Breadth-First Search (BFS)

Input: Unweighted directed or undirected graph $G = (V, E)$ with vertex set V and edge set E, and a source vertex $s \in G.V$. For each $v \in V$, the adjacency list of v is $G.Adj[v]$.

Output: For all $v \in G[V]$, $v.d$ is set to the shortest distance (in terms of the number of edges) from s to v. Also, $v.\pi$ pointers form a breadth-first tree rooted at s that contains all vertices reachable from s.

```
BFS ( G, s )
1.   for each vertex u ∈ G.V \ {s} do
2.     u.color ← WHITE, u.d ← ∞, u.π ← NIL
3.   s.color ← GRAY, s.d ← 0, s.π ← NIL
4.   Queue Q ← ∅
5.   ENQUEUE( Q, s )
6.   while Q ≠ ∅ do
7.     u ← DEQUEUE( Q )
8.     for each v ∈ G.Adj[u] do
9.       if v.color = WHITE then
10.          v.color ← GRAY, v.d ← u.d + 1, v.π ← u
11.           ENQUEUE( Q, v )
12.     u.color ← BLACK
```
Breadth-First Search (BFS)

ENQUEUE (Q, s)

\[Q \begin{array}{c} s \\ 0 \end{array} \]

\[
\begin{array}{c}
\infty \\
v \\
\infty \\
w \\
\infty \\
x \\
\infty \\
y \\
\infty \\
r \\
0 \\
\infty \\
s \\
\infty \\
t \\
\infty \\
u
\end{array}
\]
Breadth-First Search (BFS)

DEQUEUE \((Q) \rightarrow s\)

ENQUEUE \((Q, w), \, ENQUEUE\, (Q, r)\)

\[
\begin{array}{c}
\text{Q} \\
\begin{array}{cc}
w & r \\
1 & 1 \\
\end{array}
\end{array}
\]
Breadth-First Search (BFS)

\[\text{DEQUEUE (} Q \text{)} \rightarrow w\]

\[\text{ENQUEUE (} Q, t \text{), ENQUEUE (} Q, x \text{)}\]

\[
\begin{array}{cccc}
1 & 2 & \infty \\
\infty & 0 & 2 \\
\infty & \infty & \infty \\
\end{array}
\]

\[Q = \begin{bmatrix}
1 & 2 & 2 \\
\end{bmatrix}\]
Breadth-First Search (BFS)

DEQUEUE \((Q) \rightarrow r\)

ENQUEUE \((Q, x), (Q, v)\)

\[
\begin{array}{c}
\text{r} & \text{s} & \text{t} & \text{u} \\
1 & 0 & 2 & \infty \\
\end{array}
\]

\[
\begin{array}{c}
v & w & x & y \\
2 & 1 & 2 & \infty \\
\end{array}
\]

Queue

\[
\begin{array}{c}
Q \quad t & x & v \\
2 & 2 & 2 \\
\end{array}
\]
Breadth-First Search (BFS)

DEQUEUE \((Q) \rightarrow t \)

ENQUEUE \((Q, u) \)

\[
\begin{align*}
&\text{\textcolor{green}{DEQUEUE}} (Q) \rightarrow t \\
&\text{\textcolor{green}{ENQUEUE}} (Q, u)
\end{align*}
\]
Breadth-First Search (BFS)

DEQUEUE (Q) → x

ENQUEUE (Q, y)

Diagram:

```
  1 ——— 2 ——— 3
  |     |     |
v     w     y
  0 ——— 2
  |     |
s     x
  |     |
  r ——— 2
```

Queue:

```
  Q  |   v  |   u  |   y  |
     2 | 3    | 3    |
```
Breadth-First Search (BFS)

Dequeue (Q) → v

Q \[\begin{matrix} u & y \\ 3 & 3 \end{matrix} \]
Breadth-First Search (BFS)

Deque (Q) → u

Diagram of a connected graph with nodes labeled from 0 to 4, and edges connecting them. The queue `Q` contains `y` and `3`. The node `u` is dequeued from the queue.
Breadth-First Search (BFS)

\[\text{DEQUEUE}(Q) \rightarrow y \]

\[Q \rightarrow \emptyset \]
Breadth-First Search (BFS)

<table>
<thead>
<tr>
<th>BFS (G, s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\text{for each vertex } u \in G.V \setminus {s}) do</td>
</tr>
<tr>
<td>2. (u.color \leftarrow \text{WHITE}, \ u.d \leftarrow \infty, \ u.\pi \leftarrow \text{NIL})</td>
</tr>
<tr>
<td>3. (s.color \leftarrow \text{GRAY}, \ s.d \leftarrow 0, \ s.\pi \leftarrow \text{NIL})</td>
</tr>
<tr>
<td>4. Queue (Q \leftarrow \emptyset)</td>
</tr>
<tr>
<td>5. (\text{ENQUEUE}(Q,s))</td>
</tr>
<tr>
<td>6. (\text{while } Q \neq \emptyset) do</td>
</tr>
<tr>
<td>7. (u \leftarrow \text{DEQUEUE}(Q))</td>
</tr>
<tr>
<td>8. (\text{for each } v \in G.Adj[u]) do</td>
</tr>
<tr>
<td>9. (\text{if } v.color = \text{WHITE}) then</td>
</tr>
<tr>
<td>10. (v.color \leftarrow \text{GRAY}, \ v.d \leftarrow u.d + 1, \ v.\pi \leftarrow u)</td>
</tr>
<tr>
<td>11. (\text{ENQUEUE}(Q,v))</td>
</tr>
<tr>
<td>12. (u.color \leftarrow \text{BLACK})</td>
</tr>
</tbody>
</table>

Let \(n = |G.V| \) and \(m = |G.E| \)

Time spent
- initializing = \(\Theta(n) \)
- enqueueing / dequeuing = \(\Theta(n) \)
- scanning the adjacency lists = \(\Theta(\sum_{v \in G.V}|G.Adj[v]|) \) = \(\Theta(m) \)

\(\therefore \) Total cost = \(\Theta(m + n) \)
Depth-First Search (DFS)

Input: Unweighted directed or undirected graph \(G = (V, E) \) with vertex set \(V \) and edge set \(E \). For each \(v \in V \), the adjacency list of \(v \) is \(G.\text{Adj}[v] \).

