CSE 548: Analysis of Algorithms

Prerequisites Review 7
(More Graph Algorithms: Basic and Beyond)

Rezaul A. Chowdhury

Department of Computer Science
SUNY Stony Brook
Fall 2019

Breadth-First Search (BFS)

Input: Unweighted directed or undirected graph G = (V, E) with vertex set
I/ and edge set E, and a source vertex s € G.V. Foreach v € V, the
adjacency list of v is G. Adj[v].

Output: For all v € G[V], v.d is set to the shortest distance (in terms of the
number of edges) from s to v. Also, v. pointers form a breadth-first tree
rooted at s that contains all vertices reachable from s.

BFS (G, s)
1. for each vertex u € G.V \ {s} do
u.color « WHITE, u.d < oo, u.m < NIL

s.color < GRaY, s.d «< 0, s.m <« NIL
Queue Q « 0
ENQUEUE(Q, s)
while Q # @ do

u « DEQUEUE(Q)

for each v € G.Adj[u] do

W P N oUW

if v.color = WHITE then

—
o

v.color < GRAY, v.d «u.d+1, v.m < u

— —
N -_—
. .

ENQUEUE(Q, v)

Uu. color < BLACK

Breadth-First Search (BFS)

ENQUEUE (O, s)

r S t u

© © ©) ()

Breadth-First Search (BFS)

DEQUEUE(Q) — S
ENQUEUE (O,w), ENQUEUE (O, 1)

Breadth-First Search (BFS)

DEQUEUE(Q) - W
ENQUEUE (O, t), ENQUEUE (O, x)

S t u

2) ()

DN

Breadth-First Search (BFS)

DEQUEUE(Q) > 1

ENQUEUE (O, x), ENQUEUE (O, V)

r S t u

2) ()

DN

Breadth-First Search (BFS)

DEQUEUE(Q) — &
ENQUEUE (O, u)

r S t

2

v w X
Q |x|v|u

Breadth-First Search (BFS)

DEQUEUE (Q) — X
ENQUEUE (Q, V)

r S t
v w X
Qv uly

Breadth-First Search (BFS)

DEQUEUE(Q) - v

Breadth-First Search (BFS)

DEQUEUE (Q) - u

r S t

10

Breadth-First Search (BFS)

DEQUEUVE(Q) > y

S t

11

Breadth-First Search (BFS)

BFS (G, s) letn = |G.V|and m = |G. E]|
1. for each vertex u € G.V \ {s} do

2. u.color < WHITE, u.d < o, u.m < NIL]

3. s.color < GRAY, s.d « 0, s.m « NIL Time Spent

4 Queue Q@ - initializing = ©(n)

5. ENQUEUE(Q,s) - enqueuing / dequeuing

6. while Q # @ do — @(Tl)

" o DR Q) ~ scanning the adjacency lists
8. for each v € G.Adj[u] do

9. if v.color = WHITE then — G(ZUEG VlG Ad] |)

10. v.color « GRAY, v.d «u.d+1, v.m<u = @(m)

1. ENQUEUE(Q, v)

12. u. color < BLACK o TOtal cost = @(m + n)

Depth-First Search (DFS)

Input: Unweighted directed or undirected graph G = (V, E) with vertex set
V and edge set E. For each v € V, the adjacency list of v is G. Adj[v].

Output: For each v € G[V], v.d is set to the time when v was first
discovered and v. f is set to the time when v’s adjacency list has been
examined completely. Also, v. T pointers form a breadth-first tree rooted at
s that contains all vertices reachable from s.

DFS-VisIT (G, u)
1. time « time + 1
DFS (G
(G) 2. u.d « time
1. for each vertex u € G.V do
3. u. color « GRAY
2. u.color « WHITE, u.m « NIL 4. for each v € G. Adj[u] do
3. time < 0 5. if v.color = WHITE then
4, for eachu € G.V do
6. VT U
5. if u.color = WHITE then 7. DFS-VISIT(G, v)
6. DFS-VisiT(G, u) 8. u. color « BLACK
9. time « time + 1
10. u. f « time

Depth-First Search (DFS)

L

Depth-First Search (DFS)

+
u v w
1/ 2/

X y Z

Tree Edge (T): These are edges in the depth-first forest G,;. Edge
(u, v) is a tree edge if v was first discovered by exploring that edge.
In the example above, we will make all tree edges green and thick.

Depth-First Search (DFS)

1/

16

Depth-First Search (DFS)

1/ D

17

Depth-First Search (DFS)

D
+

Back Edge (B): A back edge goes from a vertex to its ancestor in a
depth-first tree. Self-loops are also considered back edges.

