assume for the sake of contradiction that BELLMAN-FORD returns TRUE.

Then 𝑣𝑖 . 𝑑 ≤ 𝑣𝑖−1. 𝑑 + 𝑤 𝑣𝑖−1, 𝑣𝑖 for 𝑖 = 1,2,… , 𝑘. Thus,

෍

𝑖=1

𝑘

𝑣𝑖 . 𝑑 ≤෍

𝑖=1

𝑘

𝑣𝑖−1. 𝑑 + 𝑤 𝑣𝑖−1, 𝑣𝑖 =෍

𝑖=1

𝑘

𝑣𝑖−1. 𝑑 +෍

𝑖=1

𝑘

𝑤 𝑣𝑖−1, 𝑣𝑖

But σ𝑖=1
𝑘 𝑣𝑖 . 𝑑 = σ𝑖=1

𝑘 𝑣𝑖−1. 𝑑, and by Corollary 24.3, each 𝑣𝑖 . 𝑑 is finite.

Thus, σ𝑖=1
𝑘 𝑤 𝑣𝑖−1, 𝑣𝑖 ≥ 0, which contradicts our initial assumption

that 𝑐 = 𝑣0, 𝑣1, … , 𝑣𝑘 is a negative-weight cycle.

SSSP in Directed Acyclic Graphs (DAGs)
(SSSP: Single-Source Shortest Paths)

63

DAG-SHORTEST-PATHS (𝐺 = 𝑉, 𝐸 , 𝑤, 𝑠)

1. topologically sort the vertices of 𝐺

2. INITIALIZE-SINGLE-SOURCE(𝐺, 𝑠)

3. for each 𝑣 ∈ 𝑉. 𝐺 taken in topologically sorted order do

4. for each 𝑢, 𝑣 ∈ 𝐺. 𝐸 do

5. RELAX(𝑢, 𝑣, 𝑤)

INITIALIZE-SINGLE-SOURCE (𝐺 = 𝑉, 𝐸 , 𝑠)

1. for each vertex 𝑣 ∈ 𝐺. 𝑉 do

2. 𝑣. 𝑑 ← ∞

3. 𝑣. 𝜋 ← 𝑁𝐼𝐿

4. 𝑠. 𝑑 ← 0

RELAX (𝑢, 𝑣, 𝑤)

1. if 𝑢. 𝑑 + 𝑤 𝑢, 𝑣 < 𝑣. 𝑑 then

2. 𝑣. 𝑑 ← 𝑢. 𝑑 + 𝑤 𝑢, 𝑣

3. 𝑣. 𝜋 ← 𝑢

Input: Weighted DAG 𝐺 = 𝑉, 𝐸 with vertex set 𝑉 and edge set 𝐸, a
weight function 𝑤, and a source vertex 𝑠 ∈ 𝐺 𝑉 . Negative-weight edges
are allowed (unlike Dijkstra’s SSSP algorithm).

Output: For all 𝑣 ∈ 𝐺 𝑉 , sets 𝑣. 𝑑 to the shortest distance from 𝑠 to 𝑣.

SSSP in Directed Acyclic Graphs (DAGs)
(SSSP: Single-Source Shortest Paths)

64

Given DAG

𝑟 𝑦

𝑡 𝑥

𝑠

5

7

2

3 −1

6

4

2

𝑧

−2

1

SSSP in Directed Acyclic Graphs (DAGs)
(SSSP: Single-Source Shortest Paths)

65

After Topological Sorting (with initial tentative distances)

5 72

3

−1

6

2

4

−2

1

𝑟 𝑠 𝑡 𝑥 𝑦 𝑧

∞ 0 ∞ ∞ ∞ ∞

SSSP in Directed Acyclic Graphs (DAGs)
(SSSP: Single-Source Shortest Paths)

66

After Iteration 1

5 72

3

−1

6

2

4

−2

1

𝑟 𝑠 𝑡 𝑥 𝑦 𝑧

∞ 0 ∞ ∞ ∞ ∞

SSSP in Directed Acyclic Graphs (DAGs)
(SSSP: Single-Source Shortest Paths)

67

After Iteration 2

5 72

3

−1

6

2

4

−2

1

𝑟 𝑠 𝑡 𝑥 𝑦 𝑧

∞ 0 2 6 ∞ ∞

SSSP in Directed Acyclic Graphs (DAGs)
(SSSP: Single-Source Shortest Paths)

68

After Iteration 3

5 72

3

−1

6

2

4

−2

1

𝑟 𝑠 𝑡 𝑥 𝑦 𝑧

∞ 0 2 6 6 4

SSSP in Directed Acyclic Graphs (DAGs)
(SSSP: Single-Source Shortest Paths)

69

After Iteration 4

5 72

3

−1

6

2

4

−2

1

𝑟 𝑠 𝑡 𝑥 𝑦 𝑧

∞ 0 2 6 5 4

SSSP in Directed Acyclic Graphs (DAGs)
(SSSP: Single-Source Shortest Paths)

70

After Iteration 5

5 72

3

−1

6

2

4

−2

1

𝑟 𝑠 𝑡 𝑥 𝑦 𝑧

∞ 0 2 6 5 3

SSSP in Directed Acyclic Graphs (DAGs)
(SSSP: Single-Source Shortest Paths)

71

Done!