Output: For each \(v \in G[V] \), \(v.d \) is set to the time when \(v \) was first discovered and \(v.f \) is set to the time when \(v \)’s adjacency list has been examined completely. Also, \(v.\pi \) pointers form a breadth-first tree rooted at \(s \) that contains all vertices reachable from \(s \).

\[
\text{DFS} \ (G) \\
1. \quad \text{for each vertex } u \in G.V \ \text{do} \\
2. \quad \ \ u.\text{color} \leftarrow \text{WHITE}, \ u.\pi \leftarrow \text{NIL} \\
3. \quad \text{time} \leftarrow 0 \\
4. \quad \text{for each } u \in G.V \ \text{do} \\
5. \quad \quad \text{if } u.\text{color} = \text{WHITE} \ \text{then} \\
6. \quad \quad \quad \text{DFS-Visit}(G, u) \\
\]

\[
\text{DFS-Visit} \ (G, u) \\
1. \quad \ \text{time} \leftarrow \text{time} + 1 \\
2. \quad \ u.d \leftarrow \text{time} \\
3. \quad \ u.\text{color} \leftarrow \text{GRAY} \\
4. \quad \quad \text{for each } v \in G.\text{Adj}[u] \ \text{do} \\
5. \quad \quad \quad \text{if } v.\text{color} = \text{WHITE} \ \text{then} \\
6. \quad \quad \quad \quad \ v.\pi \leftarrow u \\
7. \quad \quad \quad \text{DFS-Visit}(G, v) \\
8. \quad \ u.\text{color} \leftarrow \text{BLACK} \\
9. \quad \ \text{time} \leftarrow \text{time} + 1 \\
10. \quad \ u.f \leftarrow \text{time} \]

13
Depth-First Search (DFS)
Depth-First Search (DFS)

Tree Edge (T): These are edges in the depth-first forest G_π. Edge (u, v) is a tree edge if v was first discovered by exploring that edge. In the example above, we will make all tree edges green and thick.
Depth-First Search (DFS)
Depth-First Search (DFS)
Back Edge (B): A back edge goes from a vertex to its ancestor in a depth-first tree. Self-loops are also considered back edges.
Depth-First Search (DFS)
Depth-First Search (DFS)

\[\begin{align*}
&\text{Depth-First Search (DFS)} \\
&\text{Diagram showing nodes and edges}\end{align*}\]
Depth-First Search (DFS)
Depth-First Search (DFS)

Forward Edge (F): A forward edge is a nontree edge that connects a vertex to a descendant in a depth-first tree.
Depth-First Search (DFS)
Depth-First Search (DFS)
Cross Edge (C): If a non-tree edge is neither a back edge nor a forward edge then it’s a cross edge. Cross edges can go between vertices in the same depth-first tree or in different depth-first trees.
Depth-First Search (DFS)

DFS (G)
1. for each vertex \(u \in G. V \) do
2. \(u.\text{color} \leftarrow \text{WHITE}, \ u.\pi \leftarrow \text{NIL} \)
3. \(\text{time} \leftarrow 0 \)
4. for each \(u \in G. V \) do
5. \(\text{if} \ u.\text{color} = \text{WHITE} \text{ then} \)
6. \(\text{DFS-Visit}(G, u) \)

DFS-Visit (G, u)
1. \(\text{time} \leftarrow \text{time} + 1 \)
2. \(u.d \leftarrow \text{time} \)
3. \(u.\text{color} \leftarrow \text{GRAY} \)
4. for each \(v \in G.\text{Adj}[u] \) do
5. \(\text{if} \ v.\text{color} = \text{WHITE} \text{ then} \)
6. \(v.\pi \leftarrow u \)
7. \(\text{DFS-Visit}(G, v) \)
8. \(u.\text{color} \leftarrow \text{BLACK} \)
9. \(\text{time} \leftarrow \text{time} + 1 \)
10. \(u.f \leftarrow \text{time} \)

Let \(n = |G. V| \) and \(m = |G. E| \)

Time spent
- in **DFS** (exclusive of calls to **DFS-Visit**) = \(\Theta(n) \)
- in **DFS-Visit** scanning the adjacency lists = \(\Theta(\sum_{v \in G.V} |G.\text{Adj}[v]|) \)
 = \(\Theta(m) \)

\[\therefore \text{Total cost} = \Theta(m + n) \]
A **topological sort** of a DAG (i.e., directed acyclic graph) $G = (V, E)$ is a linear ordering of all its vertices such that if G contains an edge (u, v), then u appears before v in the ordering.

We can view a topological sort of a graph as an ordering of its vertices along a horizontal line so that all directed edges go from left to right.
Topological Sort

TOPOLOGICAL-SORT (G)

1. call DFS (G) to compute the finish times \(v.f \) for each vertex \(v \in G.V \)
2. as each vertex is finished, insert it into the front of a linked list
3. return the linked list of vertices

```
socks 17/18
undershorts 11/16
pants 12/15
shirt 13/14
watch 9/10
shoes 13/14
socks 17/18
undershorts 11/16
pants 12/15
shirt 13/14
watch 9/10
```
Strongly Connected Components

A strongly connected component of a directed graph $G = (V, E)$ is a maximal set of vertices $C \subseteq V$ such that for every pair of vertices u and v in C, we have both $u \rightarrow v$ and $v \rightarrow u$; that is, vertices u and v are reachable from each other.
A strongly connected component of a directed graph $G = (V, E)$ is a maximal set of vertices $C \subseteq V$ such that for every pair of vertices u and v in C, we have both $u \sim v$ and $v \sim u$; that is, vertices u and v are reachable from each other.

![Graph Diagram]

The diagram illustrates a directed graph with vertices labeled a, b, c, d, e, f, g, h and edges connecting them to form various strongly connected components.
A *strongly connected component* of a directed graph $G = (V, E)$ is a maximal set of vertices $C \subseteq V$ such that for every pair of vertices u and v in C, we have both $u \rightarrow v$ and $v \rightarrow u$; that is, vertices u and v are reachable from each other.
Strongly Connected Components

STRONGLY-CONNECTED-COMPONENTS *(G)*

1. call *DFS* *(G)* to compute the finish times *v.f* for each vertex *v ∈ G.V*
2. compute *G^T*
3. call *DFS* *(G^T)*, but in the main loop of *DFS*, consider the vertices in order of decreasing *v.f* (as computed in line 1)
4. output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component
Strongly Connected Components

\[
\text{STRONGLY-CONNECTED-COMPONENTS}(G)
\]

1. call \(\text{DFS}(G)\) to compute the finish times \(v.f\) for each vertex \(v \in G.V\)
2. compute \(G^T\)
3. call \(\text{DFS}(G^T)\), but in the main loop of \(\text{DFS}\), consider the vertices in order of decreasing \(v.f\) (as computed in line 1)
4. output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component
Strongly Connected Components

STRONGLY-CONNECTED-COMPONENTS (G)

1. call **DFS (G)** to compute the finish times \(v.f\) for each vertex \(v \in G.V\)
2. compute \(G^T\)
3. call **DFS (G^T)**, but in the main loop of **DFS**, consider the vertices in order of decreasing \(v.f\) (as computed in line 1)
4. output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component
Strongly Connected Components

STRONGLY-CONNECTED-COMPONENTS (G)

1. call DFS (G) to compute the finish times v.f for each vertex v ∈ G.V
2. compute \(G^T \)
3. call DFS (\(G^T \)), but in the main loop of DFS, consider the vertices in order of decreasing v.f (as computed in line 1)
4. output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component

![Diagram of a graph with vertices and edges](image)
Strongly Connected Components

STRONGLY-CONNECTED-COMPONENTS \((G)\)

1. call **DFS** \((G)\) to compute the finish times \(v.f\) for each vertex \(v \in G.V\)
2. compute \(G^T\)
3. call **DFS** \((G^T)\), but in the main loop of **DFS**, consider the vertices in order of decreasing \(v.f\) (as computed in line 1)
4. output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component
Strongly Connected Components