18

Depth-First Search (DFS)

19

Depth-First Search (DFS)

20

Depth-First Search (DFS)

Depth-First Search (DFS)

Forward Edge (F): A forward edge is a nontree edge that connects
a vertex to a descendant in a depth-first tree.

Depth-First Search (DFS)

Depth-First Search (DFS)

Depth-First Search (DFS)

Cross Edge (C): If a non-tree edge is neither a back edge nor a
forward edge then it’s a cross edge. Cross edges can go between
vertices in the same depth-first tree or in different depth-first trees.

Depth-First Search (DFS)

26

Depth-First Search (DFS)

27

Depth-First Search (DFS)

Depth-First Search (DFS)

Depth-First Search (DFS)

DFS (G)
1. for each vertex u € G.V do
2. u. color « WHITE, u.m < NIL Letn — |GV| andm — |GE|
3. time < 0
4, for eachu € G.V do .
5. if u.color = WHITE then Tlme Spent
6. DFS-VISIT(G, w) — in DFS (exclusive of calls to DFS-
VisiT) = O(n)
DFS'V'S'TfG’ " — in DFS-VIsIT scanning the adjacency
1. time « time + 1
2. u.d « time ||StS — G)(ZUEG VlG Ad] |)
3. u. color « GRAY = @ (m)
4, for each v € G.Adj[u] do
5. if v.color = WHITE then . Total cost = @(m + Tl)
6. V. < U
7. DFS-VISIT(G,v)
8. u.color « BLACK
9. time « time + 1
10. u. f « time

Topological Sort

A topological sort of a DAG (i.e., directed acyclic graph) G = (V,E) is a
linear ordering of all its vertices such that if G contains an edge (u, v), then
u appears before v in the ordering.

We can view a topological sort of a graph as an ordering of its vertices along
a horizontal line so that all directed edges go from left to right.

] - /(undershorts \
A Directed Acyclic
Graph (DAG)
A topological sort
of the DAG nodes \ /

4)
(undershorts pan shoes) (watch) (shirt belt tie jacket

\§ J

Topological Sort

TOPOLOGICAL-SORT (G)

1. call DFS (G) to compute the finish times v. f for each vertex v € G.V
2. as each vertex is finished, insert it into the front of a linked list
3. return the linked list of vertices

11/16
/(undershorts 17/18 \

13/14

(undershorts)—)(pants shoes) (watch) (shirt
/10 /8

/18 /16 /15 /14

Strongly Connected Components

A strongly connected component of a directed graph G = (V,E) is a
maximal set of vertices C € I/ such that for every pair of vertices u and v in

C, we have bothu ~» v and v ~ u; that is, vertices u and v are reachable
from each other.

Strongly Connected Components

A strongly connected component of a directed graph G = (V,E) is a
maximal set of vertices C € I/ such that for every pair of vertices u and v in

C, we have bothu ~» v and v ~ u; that is, vertices u and v are reachable
from each other.

OO

Strongly Connected Components

A strongly connected component of a directed graph G = (V,E) is a
maximal set of vertices C € V such that for every pair of vertices u and v in

C, we have bothu ~» v and v ~ u; that is, vertices u and v are reachable
from each other.

OO T

Strongly Connected Components

STRONGLY-CONNECTED-COMPONENTS (G)

1. call DFS (G) to compute the finish times v. f for each vertex v € G.V
2. compute G7
3. call DFS (GT), but in the main loop of DFS, consider the vertices in order

of decreasing v. f (as computed in line 1)
4, output the vertices of each tree in the depth-first forest formed in line 3 as

a separate strongly connected component

Strongly Connected Components

STRONGLY-CONNECTED-COMPONENTS (G)

1. call DFS (G) to compute the finish times v. f for each vertex v € G.V
2. compute G7
3. call DFS (GT), but in the main loop of DFS, consider the vertices in order

of decreasing v. f (as computed in line 1)
4, output the vertices of each tree in the depth-first forest formed in line 3 as

a separate strongly connected component

a b C d

/

Strongly Connected Components

STRONGLY-CONNECTED-COMPONENTS (G)

1. call DFS (G) to compute the finish times v. f for each vertex v € G.V
2. compute G7
3. call DFS (GT), but in the main loop of DFS, consider the vertices in order

of decreasing v. f (as computed in line 1)
4, output the vertices of each tree in the depth-first forest formed in line 3 as

a separate strongly connected component

38

Strongly Connected Components

STRONGLY-CONNECTED-COMPONENTS (G)