5 72

3

−1

6

2

4

−2

1

𝑟 𝑠 𝑡 𝑥 𝑦 𝑧

∞ 0 2 6 5 3

SSSP in Directed Acyclic Graphs (DAGs)
(SSSP: Single-Source Shortest Paths)

72

DAG-SHORTEST-PATHS (𝐺 = 𝑉, 𝐸 , 𝑤, 𝑠)

1. topologically sort the vertices of 𝐺

2. INITIALIZE-SINGLE-SOURCE(𝐺, 𝑠)

3. for each 𝑣 ∈ 𝑉. 𝐺 taken in topologically sorted order do

4. for each 𝑢, 𝑣 ∈ 𝐺. 𝐸 do

5. RELAX(𝑢, 𝑣, 𝑤)

INITIALIZE-SINGLE-SOURCE (𝐺 = 𝑉, 𝐸 , 𝑠)

1. for each vertex 𝑣 ∈ 𝐺. 𝑉 do

2. 𝑣. 𝑑 ← ∞

3. 𝑣. 𝜋 ← 𝑁𝐼𝐿

4. 𝑠. 𝑑 ← 0

RELAX (𝑢, 𝑣, 𝑤)

1. if 𝑢. 𝑑 + 𝑤 𝑢, 𝑣 < 𝑣. 𝑑 then

2. 𝑣. 𝑑 ← 𝑢. 𝑑 + 𝑤 𝑢, 𝑣

3. 𝑣. 𝜋 ← 𝑢

Let 𝑛 = 𝑉 and
𝑚 = 𝐸

Time taken by: Line 1: Θ 𝑛 +𝑚
Line 2: Θ 𝑛
Lines 3 − 5: Θ 𝑚

Total time: Θ 𝑛 +𝑚

Correctness of DAG-SHORTEST-PATHS

73

THEOREM 24.5 (CLRS): If a weighted, directed graph 𝐺 = 𝑉, 𝐸 has a

source vertex 𝑠 and no cycles, then at the termination of the DAG-

SHORTEST-PATHS procedure, 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 for all vertices 𝑣 ∈ 𝐺. 𝑉,

and the predecessor subgraph 𝐺𝜋 is a shortest-paths tree.

PROOF: Consider any 𝑣 ∈ 𝐺. 𝑉.

If 𝑣 is not reachable from 𝑠 then 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 = ∞ follows from

the no-path property.

If 𝑣 is reachable from 𝑠, and let 𝑝 = ⟨𝑣0, 𝑣1, … , 𝑣𝑘⟩, where 𝑣0 = 𝑠

and 𝑣𝑘 = 𝑣, be any shortest path from 𝑠 to 𝑣. Since we process the

vertices in topological order, we relax the edges on 𝑝 in the order

𝑣0, 𝑣1 , 𝑣1, 𝑣2 , … , 𝑣𝑘−1, 𝑣𝑘 . The path-relaxation property

implies that 𝑣𝑖 . 𝑑 = 𝛿 𝑠, 𝑣𝑖 at termination for 𝑖 = 1,2,… , 𝑘.

By the predecessor-subgraph property, 𝐺𝜋 is a shortest-paths tree.

Correctness of DAG-SHORTEST-PATHS

74

THEOREM 24.5 (CLRS): If a weighted, directed graph 𝐺 = 𝑉, 𝐸 has a

source vertex 𝑠 and no cycles, then at the termination of the DAG-

SHORTEST-PATHS procedure, 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 for all vertices 𝑣 ∈ 𝐺. 𝑉,

and the predecessor subgraph 𝐺𝜋 is a shortest-paths tree.

PROOF: Consider any 𝑣 ∈ 𝐺. 𝑉.

If 𝑣 is not reachable from 𝑠 then 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 = ∞ follows from

the no-path property.