STRONGLY-CONNECTED-COMPONENTS (G)

1. call \textit{DFS} (G) to compute the finish times \(v.f\) for each vertex \(v \in G.V\)
2. compute \(G^T\)
3. call \textit{DFS} (\(G^T\)), but in the main loop of \textit{DFS}, consider the vertices in order of decreasing \(v.f\) (as computed in line 1)
4. output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component
Strongly Connected Components

STRONGLY-CONNECTED-COMPONENTS (*G*)

1. call **DFS** (*G*) to compute the finish times *v.f* for each vertex *v* ∈ *G.V*
2. compute *G^T*
3. call **DFS** (*G^T*), but in the main loop of **DFS**, consider the vertices in order of decreasing *v.f* (as computed in line 1)
4. output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component
The Single-Source Shortest Paths (SSSP) Problem

We are given a weighted, directed graph $G = (V, E)$ with vertex set V and edge set E, and a weight function w such that for each edge $(u, v) \in E$, $w(u, v)$ represents its weight.

We are also given a source vertex $s \in V$.

Our goal is to find a shortest path (i.e., a path of the smallest total edge weight) from s to each vertex $v \in V$.
SSSP: Relaxation

INITIALIZE-SINGLE-SOURCE \((G = (V, E), s) \)

1. for each vertex \(v \in G.V \) do
2. \(v.d \leftarrow \infty \)
3. \(v.\pi \leftarrow NIL \)
4. \(s.d \leftarrow 0 \)

RELAX \((u, v, w) \)

1. if \(u.d + w(u, v) < v.d \) then
2. \(v.d \leftarrow u.d + w(u, v) \)
3. \(v.\pi \leftarrow u \)
SSSP: Properties of Shortest Paths and Relaxation

The **weight** \(w(p) \) of path \(p = \langle v_0, v_1, \ldots, v_k \rangle \) is the sum of the weights of its constituent edges:

\[
 w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)
\]

We define the **shortest-path weight** \(\delta(u, v) \) from \(u \) to \(v \) by

\[
 \delta(u, v) = \begin{cases}
 \min\{w(p) : p \text{ is } u \sim v\}, & \text{if there is a path from } u \text{ to } v, \\
 \infty, & \text{otherwise.}
 \end{cases}
\]

A **shortest path** from vertex \(u \) to vertex \(v \) is then defined as any path \(p \) with weight \(w(p) = \delta(u, v) \).
SSSP: Properties of Shortest Paths and Relaxation

Triangle inequality (Lemma 24.10 of CLRS)
For any edge \((u, v) \in E\), we have \(\delta(s, v) \leq \delta(s, u) + w(u, v)\).

Upper-bound inequality (Lemma 24.11 of CLRS)
We always have \(v.d \geq \delta(s, v)\) for all vertices \(v \in V\), and once \(v.d\) achieves the value \(\delta(u, v)\), it never changes.

No-path property (Corollary 24.12 of CLRS)
If there is no path from \(s\) to \(v\), then we always have \(v.d = \delta(s, v) = \infty\).

Convergence property (Lemma 24.14 of CLRS)
If \(s \sim u \rightarrow v\) is a shortest path in \(G\) for some \(u, v \in V\), and if \(u.d = \delta(s, u)\) at any time prior to relaxing edge \((u, v)\), then \(v.d = \delta(s, v)\) at all times afterward.
Path-relaxation property (Lemma 24.15 of CLRS)
If \(p = \langle v_0, v_1, \ldots, v_k \rangle \) is a shortest path from \(s = v_0 \) to \(v_k \), and we relax the edges of \(p \) in the order \((v_0, v_1), (v_1, v_2), \ldots, (v_{k-1}, v_k)\), then \(v_k \cdot d = \delta(s, v_k) \). This property holds regardless of any other relaxation steps that occur, even if they are intermixed with relaxations on the edges of \(p \).

Predecessor-subgraph property (Lemma 24.17 of CLRS)
Once \(v \cdot d = \delta(s, v) \) for all \(v \in V \), the predecessor subgraph is a shortest-paths tree rooted at \(s \).
Dijkstra’s SSSP Algorithm with a Min-Heap

(SSSP: Single-Source Shortest Paths)

Since we already discussed Dijkstra’s SSSP algorithm when we talked about greedy algorithms, we will skip over it in this lecture.

Input: Weighted graph $G = (V, E)$ with vertex set V and edge set E, a non-negative weight function w, and a source vertex $s \in G[V]$.

Output: For all $v \in G[V]$, $v.d$ is set to the shortest distance from s to v.

```
Dijkstra-SSSP( G = (V, E), w, s )
1. for each vertex v \in G.V do
2.     v.d \leftarrow \infty
3.     v.\pi \leftarrow NIL
4.     s.d \leftarrow 0
5.     Min-Heap Q \leftarrow \emptyset
6.     for each vertex v \in G.V do
7.         INSERT( Q, v )
8.     while Q \neq \emptyset do
9.         u \leftarrow EXTRACT-MIN( Q )
10.        for each (u, v) \in G.E do
11.            if u.d + w(u, v) < v.d then
12.                v.d \leftarrow u.d + w(u, v)
13.                v.\pi \leftarrow u
14.                DECREASE-KEY( Q, v, u.d + w(u, v) )
```

Let $n = |G[V]|$ and $m = |G[E]|$

Worst-case running time:

Using a binary min-heap

$= O((m + n) \log n)$

Using a Fibonacci heap

$= O(m + n \log n)$
Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

Input: Weighted graph $G = (V, E)$ with vertex set V and edge set E, a non-negative weight function w, and a source vertex $s \in G[V]$.

Output: For all $v \in G[V]$, $v.d$ is set to the shortest distance from s to v.

Let $n = |G[V]|$ and $m = |G[E]|$

Worst-case running time:

Using a binary min-heap

$= O((m + n) \log n)$

Using a Fibonacci heap

$= O(m + n \log n)$
The Bellman-Ford (SSSP) Algorithm
(SSSP: Single-Source Shortest Paths)

Input: Weighted graph \(G = (V, E) \) with vertex set \(V \) and edge set \(E \), a weight function \(w \), and a source vertex \(s \in G[V] \). Negative-weight edges are allowed (unlike Dijkstra’s SSSP algorithm).