1. call DFS (G) to compute the finish times v. f for each vertex v € G.V
2. compute G7
3. call DFS (GT), but in the main loop of DFS, consider the vertices in order

of decreasing v. f (as computed in line 1)
4, output the vertices of each tree in the depth-first forest formed in line 3 as

a separate strongly connected component

b C d

Qg

Strongly Connected Components

STRONGLY-CONNECTED-COMPONENTS (G)

1. call DFS (G) to compute the finish times v. f for each vertex v € G.V
2. compute G7
3. call DFS (GT), but in the main loop of DFS, consider the vertices in order

of decreasing v. f (as computed in line 1)
4, output the vertices of each tree in the depth-first forest formed in line 3 as

a separate strongly connected component

a b C d

40

Strongly Connected Components

STRONGLY-CONNECTED-COMPONENTS (G)

1. call DFS (G) to compute the finish times v. f for each vertex v € G.V
2. compute G7
3. call DFS (GT), but in the main loop of DFS, consider the vertices in order

of decreasing v. f (as computed in line 1)
4, output the vertices of each tree in the depth-first forest formed in line 3 as

a separate strongly connected component

a b C d

Strongly Connected Components

STRONGLY-CONNECTED-COMPONENTS (G)

1. call DFS (G) to compute the finish times v. f for each vertex v € G.V
2. compute G7
3. call DFS (GT), but in the main loop of DFS, consider the vertices in order

of decreasing v. f (as computed in line 1)
4, output the vertices of each tree in the depth-first forest formed in line 3 as

a separate strongly connected component

fo O

The Single-Source Shortest Paths (SSSP) Problem

We are given a weighted, directed graph G = (V, E) with vertex
set VV and edge set E, and a weight function w such that for each
edge (u,v) € E, w(u, v) represents its weight.

We are also given a source vertex s € V.

Our goal is to find a shortest path (i.e., a path of the smallest total
edge weight) from s to each vertex v € V.

SSSP: Relxation

INITIALIZE-SINGLE-SOURCE (G = (V,E), s)

—
.

for each vertex v € G.V do
2 v.d « ©

3. v.mw < NIL

4 s.d <0

RELAX (u, v, w)

1. if u.d+ w(u,v) <v.d then
2. v.d «u.d+w(uv)

3. V. < U

SSSP: Properties of Shortest Paths and Relxation

The weight w(p) of path p = (v, V4, ..., Uy) is the sum of the
weights of its constituent edges:

k
w(p) =) wviy,v)
=1

We define the shortest-path weight §(u, v) from u to v by

5(u,v) = min{w(p):p is u ~ v}, if there is a path from u to v,
T 0, otherwise.

A shortest path from vertex u to vertex v is then defined as any
path p with weight w(p) = §(u, v).

SSSP: Properties of Shortest Paths and Relxation

Triangle inequality (Lemma 24.10 of CLRS)
For any edge (u,v) € E, we have 6(s,v) < 6(s,u) + w(u, v).

Upper-bound inequality (Lemma 24.11 of CLRS)
We always have v.d = 6 (s, v) for all vertices v € V/, and once
v.d achieves the value 6 (u, v), it never changes.

No-path property (Corollary 24.12 of CLRS)

If there is no path from s to v, then we always have
v.d = 6(s,v) = oo,

Convergence property (Lemma 24.14 of CLRS)
If s > u — visashortest path in G forsome u,v € V, and if
u.d = §(s,u) at any time prior to relaxing edge (u, v), then
v.d = 6(s,v) at all times afterward.

SSSP: Properties of Shortest Paths and Relxation

Path-relaxation property (Lemma 24.15 of CLRS)
If p = (vg, Vq, ..., Vi) is a shortest path from s = v, to vy,
and we relax the edges of p in the order (v, v4), (v4, V5),
o, (Vi—1, V1), then vy.d = §(s,vy). This property holds
regardless of any other relaxation steps that occur, even if
they are intermixed with relaxations on the edges of p.

Predecessor-subgraph property (Lemma 24.17 of CLRS)
Once v.d = 6(s,v) for all v € V, the predecessor subgraph
is a shortest-paths tree rooted at s.

Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

Since we already discussed Dijkstra’s SSSP algorithm when we
talked about greedy algorithms, we will skip over it in this lecture.

Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

Input: Weighted graph G = (V, E) with vertex set V and edge set E, a
non-negative weight function w, and a source vertex s € G[V].

Output: For all v € G[V], v.d is set to the shortest distance from s to v.