If 𝑣 is reachable from 𝑠, and let 𝑝 = ⟨𝑣0, 𝑣1, … , 𝑣𝑘⟩, where 𝑣0 = 𝑠

and 𝑣𝑘 = 𝑣, be any shortest path from 𝑠 to 𝑣. Since we process the

vertices in topological order, we relax the edges on 𝑝 in the order

𝑣0, 𝑣1 , 𝑣1, 𝑣2 , … , 𝑣𝑘−1, 𝑣𝑘 . The path-relaxation property

implies that 𝑣𝑖 . 𝑑 = 𝛿 𝑠, 𝑣𝑖 at termination for 𝑖 = 1,2,… , 𝑘.

By the predecessor-subgraph property, 𝐺𝜋 is a shortest-paths tree.

Correctness of DAG-SHORTEST-PATHS

75

THEOREM 24.5 (CLRS): If a weighted, directed graph 𝐺 = 𝑉, 𝐸 has a

source vertex 𝑠 and no cycles, then at the termination of the DAG-

SHORTEST-PATHS procedure, 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 for all vertices 𝑣 ∈ 𝐺. 𝑉,

and the predecessor subgraph 𝐺𝜋 is a shortest-paths tree.

PROOF: Consider any 𝑣 ∈ 𝐺. 𝑉.

If 𝑣 is not reachable from 𝑠 then 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 = ∞ follows from

the no-path property.

If 𝑣 is reachable from 𝑠, and let 𝑝 = ⟨𝑣0, 𝑣1, … , 𝑣𝑘⟩, where 𝑣0 = 𝑠

and 𝑣𝑘 = 𝑣, be any shortest path from 𝑠 to 𝑣. Since we process the

vertices in topological order, we relax the edges on 𝑝 in the order

𝑣0, 𝑣1 , 𝑣1, 𝑣2 , … , 𝑣𝑘−1, 𝑣𝑘 . The path-relaxation property

implies that 𝑣𝑖 . 𝑑 = 𝛿 𝑠, 𝑣𝑖 at termination for 𝑖 = 1,2,… , 𝑘.

By the predecessor-subgraph property, 𝐺𝜋 is a shortest-paths tree.

The All-Pairs Shortest Paths (APSP) Problem

We are given a weighted, directed graph 𝐺 = 𝑉, 𝐸 with vertex

set 𝑉 and edge set 𝐸, and a weight function 𝑤 such that for each

edge 𝑢, 𝑣 ∈ 𝐸, 𝑤 𝑢, 𝑣 represents its weight.

Our goal is to find, for every pair of vertices 𝑢, 𝑣 ∈ 𝐺. 𝑉, a shortest

path (i.e., a path of the smallest total edge weight) from 𝑢 to 𝑣.

76

The All-Pairs Shortest Paths (APSP) Problem

One can solve the APSP problem by running an SSSP algorithm 𝑛 =

|𝐺. 𝑉| times, once for each vertex as the source.

If all edge weights are nonnegative, one can use Dijkstra’s SSSP

algorithm. Using a binary min-heap as the priority queue, one can

solve the problem in 𝑂 𝑛 𝑚 + 𝑛 log 𝑛 time, where 𝑚 = 𝐺. 𝐸 .

Using a Fibonacci heap as the priority queue yields a running time

of 𝑂 𝑛2 log 𝑛 +𝑚𝑛 .

If 𝐺 has negative-weight edges, then one can use the slower

Bellman-Ford SSSP algorithm resulting in a running time of

𝑂 𝑚𝑛2 which is 𝑂 𝑛4 for dense graphs.

77

We assume that the edge-weights are given as an 𝑛 × 𝑛 adjacency

matrix 𝑊 = 𝑤𝑖𝑗 , where

𝑤𝑖𝑗 = ቐ

0, 𝑖𝑓 𝑖 = 𝑗,

𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑒𝑑𝑔𝑒 𝑖, 𝑗 𝑖𝑓 𝑖 ≠ 𝑗 𝑎𝑛𝑑 𝑖, 𝑗 ∈ 𝐸,

∞ 𝑖𝑓 𝑖 ≠ 𝑗 𝑎𝑛𝑑 𝑖, 𝑗 ∉ 𝐸.

We allow negative-weight edges, but we assume for the time

being that 𝐺 contains no negative-weight cycles.

78

The All-Pairs Shortest Paths (APSP) Problem

Let 𝑙𝑖𝑗
𝑚

be the minimum weight of any path from vertex 𝑖 to

vertex 𝑗 that contains at most 𝑚 edges. Then

𝑙𝑖𝑗
𝑚

=

0, 𝑖𝑓 𝑚 = 0 𝑎𝑛𝑑 𝑖 = 𝑗,
∞ 𝑖𝑓 𝑚 = 0 𝑎𝑛𝑑 𝑖 ≠ 𝑗,

min
1≤𝑘≤𝑛

𝑙𝑖𝑘
𝑚−1

+𝑤𝑘𝑗 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑖. 𝑒. , 𝑚 > 0 .