Output: Returns FALSE if a negative-weight cycle is reachable from \(s \), otherwise returns TRUE and for all \(v \in G[V] \), sets \(v.d \) to the shortest distance from \(s \) to \(v \).

\[
\begin{align*}
\text{INITIALIZE-SINGLE-SOURCE} & (G = (V, E), \ s) \\
1. & \text{ for each vertex } v \in G.V \text{ do} \\
2. & \quad v.d \leftarrow \infty \\
3. & \quad v.\pi \leftarrow \text{NIL} \\
4. & \quad s.d \leftarrow 0 \\
\end{align*}
\]

\[
\begin{align*}
\text{RELAX} & (u, v, w) \\
1. & \text{ if } u.d + w(u,v) < v.d \text{ then} \\
2. & \quad v.d \leftarrow u.d + w(u,v) \\
3. & \quad v.\pi \leftarrow u \\
\end{align*}
\]

\[
\begin{align*}
\text{BELLMAN-FORD} & (G = (V, E), w, \ s) \\
1. & \text{ INITIALIZE-SINGLE-SOURCE}(G, s) \\
2. & \text{ for } i \leftarrow 1 \text{ to } |G.V| - 1 \text{ do} \\
3. & \quad \text{ for each } (u,v) \in G.E \text{ do} \\
4. & \quad \quad \text{ RELAX}(u, v, w) \\
5. & \quad \text{ for each } (u,v) \in G.E \text{ do} \\
6. & \quad \quad \text{ if } u.d + w(u,v) < v.d \text{ then} \\
7. & \quad \quad \quad \text{return FALSE} \\
8. & \quad \quad \text{return TRUE} \\
\end{align*}
\]
The Bellman-Ford (SSSP) Algorithm
(SSSP: Single-Source Shortest Paths)

Initial State (with initial tentative distances)
The Bellman-Ford (SSSP) Algorithm
(SSSP: Single-Source Shortest Paths)

Iteration 1

Graph showing the shortest path from source node s to all other nodes.
The Bellman-Ford (SSSP) Algorithm
(SSSP: Single-Source Shortest Paths)

Iteration 2
The Bellman-Ford (SSSP) Algorithm (SSSP: Single-Source Shortest Paths)

Iteration 3
The Bellman-Ford (SSSP) Algorithm
(SSSP: Single-Source Shortest Paths)

Iteration 4
The Bellman-Ford (SSSP) Algorithm
(SSSP: Single-Source Shortest Paths)

Done!

Diagram:
- Vertices: s, t, x, y, z
- Edges: s→t (6), t→y (8), y→z (7), z→x (9), x→t (5), t→x (−2), s→y (−3), y→s (−4)
- Source vertex: s
- Shortest path lengths:
 - s→t = 14
 - s→y = 15
 - s→z = 20
 - s→x = 17

56
The Bellman-Ford (SSSP) Algorithm
(SSSP: Single-Source Shortest Paths)

\[\text{INITIALIZE-SINGLE-SOURCE} \ (G = (V, E), \ s) \]
1. for each vertex \(v \in G.V \) do
2. \(v.d \leftarrow \infty \)
3. \(v.\pi \leftarrow \text{NIL} \)
4. \(s.d \leftarrow 0 \)

\[\text{RELAX} \ (u, v, w) \]
1. if \(u.d + w(u,v) < v.d \) then
2. \(v.d \leftarrow u.d + w(u,v) \)
3. \(v.\pi \leftarrow u \)

Let \(n = |V| \) and \(m = |E| \)

Time taken by: Line 1: \(\Theta(n) \)
Lines 2 – 4: \(\Theta(mn) \)
Lines 5 – 7: \(\Theta(m) \)

Total time: \(\Theta(mn) \)
Correctness of the Bellman-Ford Algorithm

Lemma 24.2 (CLRS): Let $G = (V, E)$ be a weighted, directed graph with source s and weight function $w: E \rightarrow \mathbb{R}$, and suppose G contains no negative-weight cycles reachable from s. Then, after the $|V| - 1$ iterations of the for loop of lines 2–4 of **Bellman-Ford**, we have $v \cdot d = \delta(s, v)$ for all vertices v that are reachable from s.

Proof: The proof is based on the *path-relaxation property*. Consider any $v \in G.V$ reachable from s, and let $p = \langle v_0, v_1, \ldots, v_k \rangle$, where $v_0 = s$ and $v_k = v$, be any shortest path from s to v. Because shortest paths are simple, p has at most $|V| - 1$ edges, and so $k \leq |V| - 1$. Each of the $|V| - 1$ iterations of the for loop of lines 2–4 relaxes all $|E|$ edges. Among the edges relaxed in the i^{th} iteration, for $i = 1, 2, \ldots, k$, is (v_{i-1}, v_i). By the path-relaxation property, therefore, $v \cdot d = v_k \cdot d = \delta(s, v_k) = \delta(s, v)$.

58
Correctness of the Bellman-Ford Algorithm

Corollary 24.3 (CLRS): Let $G = (V, E)$ be a weighted, directed graph with source s and weight function $w: E \rightarrow \mathbb{R}$, and suppose G contains no negative-weight cycles reachable from s. Then, for each $v \in V$, there is a path from s to v if and only if **Bellman-Ford** terminates with v. $d < \infty$ when it is run on G.
Correctness of the Bellman-Ford Algorithm

THEOREM 24.4 (CLRS): Let BELLMAN-FORD be run on a weighted, directed graph $G = (V, E)$ with source s and weight function $w: E \rightarrow \mathbb{R}$. If G contains no negative-weight cycles reachable from s, then the algorithm returns TRUE, we have $v. d = \delta(s, v)$ for all $v \in V$, and the predecessor subgraph G_π is a shortest-paths tree rooted at s. If G does contain a negative-weight cycle reachable from s, then the algorithm returns FALSE.
Correctness of the Bellman-Ford Algorithm

Proof of Theorem 24.4: Two cases:

G contains no negative-weight cycles reachable from s:

If \(v \in G \cdot V \) is reachable from \(s \) then according to Lemma 24.2 we have \(v \cdot d = \delta(s, v) \) at termination. Otherwise, \(v \cdot d = \delta(s, v) = \infty \) follows from the \textit{no-path property}.

The \textit{predecessor-subgraph property}, along with \(v \cdot d = \delta(s, v) \), implies that \(G_\pi \) is a shortest-paths tree.

Now, since at termination, for all edges \((u, v) \in G \cdot E\), we have, \(v \cdot d = \delta(s, v) \) and \(u \cdot d = \delta(s, u) \), then by \textit{triangle inequality}:

\[
v \cdot d = \delta(s, v) \leq \delta(s, u) + w(u, v) = u \cdot d + w(u, v).
\]

So, none of the tests in line 6 causes \textit{Bellman-Ford} to return FALSE. Therefore, it returns TRUE.
Correctness of the Bellman-Ford Algorithm

Proof of Theorem 24.4 (Continued):

G contains a negative-weight cycle reachable from s:

Let $c = \langle v_0, v_1, \ldots, v_k \rangle$ be the cycle, where $v_0 = v_k$. Then

$$\sum_{i=1}^{k} w(v_{i-1}, v_i) < 0.$$

Assume for the sake of contradiction that *Bellman-Ford* returns *True*. Then $v_i \cdot d \leq v_{i-1} \cdot d + w(v_{i-1}, v_i)$ for $i = 1, 2, \ldots, k$. Thus,

$$\sum_{i=1}^{k} v_i \cdot d \leq \sum_{i=1}^{k} (v_{i-1} \cdot d + w(v_{i-1}, v_i)) = \sum_{i=1}^{k} v_{i-1} \cdot d + \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

But $\sum_{i=1}^{k} v_i \cdot d = \sum_{i=1}^{k} v_{i-1} \cdot d$, and by Corollary 24.3, each $v_i \cdot d$ is finite. Thus, $\sum_{i=1}^{k} w(v_{i-1}, v_i) \geq 0$, which contradicts our initial assumption that $c = \langle v_0, v_1, \ldots, v_k \rangle$ is a negative-weight cycle.
SSSP in Directed Acyclic Graphs (DAGs) (SSSP: Single-Source Shortest Paths)

Input: Weighted DAG $G = (V, E)$ with vertex set V and edge set E, a weight function w, and a source vertex $s \in G[V]$. Negative-weight edges are allowed (unlike Dijkstra’s SSSP algorithm).