Dijkstra-SSSP (G = (V,E), w, s)

1. for each vertexv € G.V do Letn = |G[V]| andm = |G[E]|
2 v.d e o

3 v.m < NIL

4 sdeo Worst-case running time:

5. Min-Heap Q < @ . . .

6 for each vertexv € G.V do USInga blnarymln_heap
7 INSERT(Q, v) = O((m + n) log TL)
8 while Q # @ do o c .

o e BTN) Using a Fibonacci heap
10. for each (w,v) € G.E do = O(m +n log Tl)
11. ifu.d + w(u,v) <v.d then

12. v.d < u.d+w(u,v)

13. V.U

14. DECREASE-KEY(Q, v, u.d +w(u,v))

Dijkstra’s SSSP Algorithm with a Min-Heap

(_ SSSP: Single-Source Shortest Paths)

Input: Weighted graph G = (V, E) with vertex set V and edge set E, a
non-negative weight function w, and a source vertex s € G[V].

Output: For all v € G[V], v.d is set to the shortest distance from s to v.

Dijkstra-SSSP(G = (V,E), w, s)

—

for each vertexv € G.V do

2. v.d « o

3. v.m < NIL

4, s.d <0

5. Min-Heap Q < @

6. for each vertexv € G.V do

7. INSERT(Q, v)

8. while @ # @ do

9. U «— EXTRACT-MIN(Q)

10. for each (u,v) € G.E do

11. if u.d + w(u,v) <v.d then
12. v.d «u.d+w(u,v)
13. V.U

14, DecreasE-KEY(Q, v, u.d + w(u,v))

Letn = |G[V]| and m = |G|E]|

Worst-case running time:
Using a binary min-heap
= O((m+n)logn)
Using a Fibonacci heap
= O(m + nlogn)

The Bellman-Ford (SSSP) Algorithm

(SSSP: Single-Source Shortest Paths)

Input: Weighted graph G = (V, E) with vertex set V and edge set E, a
weight function w, and a source vertex s € G[V]. Negative-weight edges

are allowed (unlike Dijkstra’s SSSP algorithm).

Output: Returns FALSE if a negative-weight cycle is reachable from s,
otherwise returns TRUE and for all v € G[V], sets v.d to the shortest

distance from s to v.

INITIALIZE-SINGLE-SOURCE (G = (V,E), s)

1 for each vertex v € G.V do
2 v.d « ©

3. v.m < NIL

4 s.d <0

RELAX (u, v, w)

1. ifu.d+ w(u,v) <v.d then
2. v.d «u.d+w(uv)

3. V. < U

BELLMAN-FORD (G = (V,E), w, s)

1 INITIALIZE-SINGLE-SOURCE(G, S)

2 fori<1to|G.V|—1do

3 for each (u,v) € G.E do

4 RELAX(u,v,w)

5. for each (u,v) € G.E do

6 ifu.d+ w(u,v) <v.d then
7 return FALSE

8

return TRUE

The Bellman-Ford (SSSP) Algorithm
(SSSP: Single-Source Shortest Paths)

Initial State (with initial tentative distances)

The Bellman-Ford (SSSP) Algorithm
(SSSP: Single-Source Shortest Paths)

Iteration 1

The Bellman-Ford (SSSP) Algorithm

(SSSP: Single-Source Shortest Paths)

Iteration 2

53

The Bellman-Ford (SSSP) Algorithm

(SSSP: Single-Source Shortest Paths)

Iteration 3

54

The Bellman-Ford (SSSP) Algorithm

(SSSP: Single-Source Shortest Paths)

Iteration 4

55

The Bellman-Ford (SSSP) Algorithm

(SSSP: Single-Source Shortest Paths)

Done!

56

The Bellman-Ford (SSSP) Algorithm
(SSSP: Single-Source Shortest Paths)

INITIALIZE-SINGLE-SOURCE (G = (V,E), s)
1 for each vertex v € G.V do BELLMAN-FORD (G = (V,E), w, s)
2 v.d « oo 1. INITIALIZE-SINGLE-SOURCE(G, s)
3. v.m « NIL 2. fori<1to|G.V|—1do
4 s.d <0 3. for each (u,v) € G.E do
4, RELAX(u,v,w)
5. for each (u,v) € G.E do
RELAX (u, v, w) 6. ifu.d+ w(u,v) <v.d then
1. ifu.d+ w(u,v) <v.d then 7. return FALSE
2. v.d «u.d+w(uv) 8. return TRUE
3. V.U

Letn = |V]|and m = |E]|

Time taken by: Line 1: ©(n)
Lines 2 — 4: O(mn)
Lines 5 — 7: O(m)

Total time: ®(mn)

Correciness of the Bellman-Ford Algorithm

LEMMA 24.2 (CLRS): Let G = (V, E) be a weighted, directed graph
with source s and weight function w: E = R, and suppose G

contains no negative-weight cycles reachable from s. Then, after
the |V| — 1 iterations of the for loop of lines 2- 4 of BELLMAN-FORD,
we have v.d = 6 (s, v) for all vertices v that are reachable from s.