If 𝐺 has no negative-weight cycles, then for every pair of vertices 𝑖

and 𝑗 for which 𝛿 𝑖, 𝑗 < ∞, there is a shortest path from 𝑖 to 𝑗

that is simple and thus contains at most 𝑛 − 1 edges. A path from

vertex 𝑖 to vertex 𝑗 with more than 𝑛 − 1 edges cannot have lower

weight than a shortest path from 𝑖 to 𝑗. Hence,

𝛿 𝑖, 𝑗 = 𝑙𝑖𝑗
𝑛−1

= 𝑙𝑖𝑗
𝑛
= 𝑙𝑖𝑗

𝑛+1
= ⋯.

79

APSP: Extending SPs by One Edge at a Time

Let 𝑙𝑖𝑗
𝑚

be the minimum weight of any path from vertex 𝑖 to

vertex 𝑗 that contains at most 𝑚 edges. Then

𝑙𝑖𝑗
𝑚

=

0, 𝑖𝑓 𝑚 = 0 𝑎𝑛𝑑 𝑖 = 𝑗,
∞ 𝑖𝑓 𝑚 = 0 𝑎𝑛𝑑 𝑖 ≠ 𝑗,

min
1≤𝑘≤𝑛

𝑙𝑖𝑘
𝑚−1

+𝑤𝑘𝑗 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑖. 𝑒. , 𝑚 > 0 .

If 𝐺 has no negative-weight cycles, then for every pair of vertices 𝑖

and 𝑗 for which 𝛿 𝑖, 𝑗 < ∞, there is a shortest path from 𝑖 to 𝑗

that is simple and thus contains at most 𝑛 − 1 edges. A path from

vertex 𝑖 to vertex 𝑗 with more than 𝑛 − 1 edges cannot have lower

weight than a shortest path from 𝑖 to 𝑗. Hence,

𝛿 𝑖, 𝑗 = 𝑙𝑖𝑗
𝑛−1

= 𝑙𝑖𝑗
𝑛
= 𝑙𝑖𝑗

𝑛+1
= ⋯.

80

APSP: Extending SPs by One Edge at a Time

81

APSP: Extending SPs by One Edge at a Time

SLOW-ALL-PAIRS-SHORTEST-PATHS (𝑊)

1. 𝑛 ← 𝑊. 𝑟𝑜𝑤𝑠

2. 𝐿 1 ← 𝑊

3. for 𝑚 ← 2 to 𝑛 − 1 do

4. let 𝐿 𝑚 be a new 𝑛 × 𝑛 matrix

5. 𝐿 𝑚 ← EXTEND-SHORTEST-PATHS(𝐿 𝑚−1 , 𝑊)

6. return 𝐿 𝑛−1

EXTEND-SHORTEST-PATHS (𝐿, 𝑊)

1. 𝑛 ← 𝐿. 𝑟𝑜𝑤𝑠

2. let 𝐿′ = 𝑙𝑖𝑗
′ be a new 𝑛 × 𝑛 matrix

3. for 𝑖 ← 1 to 𝑛 do

4. for 𝑗 ← 1 to 𝑛 do

5. 𝑙𝑖𝑗
′ ← ∞

6. for 𝑘 ← 1 to 𝑛 do

7. 𝑙𝑖𝑗
′ ← min 𝑙𝑖𝑗

′ , 𝑙𝑖𝑘
′ + 𝑤𝑘𝑗

8. return 𝐿′

82

APSP: Extending SPs by One Edge at a Time

2

1 3

45

3 4

−4 −5

7 1

8

6

2

𝑊 =

0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞
2 ∞ −5 0 ∞
∞ ∞ ∞ 6 0

𝐿 1 =

0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞
2 ∞ −5 0 ∞
∞ ∞ ∞ 6 0

83

APSP: Extending SPs by One Edge at a Time

2

1 3

45

3 4

−4 −5

7 1

8

6

2

𝐿 2 =

0 3 8 2 −4
3 0 −4 1 7
∞ 4 0 5 11
2 −1 −5 0 −2
8 ∞ 1 6 0

𝐿 1 =

0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞
2 ∞ −5 0 ∞
∞ ∞ ∞ 6 0

84

APSP: Extending SPs by One Edge at a Time

2

1 3

45

3 4

−4 −5

7 1

8

6

2

𝐿 2 =

0 3 8 2 −4
3 0 −4 1 7
∞ 4 0 5 11
2 −1 −5 0 −2
8 ∞ 1 6 0

𝐿 3 =

0 3 −3 2 −4
3 0 −4 1 −1
7 4 0 5 11
2 −1 −5 0 −2
8 5 1 6 0

85

APSP: Extending SPs by One Edge at a Time

2

1 3

45

3 4

−4 −5

7 1

8

6

2

𝐿 4 =

0 1 −3 2 −4
3 0 −4 1 −1
7 4 0 5 3
2 −1 −5 0 −2
8 5 1 6 0

𝐿 3 =

0 3 −3 2 −4
3 0 −4 1 −1
7 4 0 5 11
2 −1 −5 0 −2
8 5 1 6 0

86

APSP: Extending SPs by One Edge at a Time

EXTEND-SHORTEST-PATHS (𝐿, 𝑊)