Output: For all $v \in G[V]$, sets $v.d$ to the shortest distance from s to v.

INITIALIZE-SINGLE-SOURCE ($G = (V, E), s$)

1. *for* each vertex $v \in G.V$ *do*
2. $v.d \leftarrow \infty$
3. $v.\pi \leftarrow \text{NIL}$
4. $s.d \leftarrow 0$

RELAX (u, v, w)

1. *if* $u.d + w(u,v) < v.d$ *then*
2. $v.d \leftarrow u.d + w(u,v)$
3. $v.\pi \leftarrow u$

DAG-SHORTEST-PATHS ($G = (V, E), w, s$)

1. topologically sort the vertices of G
2. INITIALIZE-SINGLE-SOURCE(G, s)
3. *for* each $v \in V.G$ taken in topologically sorted order *do*
4. *for* each $(u,v) \in G.E$ *do*
5. RELAX(u,v,w)
SSSP in Directed Acyclic Graphs (DAGs) (SSSP: Single-Source Shortest Paths)

Given DAG

```
SSSP in Directed Acyclic Graphs (DAGs)
(SSSP: Single-Source Shortest Paths)

Given DAG

Gráfico de DAG con pesos en las aristas.
```
SSSP in Directed Acyclic Graphs (DAGs)
(SSSP: Single-Source Shortest Paths)

After Topological Sorting (with initial tentative distances)
SSSP in Directed Acyclic Graphs (DAGs)
(SSSP: Single-Source Shortest Paths)

After Iteration 1
SSSP in Directed Acyclic Graphs (DAGs)
(SSSP: Single-Source Shortest Paths)

After Iteration 2

![Graph diagram showing shortest paths after iteration 2.](Image)
SSSP in Directed Acyclic Graphs (DAGs)
(SSSP: Single-Source Shortest Paths)

After Iteration 3
SSSP in Directed Acyclic Graphs (DAGs)
(SSSP: Single-Source Shortest Paths)

After Iteration 4
SSSP in Directed Acyclic Graphs (DAGs) (SSSP: Single-Source Shortest Paths)

After Iteration 5
SSSP in Directed Acyclic Graphs (DAGs) (SSSP: Single-Source Shortest Paths)

Done!
SSSP in Directed Acyclic Graphs (DAGs)
(SSSP: Single-Source Shortest Paths)

INITIALIZE-SINGLE-SOURCE \((G = (V, E), s)\)
1. for each vertex \(v \in G.V\) do
2. \(v.d \leftarrow \infty\)
3. \(v.\pi \leftarrow NIL\)
4. \(s.d \leftarrow 0\)

RELAX \((u, v, w)\)
1. if \(u.d + w(u,v) < v.d\) then
2. \(v.d \leftarrow u.d + w(u,v)\)
3. \(v.\pi \leftarrow u\)

DAG-SHORTEST-PATHS \((G = (V, E), w, s)\)
1. topologically sort the vertices of \(G\)
2. **INITIALIZE-SINGLE-SOURCE** \((G, s)\)
3. for each \(v \in V.G\) taken in topologically sorted order do
4. for each \((u,v) \in G.E\) do
5. **RELAX** \((u,v,w)\)

Let \(n = |V|\) and \(m = |E|\)

Time taken by:

- Line 1: \(\Theta(n + m)\)
- Line 2: \(\Theta(n)\)
- Lines 3 – 5: \(\Theta(m)\)

Total time: \(\Theta(n + m)\)
Correctness of DAG-Shortest-Paths

Theorem 24.5 (CLRS): If a weighted, directed graph $G = (V, E)$ has a source vertex s and no cycles, then at the termination of the DAG-Shortest-Paths procedure, $v.d = \delta(s, v)$ for all vertices $v \in G.V$, and the predecessor subgraph G_π is a shortest-paths tree.

Proof: Consider any $v \in G.V$.

If v is not reachable from s then $v.d = \delta(s, v) = \infty$ follows from the no-path property.

If v is reachable from s, and let $p = \langle v_0, v_1, ..., v_k \rangle$, where $v_0 = s$ and $v_k = v$, be any shortest path from s to v. Since we process the vertices in topological order, we relax the edges on p in the order $(v_0, v_1), (v_1, v_2), ..., (v_{k-1}, v_k)$. The path-relaxation property implies that $v_i.d = \delta(s, v_i)$ at termination for $i = 1, 2, ..., k$.

By the predecessor-subgraph property, G_π is a shortest-paths tree.
Correctness of DAG-Shortest-Paths

Theorem 24.5 (CLRS): If a weighted, directed graph $G = (V, E)$ has a source vertex s and no cycles, then at the termination of the **DAG-Shortest-Paths** procedure, $v. d = \delta(s, v)$ for all vertices $v \in G.V$, and the predecessor subgraph G_π is a shortest-paths tree.

Proof: Consider any $v \in G.V$.

If v is not reachable from s then $v. d = \delta(s, v) = \infty$ follows from the *no-path property*.

If v is reachable from s, and let $p = \langle v_0, v_1, ..., v_k \rangle$, where $v_0 = s$ and $v_k = v$, be any shortest path from s to v. Since we process the vertices in topological order, we relax the edges on p in the order $(v_0, v_1), (v_1, v_2), ..., (v_{k-1}, v_k)$. The *path-relaxation property* implies that $v_i. d = \delta(s, v_i)$ at termination for $i = 1,2, ..., k$.

By the *predecessor-subgraph property*, G_π is a shortest-paths tree.
Correctness of DAG-Shorest-Paths

Theorem 24.5 (CLRS): If a weighted, directed graph $G = (V, E)$ has a source vertex s and no cycles, then at the termination of the **DAG-Shortest-Paths** procedure, $v.d = \delta(s, v)$ for all vertices $v \in G.V$, and the predecessor subgraph G_π is a shortest-paths tree.

Proof: Consider any $v \in G.V$.

If v is not reachable from s then $v.d = \delta(s, v) = \infty$ follows from the **no-path property**.

If v is reachable from s, and let $p = \langle v_0, v_1, \ldots, v_k \rangle$, where $v_0 = s$ and $v_k = v$, be any shortest path from s to v. Since we process the vertices in topological order, we relax the edges on p in the order $(v_0, v_1), (v_1, v_2), \ldots, (v_{k-1}, v_k)$. The **path-relaxation property** implies that $v_i.d = \delta(s, v_i)$ at termination for $i = 1, 2, \ldots, k$.