PROOF: The proof is based on the path-relaxation property.

Consider any v € G.V reachable from s, and let p = (vy, V4, ..., Vi),
where vy = s and v, = v, be any shortest path from s to v.
Because shortest paths are simple, p has at most || — 1 edges, and
so k < |V| — 1. Each of the |V| — 1 iterations of the for loop of lines
2- 4 relaxes all |E| edges. Among the edges relaxed in the it"
iteration, fori = 1,2, ..., k, is (v;_1, v;). By the path-relaxation
property, therefore, v.d = v,.d = §(s,v,) = 6(s,v).

Correciness of the Bellman-Ford Algorithm

COROLLARY 24.3 (CLRS): Let G = (V, E) be a weighted, directed
graph with source s and weight function w: E — R, and suppose G

contains no negative-weight cycles reachable from s. Then, for each
v € V, there is a path from s to v if and only if BELLMAN-FORD
terminates with v.d < co whenitisrunonG.

Correciness of the Bellman-Ford Algorithm

THEOREM 24.4 (CLRS): Let BELLMAN-FORD be run on a weighted,
directed graph G = (V, E) with source s and weight function

w: E = R. If G contains no negative-weight cycles reachable from s,
then the algorithm returns TRUE, we have v.d = 6(s,v) forall v €
V, and the predecessor subgraph G,; is a shortest-paths tree rooted
at s. If G does contain a negative-weight cycle reachable from s,
then the algorithm returns FALSE.

Correciness of the Bellman-Ford Algorithm

PROOF OF THEOREM 24.4: Two cases:
G contains no negative-weight cycles reachable from s:

If v € G.V is reachable from s then according to Lemma 24.2 we
have v.d = §(s, v) at termination. Otherwise, v.d = 6(s,v) =
follows from the no-path property.

The predecessor-subgraph property, along with v.d = §(s, v),
implies that G is a shortest-paths tree.

Now, since at termination, for all edges (u,v) € G.E, we have,

v.d = 6(s,v) andu.d = 6(s,u), then by triangle inequality:
v.d =6(s,v) <6(s,u) +w(u,v) =u.d+w(uv).

So, none of the tests in line 6 causes BELLMAN-FORD to return FALSE.

Therefore, it returns TRUE.

Correciness of the Bellman-Ford Algorithm

PROOF OF THEOREM 24.4 (CONTINUED):
G contains a negative-weight cycle reachable from s:

Let ¢ = (vy, V4, ..., Vg) be the cycle, where vy = v;,. Then
K
i=1 W(vi—ll vl) < 0.

Assume for the sake of contradiction that BELLMAN-FORD returns TRUE.
Thenv;.d < v;_y.d +w(v;_{,v;) fori = 1,2, ..., k. Thus,

.M"‘“
Mw

Il
[y

Ui.d <

(vl 1: d+W(vl 1, U l)) Evl 1 d+2w(vl 1, U l)

But Y . v;.d = Y% , v;_;.d, and by Corollary 24.3, each v;.d is finite.

Il
p—

L

Thus, Y, w(v;_1, ;) = 0, which contradicts our initial assumption

that ¢ = (vy, v4, ..., Vy) is a negative-weight cycle.

SSSP in Directed Acyclic Graphs (DAGs)
(SSSP: Single-Source Shortest Paths)

Input: Weighted DAG G = (V, E) with vertex set I/ and edge set E, a
weight function w, and a source vertex s € G[V]. Negative-weight edges
are allowed (unlike Dijkstra’s SSSP algorithm).

Output: For all v € G[V], sets v. d to the shortest distance from s to v.

INITIALIZE-SINGLE-SOURCE (G = (V,E), s) RELAX (u, v, w)

1 for each vertex v € G.V do 1. ifu.d+ w(u,v) <v.d then
2 v.d « © 2. v.d «u.d+w(u,v)

3. v.m < NIL 3. VT < U

4 s.d<0

DAG-SHORTEST-PATHS (G = (V,E), w, s)

topologically sort the vertices of G

INITIALIZE-SINGLE-SOURCE(G, S)

1
2
3. for each v € V.G taken in topologically sorted order do
4 for each (u,v) € G.E do

5

RELAX(u,v,w)

SSSP in Directed Acyclic Graphs (DAGs)
(SSSP: Single-Source Shortest Paths)

Given DAG

SSSP in Directed Acyclic Graphs (DAGs)
(SSSP: Single-Source Shortest Paths)

After Topological Sorting (with initial tentative distances)