1. 𝑛 ← 𝐿. 𝑟𝑜𝑤𝑠

2. let 𝐿′ = 𝑙𝑖𝑗
′ be a new 𝑛 × 𝑛 matrix

3. for 𝑖 ← 1 to 𝑛 do

4. for 𝑗 ← 1 to 𝑛 do

5. 𝑙𝑖𝑗
′ ← ∞

6. for 𝑘 ← 1 to 𝑛 do

7. 𝑙𝑖𝑗
′ ← min 𝑙𝑖𝑗

′ , 𝑙𝑖𝑘
′ + 𝑤𝑘𝑗

8. return 𝐿′

SQUARE-MATRIX-MULTIPLY (𝐴, 𝐵)

1. 𝑛 ← 𝐴. 𝑟𝑜𝑤𝑠

2. let 𝐶 = 𝑐𝑖𝑗 be a new 𝑛 × 𝑛 matrix

3. for 𝑖 ← 1 to 𝑛 do

4. for 𝑗 ← 1 to 𝑛 do

5. 𝑐𝑖𝑗 ← 0

6. for 𝑘 ← 1 to 𝑛 do

7. 𝑐𝑖𝑗 ← 𝑐𝑖𝑗 + 𝑎𝑖𝑘 ⋅ 𝑏𝑘𝑗

8. return 𝐶

Note the similarity between EXTEND-SHORTEST-PATHS and SQUARE-

MATRIX-MULTIPLY:

Both have the same Θ 𝑛3 running time.

87

APSP: Extending SPs by One Edge at a Time

Running time

= Θ 𝑛3

Running time

= 𝑛 × Θ(𝑛3)

= Θ(𝑛4)

SLOW-ALL-PAIRS-SHORTEST-PATHS (𝑊)

1. 𝑛 ← 𝑊. 𝑟𝑜𝑤𝑠

2. 𝐿 1 ← 𝑊

3. for 𝑚 ← 2 to 𝑛 − 1 do

4. let 𝐿 𝑚 be a new 𝑛 × 𝑛 matrix

5. 𝐿 𝑚 ← EXTEND-SHORTEST-PATHS(𝐿 𝑚−1 , 𝑊)

6. return 𝐿 𝑛−1

EXTEND-SHORTEST-PATHS (𝐿, 𝑊)

1. 𝑛 ← 𝐿. 𝑟𝑜𝑤𝑠

2. let 𝐿′ = 𝑙𝑖𝑗
′ be a new 𝑛 × 𝑛 matrix

3. for 𝑖 ← 1 to 𝑛 do

4. for 𝑗 ← 1 to 𝑛 do

5. 𝑙𝑖𝑗
′ ← ∞

6. for 𝑘 ← 1 to 𝑛 do

7. 𝑙𝑖𝑗
′ ← min 𝑙𝑖𝑗

′ , 𝑙𝑖𝑘
′ + 𝑤𝑘𝑗

8. return 𝐿′

88

APSP: Extending SPs by Repeated Squaring

FASTER-ALL-PAIRS-SHORTEST-PATHS (𝑊)

1. 𝑛 ← 𝑊. 𝑟𝑜𝑤𝑠

2. 𝐿 1 ← 𝑊

3. 𝑚 ← 1

4. while 𝑚 < 𝑛 − 1 do

5. let 𝐿 2𝑚 be a new 𝑛 × 𝑛 matrix

6. 𝐿 2𝑚 ← EXTEND-SHORTEST-PATHS(𝐿 𝑚 , 𝐿 𝑚)

7. 𝑚 ← 2𝑚

8. return 𝐿 𝑚

EXTEND-SHORTEST-PATHS (𝐿, 𝑊)

1. 𝑛 ← 𝐿. 𝑟𝑜𝑤𝑠

2. let 𝐿′ = 𝑙𝑖𝑗
′ be a new 𝑛 × 𝑛 matrix

3. for 𝑖 ← 1 to 𝑛 do

4. for 𝑗 ← 1 to 𝑛 do

5. 𝑙𝑖𝑗
′ ← ∞

6. for 𝑘 ← 1 to 𝑛 do

7. 𝑙𝑖𝑗
′ ← min 𝑙𝑖𝑗

′ , 𝑙𝑖𝑘
′ + 𝑤𝑘𝑗

8. return 𝐿′

89

APSP: Extending SPs by Repeated Squaring

FASTER-ALL-PAIRS-SHORTEST-PATHS (𝑊)