By the **predecessor-subgraph property**, G_π is a shortest-paths tree.
The All-Pairs Shortest Paths (APSP) Problem

We are given a weighted, directed graph $G = (V, E)$ with vertex set V and edge set E, and a weight function w such that for each edge $(u, v) \in E$, $w(u, v)$ represents its weight.

Our goal is to find, for every pair of vertices $u, v \in G.V$, a shortest path (i.e., a path of the smallest total edge weight) from u to v.
The All-Pairs Shortest Paths (APSP) Problem

One can solve the APSP problem by running an SSSP algorithm $n = |G.V|$ times, once for each vertex as the source.

If all edge weights are nonnegative, one can use Dijkstra’s SSSP algorithm. Using a binary min-heap as the priority queue, one can solve the problem in $O(n(m + n) \log n)$ time, where $m = |G.E|$. Using a Fibonacci heap as the priority queue yields a running time of $O(n^2 \log n + mn)$.

If G has negative-weight edges, then one can use the slower Bellman-Ford SSSP algorithm resulting in a running time of $O(mn^2)$ which is $O(n^4)$ for dense graphs.
The All-Pairs Shortest Paths (APSP) Problem

We assume that the edge-weights are given as an $n \times n$ adjacency matrix $W = (w_{ij})$, where

$$w_{ij} = \begin{cases} 0, & \text{if } i = j, \\ \text{weight of directed edge } (i,j) & \text{if } i \neq j \text{ and } (i,j) \in E, \\ \infty & \text{if } i \neq j \text{ and } (i,j) \notin E. \end{cases}$$

We allow negative-weight edges, but we assume for the time being that G contains no negative-weight cycles.
APSP: Extending SPs by One Edge at a Time

Let $l_{ij}^{(m)}$ be the minimum weight of any path from vertex i to vertex j that contains at most m edges. Then

$$l_{ij}^{(m)} = \begin{cases}
0, & \text{if } m = 0 \text{ and } i = j, \\
\infty, & \text{if } m = 0 \text{ and } i \neq j, \\
\min_{1 \leq k \leq n} \left\{ l_{ik}^{(m-1)} + w_{kj} \right\}, & \text{otherwise (i.e., } m > 0) .
\end{cases}$$

If G has no negative-weight cycles, then for every pair of vertices i and j for which $\delta(i, j) < \infty$, there is a shortest path from i to j that is simple and thus contains at most $n - 1$ edges. A path from vertex i to vertex j with more than $n - 1$ edges cannot have lower weight than a shortest path from i to j. Hence,

$$\delta(i, j) = l_{ij}^{(n-1)} = l_{ij}^{(n)} = l_{ij}^{(n+1)} = \ldots.$$
Let $l^{(m)}_{ij}$ be the minimum weight of any path from vertex i to vertex j that contains at most m edges. Then

$$l^{(m)}_{ij} = \begin{cases}
0, & \text{if } m = 0 \text{ and } i = j, \\
\infty, & \text{if } m = 0 \text{ and } i \neq j, \\
\min_{1 \leq k \leq n} \left\{ l^{(m-1)}_{ik} + w_{kj} \right\}, & \text{otherwise (i.e., } m > 0).
\end{cases}$$

If G has no negative-weight cycles, then for every pair of vertices i and j for which $\delta(i, j) < \infty$, there is a shortest path from i to j that is simple and thus contains at most $n - 1$ edges. A path from vertex i to vertex j with more than $n - 1$ edges cannot have lower weight than a shortest path from i to j. Hence,

$$\delta(i, j) = l^{(n-1)}_{ij} = l^{(n)}_{ij} = l^{(n+1)}_{ij} = \cdots.$$
APSP: Extending SPs by One Edge at a Time

EXTEND-SHORTEST-PATHS (L, W)

1. \(n \leftarrow L.\text{rows} \)
2. let \(L' = (l'_{ij}) \) be a new \(n \times n \) matrix
3. for \(i \leftarrow 1 \) to \(n \) do
4. for \(j \leftarrow 1 \) to \(n \) do
5. \(l'_{ij} \leftarrow \infty \)
6. for \(k \leftarrow 1 \) to \(n \) do
7. \(l'_{ij} \leftarrow \min(l'_{ij}, l'_{ik} + w_{kj}) \)
8. return \(L' \)

SLOW-ALL-PAIRS-SHORTEST-PATHS (W)

1. \(n \leftarrow W.\text{rows} \)
2. \(L^{(1)} \leftarrow W \)
3. for \(m \leftarrow 2 \) to \(n - 1 \) do
4. let \(L^{(m)} \) be a new \(n \times n \) matrix
5. \(L^{(m)} \leftarrow \text{EXTEND-SHORTEST-PATHS}(L^{(m-1)}, W) \)
6. return \(L^{(n-1)} \)
APSP: Extending SPs by One Edge at a Time

\[W = \begin{pmatrix}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & \infty & -5 & 0 & \infty \\
\infty & \infty & \infty & 6 & 0
\end{pmatrix} \quad \quad L^{(1)} = \begin{pmatrix}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & \infty & -5 & 0 & \infty \\
\infty & \infty & \infty & 6 & 0
\end{pmatrix} \]
APSP: Extending SPs by One Edge at a Time

\[L^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \]

\[L^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 2 & -4 \\ 3 & 0 & -4 & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & \infty & 1 & 6 & 0 \end{pmatrix} \]
APSP: Extending SPs by One Edge at a Time

\[
L^{(2)} = \begin{pmatrix}
0 & 3 & 8 & 2 & -4 \\
3 & 0 & -4 & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & -1 & -5 & 0 & -2 \\
8 & \infty & 1 & 6 & 0
\end{pmatrix} \quad L^{(3)} = \begin{pmatrix}
0 & 3 & -3 & 2 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 11 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{pmatrix}
\]
APSP: Extending SPs by One Edge at a Time

\[L^{(3)} = \begin{pmatrix} 0 & 3 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \]

\[L^{(4)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \]
Note the similarity between **EXTEND-SHORTEST-PATHS** and **SQUARE-MATRIX-MULTIPLY**:

EXTEND-SHORTEST-PATHS (L, W)
1. \(n \leftarrow L.\text{rows} \)
2. let \(L' = (l'_{ij}) \) be a new \(n \times n \) matrix
3. for \(i \leftarrow 1 \) to \(n \) do
4. for \(j \leftarrow 1 \) to \(n \) do
5. \(l'_{ij} \leftarrow \infty \)
6. for \(k \leftarrow 1 \) to \(n \) do
7. \(l'_{ij} \leftarrow \min(l'_{ij}, l'_{ik} + w_{kj}) \)
8. return \(L' \)

SQUARE-MATRIX-MULTIPLY (A, B)
1. \(n \leftarrow A.\text{rows} \)
2. let \(C = (c_{ij}) \) be a new \(n \times n \) matrix
3. for \(i \leftarrow 1 \) to \(n \) do
4. for \(j \leftarrow 1 \) to \(n \) do
5. \(c_{ij} \leftarrow 0 \)
6. for \(k \leftarrow 1 \) to \(n \) do
7. \(c_{ij} \leftarrow c_{ij} + a_{ik} \cdot b_{kj} \)
8. return \(C \)