. 5 S 2 ; 7 . —1) —2)@
oo

00 0 00 00 o0

SSSP in Directed Acyclic Graphs (DAGs)
(SSSP: Single-Source Shortest Paths)

After Iteration 1

SSSP in Directed Acyclic Graphs (DAGs)
(SSSP: Single-Source Shortest Paths)

After Iteration 2

SSSP in Directed Acyclic Graphs (DAGs)
(SSSP: Single-Source Shortest Paths)

After Iteration 3

68

SSSP in Directed Acyclic Graphs (DAGs)
(SSSP: Single-Source Shortest Paths)

After Iteration 4

69

SSSP in Directed Acyclic Graphs (DAGs)
(SSSP: Single-Source Shortest Paths)

After Iteration 5

SSSP in Directed Acyclic Graphs (DAGs)
(SSSP: Single-Source Shortest Paths)

Done!

SSSP in Directed Acyclic Graphs (DAGs)
(SSSP: Single-Source Shortest Paths)

INITIALIZE-SINGLE-SOURCE (G = (V,E), s) RELAX (u, v, w)

1 for each vertex v € G.V do 1. ifu.d + w(u,v) < v.d then
2 v.d « © 2. v.d «u.d+w(u,v)

3. v.m < NIL 3. V. — U

4 s.d <0

DAG-SHORTEST-PATHS (G = (V,E), w, s)

topologically sort the vertices of G

INITIALIZE-SINGLE-SOURCE(G, s)

for each (u,v) € G.E do

Let n = |V]| and
m = |E|

1.
2
3. for each v € V. G taken in topologically sorted order do
4
5

RELAX(u,v,w)

Time taken by: Line 1: ®(n + m)
Line 2: ©(n)
Lines 3 — 5: O(m)

Total time: ®©(n + m)

Correctness of DAG-SHORTEST-PATHS

THEOREM 24.5 (CLRS): If a weighted, directed graph G = (V, E) has a
source vertex s and no cycles, then at the termination of the DAG-
SHORTEST-PATHS procedure, v.d = §(s, v) for all verticesv € G.V,
and the predecessor subgraph G, is a shortest-paths tree.

PROOF: Considerany v € G.V.

If v is not reachable from s then v.d = §(s, v) = oo follows from
the no-path property.

If v is reachable from s, and let p = (vy, V4, ..., Vi), Where vy = s
and v, = v, be any shortest path from s to v. Since we process the
vertices in topological order, we relax the edges on p in the order
(vo, V1), (V1,15), ..., (Vi _1, Vx). The path-relaxation property
implies that v;.d = §(s, v;) at termination fori = 1,2, ..., k.

By the predecessor-subgraph property, i, is a shortest-paths tree.

Correctness of DAG-SHORTEST-PATHS

THEOREM 24.5 (CLRS): If a weighted, directed graph G = (V, E) has a
source vertex s and no cycles, then at the termination of the DAG-
SHORTEST-PATHS procedure, v.d = §(s, v) for all verticesv € G.V,
and the predecessor subgraph G, is a shortest-paths tree.

PROOF: Considerany v € G.V.

If v is not reachable from s then v.d = §(s, v) = oo follows from
the no-path property.

If v is reachable from s, and let p = (vy, V4, ..., Vi), Where vy = s
and v, = v, be any shortest path from s to v. Since we process the
vertices in topological order, we relax the edges on p in the order
(vo, V1), (V1,15), ..., (Vi _1, Vx). The path-relaxation property
implies that v;.d = §(s, v;) at termination fori = 1,2, ..., k.

By the predecessor-subgraph property, i, is a shortest-paths tree.

Correctness of DAG-SHORTEST-PATHS

THEOREM 24.5 (CLRS): If a weighted, directed graph G = (V, E) has a
source vertex s and no cycles, then at the termination of the DAG-
SHORTEST-PATHS procedure, v.d = §(s, v) for all verticesv € G.V,
and the predecessor subgraph G, is a shortest-paths tree.

PROOF: Considerany v € G.V.

If v is not reachable from s then v.d = §(s, v) = oo follows from
the no-path property.

If v is reachable from s, and let p = (vy, V4, ..., Vi), Where vy = s
and v, = v, be any shortest path from s to v. Since we process the
vertices in topological order, we relax the edges on p in the order
(vo, V1), (V1,15), ..., (Vi _1, Vx). The path-relaxation property
implies that v;.d = §(s, v;) at termination fori = 1,2, ..., k.

By the predecessor-subgraph property, i, is a shortest-paths tree.

The All-Pairs Shortest Paths (APSP) Problem

We are given a weighted, directed graph G = (V, E) with vertex
set V and edge set E, and a weight function w such that for each
edge (u,v) € E, w(u, v) represents its weight.