1. 𝑛 ← 𝑊. 𝑟𝑜𝑤𝑠

2. 𝐿 1 ← 𝑊

3. 𝑚 ← 1

4. while 𝑚 < 𝑛 − 1 do

5. let 𝐿 2𝑚 be a new 𝑛 × 𝑛 matrix

6. 𝐿 2𝑚 ← EXTEND-SHORTEST-PATHS(𝐿 𝑚 , 𝐿 𝑚)

7. 𝑚 ← 2𝑚

8. return 𝐿 𝑚

EXTEND-SHORTEST-PATHS (𝐿, 𝑊)

1. 𝑛 ← 𝐿. 𝑟𝑜𝑤𝑠

2. let 𝐿′ = 𝑙𝑖𝑗
′ be a new 𝑛 × 𝑛 matrix

3. for 𝑖 ← 1 to 𝑛 do

4. for 𝑗 ← 1 to 𝑛 do

5. 𝑙𝑖𝑗
′ ← ∞

6. for 𝑘 ← 1 to 𝑛 do

7. 𝑙𝑖𝑗
′ ← min 𝑙𝑖𝑗

′ , 𝑙𝑖𝑘
′ + 𝑤𝑘𝑗

8. return 𝐿′

Running time

= Θ 𝑛3

Running time

= log2 𝑛 − 1

× Θ 𝑛3

= Θ(𝑛3 log 𝑛)

Let 𝑑𝑖𝑗
𝑘

be the minimum weight of any path from vertex 𝑖 to

vertex 𝑗 for which all intermediate vertices are in 1,2,… , 𝑘 . Then

𝑑𝑖𝑗
𝑘
= ቐ

𝑤𝑖𝑗 , 𝑖𝑓 𝑘 = 0,

min{𝑑𝑖𝑗
𝑘−1

, 𝑑𝑖𝑘
𝑘−1

+ 𝑑𝑘𝑗
𝑘−1

} 𝑖𝑓 𝑘 ≥ 1.

Then 𝐷 𝑛 = 𝑑𝑖𝑗
𝑛

gives: 𝑑𝑖𝑗
𝑛
= 𝛿 𝑖, 𝑗 for all 𝑖, 𝑗 ∈ 𝐺. 𝑉.

90

APSP: Floyd-Warshall’s Algorithm

𝑖

𝑘

𝑗

𝑝: 𝑎𝑙𝑙 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑖𝑛 1,2, … , 𝑘

𝑝1: 𝑎𝑙𝑙 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒
𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑖𝑛 1,2, … , 𝑘 − 1

𝑝1: 𝑎𝑙𝑙 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒
𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑖𝑛 1,2, … , 𝑘 − 1

𝑝1 𝑝2

APSP: Floyd-Warshall’s Algorithm

FLOYD-WARSHALL (𝑊)

1. 𝑛 ← 𝑊. 𝑟𝑜𝑤𝑠

2. 𝐷 0 ← 𝑊

3. for 𝑘 ← 1 to 𝑛 do

4. let 𝐷 𝑘 = 𝑑𝑖𝑗
𝑘

be a new 𝑛 × 𝑛 matrix

5. for 𝑖 ← 1 to 𝑛 do

6. for 𝑗 ← 1 to 𝑛 do

7. 𝑑𝑖𝑗
𝑘 ← min 𝑑𝑖𝑗

𝑘−1 , 𝑑𝑖𝑘
𝑘−1 + 𝑑𝑘𝑗

𝑘−1

8. return 𝐷 𝑛

APSP: Floyd-Warshall with Predecessor Matrix

FLOYD-WARSHALL (𝑊)