Both have the same \(\Theta(n^3) \) running time.
APSP: Extending SPs by One Edge at a Time

\[\text{Running time} = \Theta(n^3) \]

Extend-Shortest-Paths \((L, W)\)

1. \(n \leftarrow L\).rows
2. let \(L' = (l'_{ij}) \) be a new \(n \times n \) matrix
3. for \(i \leftarrow 1 \) to \(n \) do
4. for \(j \leftarrow 1 \) to \(n \) do
5. \(l'_{ij} \leftarrow \infty \)
6. for \(k \leftarrow 1 \) to \(n \) do
7. \(l'_{ij} \leftarrow \min(l'_{ij}, l'_{ik} + w_{kj}) \)
8. return \(L' \)

Slow-All-Pairs-Shortest-Paths \((W)\)

1. \(n \leftarrow W\).rows
2. \(L^{(1)} \leftarrow W \)
3. for \(m \leftarrow 2 \) to \(n - 1 \) do
4. let \(L^{(m)} \) be a new \(n \times n \) matrix
5. \(L^{(m)} \leftarrow \text{Extend-Shortest-Paths}(L^{(m-1)}, W) \)
6. return \(L^{(n-1)} \)

\[\text{Running time} = n \times \Theta(n^3) = \Theta(n^4) \]
APSP: Extending SPs by Repeated Squaring

Extend-Shortest-Paths \((L, W)\)

1. \(n \leftarrow L\).rows
2. let \(L' = (l'_{ij})\) be a new \(n \times n\) matrix
3. \(\text{for } i \leftarrow 1 \text{ to } n \text{ do}\)
4. \(\text{for } j \leftarrow 1 \text{ to } n \text{ do}\)
5. \(l'_{ij} \leftarrow \infty\)
6. \(\text{for } k \leftarrow 1 \text{ to } n \text{ do}\)
7. \(l'_{ij} \leftarrow \min(l'_{ij}, l'_{ik} + w_{kj})\)
8. return \(L'\)

Faster-All-Pairs-Shortest-Paths \((W)\)

1. \(n \leftarrow W\).rows
2. \(L^{(1)} \leftarrow W\)
3. \(m \leftarrow 1\)
4. \(\text{while } m < n - 1 \text{ do}\)
5. let \(L^{(2m)}\) be a new \(n \times n\) matrix
6. \(L^{(2m)} \leftarrow \text{Extend-Shortest-Paths}(L^{(m)}, L^{(m)})\)
7. \(m \leftarrow 2m\)
8. return \(L^{(m)}\)
APSP: Extending SPs by Repeated Squaring

\textbf{Extend-Shortest-Paths} (L, W)

1. \(n \leftarrow L.\text{rows} \)
2. let \(L' = (l'_ij) \) be a new \(n \times n \) matrix
3. \textbf{for} \(i \leftarrow 1 \) \textbf{to} \(n \) \textbf{do}
4. \textbf{for} \(j \leftarrow 1 \) \textbf{to} \(n \) \textbf{do}
5. \(l'_{ij} \leftarrow \infty \)
6. \textbf{for} \(k \leftarrow 1 \) \textbf{to} \(n \) \textbf{do}
7. \(l'_{ij} \leftarrow \min(l'_{ij}, l'_{ik} + w_{kj}) \)
8. \textbf{return} \(L' \)

\textbf{Running time} \(= \Theta(n^3) \)

\textbf{Faster-All-Pairs-Shortest-Paths} (W)

1. \(n \leftarrow W.\text{rows} \)
2. \(L^{(1)} \leftarrow W \)
3. \(m \leftarrow 1 \)
4. \textbf{while} \(m < n - 1 \) \textbf{do}
5. let \(L^{(2m)} \) be a new \(n \times n \) matrix
6. \(L^{(2m)} \leftarrow \text{Extend-Shortest-Paths}(L^{(m)}, L^{(m)}) \)
7. \(m \leftarrow 2m \)
8. \textbf{return} \(L^{(m)} \)

\textbf{Running time} \(= \lfloor \log_2 (n - 1) \rfloor \times \Theta(n^3) = \Theta(n^3 \log n) \)
Let $d_{ij}^{(k)}$ be the minimum weight of any path from vertex i to vertex j for which all intermediate vertices are in $\{1,2,\ldots,k\}$. Then

$$d_{ij}^{(k)} = \begin{cases} w_{ij}, & \text{if } k = 0, \\ \min\{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\} & \text{if } k \geq 1. \end{cases}$$

Then $D^{(n)} = (d_{ij}^{(n)})$ gives: $d_{ij}^{(n)} = \delta(i,j)$ for all $i,j \in G.V.$
APSP: Floyd-Warshall’s Algorithm

FLOYD-WARSHALL (W)

1. \(n \leftarrow W.\ rows \)
2. \(D^{(0)} \leftarrow W \)
3. \(\text{for } k \leftarrow 1 \text{ to } n \text{ do} \)
4. \(\text{let } D^{(k)} = \left(d_{ij}^{(k)} \right) \text{ be a new } n \times n \text{ matrix} \)
5. \(\text{for } i \leftarrow 1 \text{ to } n \text{ do} \)
6. \(\text{for } j \leftarrow 1 \text{ to } n \text{ do} \)
7. \(d_{ij}^{(k)} \leftarrow \min \left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right) \)
8. \(\text{return } D^{(n)} \)
APSP: Floyd-Warshall with Predecessor Matrix

FLOYD-WARSHALL (W)

1. $n \leftarrow W.rows$
2. $D^{(0)} \leftarrow W$
3. let $\Pi^{(0)} = (\pi_{ij}^{(0)})$ be a new $n \times n$ matrix
4. for $i \leftarrow 1$ to n do
5. for $j \leftarrow 1$ to n do
6. if $i = j$ or $w_{ij} = \infty$ then $\pi_{ij}^{(0)} \leftarrow NIL$
7. else $\pi_{ij}^{(0)} \leftarrow i$
8. for $k \leftarrow 1$ to n do
9. let $D^{(k)} = (d_{ij}^{(k)})$ and $\Pi^{(k)} = (\pi_{ij}^{(k)})$ be new $n \times n$ matrices
10. for $i \leftarrow 1$ to n do
11. for $j \leftarrow 1$ to n do
12. if $d_{ij}^{(k-1)} \leq d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$ then $\pi_{ij}^{(k)} \leftarrow \pi_{ij}^{(k-1)}$
13. else $\pi_{ij}^{(k)} \leftarrow \pi_{kj}^{(k-1)}$
14. $d_{ij}^{(k)} \leftarrow \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right)$
15. return $D^{(n)}$ and $\Pi^{(n)}$
APSP: Floyd-Warshall with Predecessor Matrix

```plaintext
Print-All-Pairs-Shortest-Path ( Π, i, j )

1. if i = j then
2. print i
3. elseif π_{i j} = NIL then
4. print "no path from" i "to" j "exists"
5. else Print-All-Pairs-Shortest-Path ( Π, i, π_{i j} )
6. print j
```
APSP: Floyd-Warshall with Predecessor Matrix