Our goal is to find, for every pair of vertices u,v € .V, a shortest
path (i.e., a path of the smallest total edge weight) from u to v.

The All-Pairs Shortest Paths (APSP) Problem

One can solve the APSP problem by running an SSSP algorithm n =
|G. V| times, once for each vertex as the source.

If all edge weights are nonnegative, one can use Dijkstra’s SSSP
algorithm. Using a binary min-heap as the priority queue, one can
solve the problem in O(n(m + n) logn) time, where m = |G. E|.
Using a Fibonacci heap as the priority queue yields a running time

of 0(n?logn + mn).

If G has negative-weight edges, then one can use the slower
Bellman-Ford SSSP algorithm resulting in a running time of

O(mnz) which is 0(n4) for dense graphs.

The All-Pairs Shortest Paths (APSP) Problem

We assume that the edge-weights are given as an n X n adjacency

matrix W = (Wij), where

w;; = {weight of directed edge (i,j) if i # jand (i,j) €E,
\ o0 ifi #jand (i,j) ¢ E.

We allow negative-weight edges, but we assume for the time
being that ¢ contains no negative-weight cycles.

APSP: Exiending SPs by One Edge at a Time

Let ll-(;-n) be the minimum weight of any path from vertex i to

vertex j that contains at most m edges. Then

(0, ifm=0andi=j,
[_ 0 if m=0andi +# j,
l] _
Urr}(in {ll(;(n U4 ij}, otherwise (i.e.,m > 0).
<Ks<n

If G has no negative-weight cycles, then for every pair of vertices i
and j for which §(i,j) < oo, there is a shortest path from i to j
that is simple and thus contains at most n — 1 edges. A path from
vertex [to vertex j with more than n — 1 edges cannot have lower

weight than a shortest path from i to j. Hence,

5@,) =10 =1 = = ...

APSP: Exiending SPs by One Edge at a Time

Let ll-(]’-n) be the minimum weight of any path from vertex i to

vertex j that contains at most m edges. Then

(0, ifm=0andi=j,
[_ 0 ifm=0andi +# j,
l] _
Urr}{in {ll(;(n U4 ij}, otherwise (i.e.,m > 0).
<K<n

If G has no negative-weight cycles, then for every pair of vertices i
and j for which §(i,j) < oo, there is a shortest path from i to j
that is simple and thus contains at most n — 1 edges. A path from
vertex [to vertex j with more than n — 1 edges cannot have lower

weight than a shortest path from i to j. Hence,

5@,) =170 =1 =1 = ..

APSP: Exiending SPs by One Edge at a Time

EXTEND-SHORTEST-PATHS (L, W)

1. n < L.rows

2. let L' = (l{j) be a new n x n matrix
3. fori«1tondo

4. forj«1tondo

6. for k <1 tondo

7. lij < min(l{j, iy + ij)
8. return L'

SLOW-ALL-PAIRS-SHORTEST-PATHS (W)

1. n <« W.rows
LD« w
forme«2ton—1do
let L™ be a new n x n matrix

L™ « EXTEND-SHORTEST-PATHS(L™=, W)

A

return L1

APSP: Exiending SPs by One Edge at a Time

8 — § © ©

APSP: Exiending SPs by One Edge at a Time

0 3 8 2 —4
00 0O —4 1 7
LD =] 4 0 5 11
2 -1 -5 0 =2
00 00 1 6 0

APSP: Exiending SPs by One Edge at a Time

0 3 8 2 —4 0 3 -3 2 —4
3 0 -4 1 7 3 0 -4 1 -1
D=l 4 0 5 11 =7 4 0 5 11
2 -1 =5 0 =2 2 -1 -5 0 =2
8 o 1 6 0 8 5 1 6 0

APSP: Exiending SPs by One Edge at a Time

0 3 -3 2 —4 0 1 -3 2 —4
3 0 -4 1 -1 3 0 -4 1 -1
=7 4 0 5 11 W=7 4 0 5 3
2 -1 -5 0 =2 2 -1 -5 0 =2
8 5 1 6 0 8 5 1 6 0

APSP: Exiending SPs by One Edge at a Time

Note the similarity between EXTEND-SHORTEST-PATHS and SQUARE-
MATRIX-MULTIPLY:

1.

g

[NS) B N

>

EXTEND-SHORTEST-PATHS (L, W)

n < L.rows

let L' = (l{j) be a new n x n matrix
fori«1tondo
forj < 1tondo
ljj < oo
for k <1 tondo
lij < min(l{j, Lix + ij)

return L'

SQUARE-MATRIX-MULTIPLY (A, B)

1. n < A.rows
let € = (c;;) be a new n x n matrix
fori«1tondo
forj«1tondo
cij < 0
fork < 1tondo

Cij < Cij + Qg - by

® NS U r W

return C

Both have the same @(n3) running time.