1. 𝑛 ← 𝑊. 𝑟𝑜𝑤𝑠

2. 𝐷 0 ← 𝑊

3. let Π 0 = 𝜋𝑖𝑗
0

be a new 𝑛 × 𝑛 matrix

4. for 𝑖 ← 1 to 𝑛 do

5. for 𝑗 ← 1 to 𝑛 do

6. if 𝑖 = 𝑗 or 𝑤𝑖𝑗 = ∞ then 𝜋𝑖𝑗
0 ← 𝑁𝐼𝐿

7. else 𝜋𝑖𝑗
0 ← 𝑖

8. for 𝑘 ← 1 to 𝑛 do

9. let 𝐷 𝑘 = 𝑑𝑖𝑗
𝑘

and Π 𝑘 = 𝜋𝑖𝑗
𝑘

be new 𝑛 × 𝑛 matrices

10. for 𝑖 ← 1 to 𝑛 do

11. for 𝑗 ← 1 to 𝑛 do

12. if 𝑑𝑖𝑗
𝑘−1 ≤ 𝑑𝑖𝑘

𝑘−1 + 𝑑𝑘𝑗
𝑘−1

then 𝜋𝑖𝑗
𝑘 ← 𝜋𝑖𝑗

𝑘−1

13. else 𝜋𝑖𝑗
𝑘 ← 𝜋𝑘𝑗

𝑘−1

14. 𝑑𝑖𝑗
𝑘 ← min 𝑑𝑖𝑗

𝑘−1 , 𝑑𝑖𝑘
𝑘−1 + 𝑑𝑘𝑗

𝑘−1

15. return 𝐷 𝑛 and Π 𝑛

APSP: Floyd-Warshall with Predecessor Matrix

PRINT-ALL-PAIRS-SHORTEST-PATH (Π, 𝑖, 𝑗)

1. if 𝑖 = 𝑗 then

2. print 𝑖

3. elseif 𝜋𝑖𝑗 = 𝑁𝐼𝐿 then

4. print “no path from” 𝑖 “to” 𝑗 “exists”

5. else PRINT-ALL-PAIRS-SHORTEST-PATH (Π, 𝑖, 𝜋𝑖𝑗)

6. print 𝑗

APSP: Floyd-Warshall with Predecessor Matrix

2

1 3

45

3 4

−4 −5

7 1

8

6

2

Π 0 =

𝑁𝐼𝐿 1 1 𝑁𝐼𝐿 1
𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿 2 2
𝑁𝐼𝐿 3 𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿
4 𝑁𝐼𝐿 4 𝑁𝐼𝐿 𝑁𝐼𝐿
𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿 5 𝑁𝐼𝐿

𝐷 0 =

0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞
2 ∞ −5 0 ∞
∞ ∞ ∞ 6 0

APSP: Floyd-Warshall with Predecessor Matrix

Π 1 =

𝑁𝐼𝐿 1 1 𝑁𝐼𝐿 1
𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿 2 2
𝑁𝐼𝐿 3 𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿
4 1 4 𝑁𝐼𝐿 1
𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿 5 𝑁𝐼𝐿

𝐷 1 =

0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞
2 5 −5 0 −2
∞ ∞ ∞ 6 0

Π 0 =

𝑁𝐼𝐿 1 1 𝑁𝐼𝐿 1
𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿 2 2
𝑁𝐼𝐿 3 𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿
4 𝑁𝐼𝐿 4 𝑁𝐼𝐿 𝑁𝐼𝐿
𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿 5 𝑁𝐼𝐿

𝐷 0 =

0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞
2 ∞ −5 0 ∞
∞ ∞ ∞ 6 0

APSP: Floyd-Warshall with Predecessor Matrix

Π 1 =

𝑁𝐼𝐿 1 1 𝑁𝐼𝐿 1
𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿 2 2
𝑁𝐼𝐿 3 𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿
4 1 4 𝑁𝐼𝐿 1
𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿 5 𝑁𝐼𝐿

𝐷 1 =

0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞
2 5 −5 0 −2
∞ ∞ ∞ 6 0

Π 2 =

𝑁𝐼𝐿 1 1 2 1
𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿 2 2
𝑁𝐼𝐿 3 𝑁𝐼𝐿 2 2
4 1 4 𝑁𝐼𝐿 1
𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿 5 𝑁𝐼𝐿

𝐷 2 =

0 3 8 4 −4
∞ 0 ∞ 1 7
∞ 4 0 5 11
2 5 −5 0 −2
∞ ∞ ∞ 6 0

APSP: Floyd-Warshall with Predecessor Matrix

Π 2 =

𝑁𝐼𝐿 1 1 2 1
𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿 2 2
𝑁𝐼𝐿 3 𝑁𝐼𝐿 2 2
4 1 4 𝑁𝐼𝐿 1
𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿 5 𝑁𝐼𝐿

𝐷 2 =

0 3 8 4 −4
∞ 0 ∞ 1 7
∞ 4 0 5 11
2 5 −5 0 −2
∞ ∞ ∞ 6 0

Π 3 =

𝑁𝐼𝐿 1 1 2 1
𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿 2 2
𝑁𝐼𝐿 3 𝑁𝐼𝐿 2 2
4 3 4 𝑁𝐼𝐿 1
𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿 5 𝑁𝐼𝐿