\[D^{(0)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \]

\[\Pi^{(0)} = \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & \text{NIL} & 4 & \text{NIL} & \text{NIL} \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix} \]
APSP: Floyd-Warshall with Predecessor Matrix

\[
D^{(0)} = \begin{pmatrix}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & \infty & -5 & 0 & \infty \\
\infty & \infty & 8 & 6 & 0 \\
\end{pmatrix}
\]

\[
\Pi^{(0)} = \begin{pmatrix}
\text{NIL} & 1 & 1 & \text{NIL} & 1 \\
\text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\
\text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} \\
4 & \text{NIL} & 4 & \text{NIL} & \text{NIL} \\
\text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \\
\end{pmatrix}
\]

\[
D^{(1)} = \begin{pmatrix}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & 5 & -5 & 0 & -2 \\
\infty & \infty & 8 & 6 & 0 \\
\end{pmatrix}
\]

\[
\Pi^{(1)} = \begin{pmatrix}
\text{NIL} & 1 & 1 & \text{NIL} & 1 \\
\text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\
\text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} \\
4 & 1 & 4 & \text{NIL} & 1 \\
\text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \\
\end{pmatrix}
\]
APSP: Floyd-Warshall with Predecessor Matrix

\[D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \]

\[\Pi^{(1)} = \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix} \]

\[D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \]

\[\Pi^{(2)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix} \]
APSP: Floyd-Warshall with Predecessor Matrix

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NIL</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>NIL</td>
<td>NIL</td>
<td>NIL</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>NIL</td>
<td>3</td>
<td>NIL</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>NIL</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>NIL</td>
<td>NIL</td>
<td>NIL</td>
<td>5</td>
<td>NIL</td>
</tr>
</tbody>
</table>

The initial distance matrix is:

$$ D^{(2)} = \begin{pmatrix}
0 & 3 & 8 & 4 & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & 5 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{pmatrix} $$

The predecessor matrix is:

$$ \Pi^{(2)} = \begin{pmatrix}
\infty & \infty & \infty & 6 & 0
\end{pmatrix} $$

The updated distance matrix is:

$$ D^{(3)} = \begin{pmatrix}
0 & 3 & 8 & 4 & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & -1 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{pmatrix} $$

The updated predecessor matrix is:

$$ \Pi^{(3)} = \begin{pmatrix}
\infty & \infty & \infty & 6 & 0
\end{pmatrix} $$
APSP: Floyd-Warshall with Predecessor Matrix

\[D^{(3)} = \begin{pmatrix}
 0 & 3 & 8 & 4 & -4 \\
 \infty & 0 & \infty & 1 & 7 \\
 \infty & 4 & 0 & 5 & 11 \\
 2 & -1 & -5 & 0 & -2 \\
 \infty & \infty & \infty & 6 & 0 \\
\end{pmatrix} \quad \Pi^{(3)} = \begin{pmatrix}
 \text{NIL} & 1 & 1 & 2 & 1 \\
 \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\
 \text{NIL} & 3 & \text{NIL} & 2 & 2 \\
 4 & 3 & 4 & \text{NIL} & 1 \\
 \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \\
\end{pmatrix} \]

\[D^{(4)} = \begin{pmatrix}
 0 & 3 & -1 & 4 & -4 \\
 3 & 0 & -4 & 1 & -1 \\
 7 & 4 & 0 & 5 & 3 \\
 2 & -1 & -5 & 0 & -2 \\
 8 & 5 & 1 & 6 & 0 \\
\end{pmatrix} \quad \Pi^{(4)} = \begin{pmatrix}
 \text{NIL} & 1 & 4 & 2 & 1 \\
 4 & \text{NIL} & 4 & 2 & 1 \\
 4 & 3 & \text{NIL} & 2 & 1 \\
 4 & 3 & 4 & \text{NIL} & 1 \\
 4 & 3 & 4 & 5 & \text{NIL} \\
\end{pmatrix} \]
APSP: Floyd-Warshall with Predecessor Matrix

\[D^{(4)} = \begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \]

\[\Pi^{(4)} = \begin{pmatrix} NIL & 1 & 4 & 2 & 1 \\ 4 & NIL & 4 & 2 & 1 \\ 4 & 3 & NIL & 2 & 1 \\ 4 & 3 & 4 & NIL & 1 \\ 4 & 3 & 4 & 5 & NIL \end{pmatrix} \]

\[D^{(5)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \]

\[\Pi^{(5)} = \begin{pmatrix} NIL & 3 & 4 & 5 & 1 \\ 4 & NIL & 4 & 2 & 1 \\ 4 & 3 & NIL & 2 & 1 \\ 4 & 3 & 4 & NIL & 1 \\ 4 & 3 & 4 & 5 & NIL \end{pmatrix} \]
APSP: Floyd-Warshall’s Algorithm

FLOYD-WARSHALL (W)

1. \(n \leftarrow W\). rows
2. \(D^{(0)} \leftarrow W \)
3. \(\text{for } k \leftarrow 1 \text{ to } n \text{ do} \)
4. \(\text{let } D^{(k)} = (d_{ij}^{(k)}) \text{ be a new } n \times n \text{ matrix} \)
5. \(\text{for } i \leftarrow 1 \text{ to } n \text{ do} \)
6. \(\text{for } j \leftarrow 1 \text{ to } n \text{ do} \)
7. \(d_{ij}^{(k)} \leftarrow \min \left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right) \)
8. \(\text{return } D^{(n)} \)

Running Time = \(\Theta(n^3) \)
Space Complexity = \(\Theta(n^3) \)
APSP: Floyd-Warshall’s Algorithm

But $D^{(k)}$ depends only on $D^{(k-1)}$.

\[FLOYD\text{-}WARSHALL\text{-}QUADRATIC\text{-}SPACE (W) \]

1. $n \leftarrow W.rows$
2. let $D^{(0)} = (d_{ij}^{(0)})$ and $D^{(1)} = (d_{ij}^{(1)})$ be new $n \times n$ matrices
3. $D^{(0)} \leftarrow W$
4. for $k \leftarrow 1$ to n do
5. for $i \leftarrow 1$ to n do
6. for $j \leftarrow 1$ to n do
7. $d_{ij}^{(1)} \leftarrow \min(d_{ij}^{(0)}, d_{ik}^{(0)} + d_{kj}^{(0)})$
8. $D^{(0)} \leftarrow D^{(1)}$
9. return $D^{(0)}$

Running Time = $\Theta(n^3)$
Space Complexity = $\Theta(n^2)$
APSP: Floyd-Warshall’s Algorithm

Can be solved in-place!

```
FLOYD-WARSHALL-IN-PLACE ( W )
1. n ← W. rows
2. for k ← 1 to n do
3.     for i ← 1 to n do
4.         for j ← 1 to n do
5.             w_{ij} ← \min(w_{ij}, w_{ik} + w_{kj})
6.     return W
```

Running Time = $\Theta(n^3)$
Space Complexity = $\Theta(n^2)$