𝐷 3 =

0 3 8 4 −4
∞ 0 ∞ 1 7
∞ 4 0 5 11
2 −1 −5 0 −2
∞ ∞ ∞ 6 0

APSP: Floyd-Warshall with Predecessor Matrix

Π 3 =

𝑁𝐼𝐿 1 1 2 1
𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿 2 2
𝑁𝐼𝐿 3 𝑁𝐼𝐿 2 2
4 3 4 𝑁𝐼𝐿 1
𝑁𝐼𝐿 𝑁𝐼𝐿 𝑁𝐼𝐿 5 𝑁𝐼𝐿

𝐷 3 =

0 3 8 4 −4
∞ 0 ∞ 1 7
∞ 4 0 5 11
2 −1 −5 0 −2
∞ ∞ ∞ 6 0

Π 4 =

𝑁𝐼𝐿 1 4 2 1
4 𝑁𝐼𝐿 4 2 1
4 3 𝑁𝐼𝐿 2 1
4 3 4 𝑁𝐼𝐿 1
4 3 4 5 𝑁𝐼𝐿

𝐷 4 =

0 3 −1 4 −4
3 0 −4 1 −1
7 4 0 5 3
2 −1 −5 0 −2
8 5 1 6 0

APSP: Floyd-Warshall with Predecessor Matrix

Π 5 =

𝑁𝐼𝐿 3 4 5 1
4 𝑁𝐼𝐿 4 2 1
4 3 𝑁𝐼𝐿 2 1
4 3 4 𝑁𝐼𝐿 1
4 3 4 5 𝑁𝐼𝐿

𝐷 5 =

0 1 −3 2 −4
3 0 −4 1 −1
7 4 0 5 3
2 −1 −5 0 −2
8 5 1 6 0

Π 4 =

𝑁𝐼𝐿 1 4 2 1
4 𝑁𝐼𝐿 4 2 1
4 3 𝑁𝐼𝐿 2 1
4 3 4 𝑁𝐼𝐿 1
4 3 4 5 𝑁𝐼𝐿

𝐷 4 =

0 3 −1 4 −4
3 0 −4 1 −1
7 4 0 5 3
2 −1 −5 0 −2
8 5 1 6 0

APSP: Floyd-Warshall’s Algorithm

FLOYD-WARSHALL (𝑊)

1. 𝑛 ← 𝑊. 𝑟𝑜𝑤𝑠

2. 𝐷 0 ← 𝑊

3. for 𝑘 ← 1 to 𝑛 do

4. let 𝐷 𝑘 = 𝑑𝑖𝑗
𝑘

be a new 𝑛 × 𝑛 matrix

5. for 𝑖 ← 1 to 𝑛 do

6. for 𝑗 ← 1 to 𝑛 do

7. 𝑑𝑖𝑗
𝑘 ← min 𝑑𝑖𝑗

𝑘−1 , 𝑑𝑖𝑘
𝑘−1 + 𝑑𝑘𝑗

𝑘−1

8. return 𝐷 𝑛

Running Time = Θ 𝑛3

Space Complexity = Θ 𝑛3

APSP: Floyd-Warshall’s Algorithm

FLOYD-WARSHALL-QUADRATIC-SPACE (𝑊)

1. 𝑛 ← 𝑊. 𝑟𝑜𝑤𝑠

2. let 𝐷 0 = 𝑑𝑖𝑗
0

and 𝐷 1 = 𝑑𝑖𝑗
1

be new 𝑛 × 𝑛 matrices

3. 𝐷 0 ← 𝑊

4. for 𝑘 ← 1 to 𝑛 do

5. for 𝑖 ← 1 to 𝑛 do

6. for 𝑗 ← 1 to 𝑛 do

7. 𝑑𝑖𝑗
1 ← min 𝑑𝑖𝑗

0 , 𝑑𝑖𝑘
0 + 𝑑𝑘𝑗

0

8. 𝐷 0 ← 𝐷 1

9. return 𝐷 0

Running Time = Θ 𝑛3

Space Complexity = Θ 𝑛2

But 𝐷 𝑘 depends only on 𝐷 𝑘−1 .

APSP: Floyd-Warshall’s Algorithm

FLOYD-WARSHALL-IN-PLACE (𝑊)

1. 𝑛 ← 𝑊. 𝑟𝑜𝑤𝑠

2. for 𝑘 ← 1 to 𝑛 do

3. for 𝑖 ← 1 to 𝑛 do

4. for 𝑗 ← 1 to 𝑛 do

5. 𝑤𝑖𝑗 ← min 𝑤𝑖𝑗, 𝑤𝑖𝑘 + 𝑤𝑘𝑗

6. return 𝑊

Running Time = Θ 𝑛3

Space Complexity = Θ 𝑛2

Can be solved in-place!