86

APSP: Exiending SPs by One Edge at a Time

EXTEND-SHORTEST-PATHS (L, W)

1. n < L.rows

2. let L' = (l{j) be a new n x n matrix
3. fori«1tondo

4. forj«1tondo

6. for k <1 tondo

7. lij < min(l{j, iy + ij)
8. return L'

Running time
= 0(n3)

SLOW-ALL-PAIRS-SHORTEST-PATHS (W)

1. n <« W.rows
LD« w
forme«2ton—1do
let L™ be a new n x n matrix

L™ « EXTEND-SHORTEST-PATHS(L™=, W)

A A i

return L1

Running time
=n X 0(n>)
= 0(n?)

APSP: Extending SPs by Repeated Squaring

EXTEND-SHORTEST-PATHS (L, W)
1. n < L.rows
2. let L' = (l{j) be a new n X n matrix
3. fori«1tondo
4. forj«1tondo
5. lij « oo
6. for k <1 tondo
7. lij < min(l{j, Lix + ij)
8. return L'

FASTER-ALL-PAIRS-SHORTEST-PATHS (W)

—
.

n < W.rows
LD «w
me 1
whilem <n—1do
let L™ be a new n X n matrix
L™ EXTEND-SHORTEST-PATHS(L™, L(m))

me< 2m

® N o Uk wWw N

return LM

APSP: Extending SPs by Repeated Squaring

EXTEND-SHORTEST-PATHS (L, W)

1. n <« L.rows

g

let L' = (l{j) be a new n x n matrix

3. fori«< 1tondo

4. forj«1tondo

5. lij « oo

6. for k <1 tondo

7. lij < min(l{j, Lix + ij)
8. return L'

Running time
= 0(n3)

FASTER-ALL-PAIRS-SHORTEST-PATHS (W)

n < W.rows
LD «w
me 1
whilem <n—1do
let L™ be a new n X n matrix
L™ EXTEND-SHORTEST-PATHS(L™, L(m))

me< 2m

@ N o kW

return LM

Running time
= [log,(n — 1)]
X 0(n3)
= 0(n3logn)

APSP: Floyd-Warshall's Algorithm

Let dg-() be the minimum weight of any path from vertex i to

vertex j for which all intermediate vertices are in {1,2, ..., k}. Then

(Wi, if k=0,

min{d;’ ", die P +dii Yy if k> 1.
\

Then D™ = (dl(?)) gives: dg-l) =6(i,j) foralli,j € G.V.

dg.‘) — |

p1: all intermediate p1: all intermediate
vertices in{1,2, ...,k — 1} vertices in{1,2, ...,k — 1}
N N
4 N7 N
P1 b2
- /
Y

p: all intermediate vertices in {1,2, ..., k}

APSP: Floyd-Warshall's Algorithm

FLOYD-WARSHALL (W)
1. n < W.rows
2. DO «w
3. fork < 1 tondo
4. let D) = (dl(j‘)) be a new n x n matrix
5. fori« 1tondo
6. forj < 1tondo
7. d « min (a7, dff ™ + i)
8. return D™

APSP: Floyd-Warshall with Predecessor Matrix

FLOYD-WARSHALL (W)

1. n < W.rows

2. DO «w

3. let 1© = (nfjo)) be a new n x n matrix

4, fori«1tondo

5. for j < 1 tondo

6. if i = j or wy = oo then ly’ « NIL

7. else ng.’) i

8. fork <1 tondo

9. let D® = (df]k)) and N® = (nf]")) be new n X n matrices
10. fori<1tondo

11. forj < 1tondo

12. if A0 <dff D +d T then nlY « n{f Y
13. else ni(]’-c) « n,(c’]c-_l)

14, d « min (af ™, ™ +alY)

15. return D™ and I

APSP: Floyd-Warshall with Predecessor Matrix

PRINT-ALL-PAIRS-SHORTEST-PATH (11, i, j)
if i =j then
print i
elseif m;; = NIL then
print “no path from” i “to” j “exists”

else PRINT-ALL-PAIRS-SHORTEST-PATH (11, i, m;;)

o U AN WN =

print j

APSP: Floyd-Warshall with Predecessor Matrix

NIL

oo —4

1 7 NIL
© o n® =| NJL
0 00
6 0

A
I
§ ™8 8o

NIL

1 1
NIL NIL

NIL
2

1
2

3 NIL NIL NIL

NIL 4
NIL NIL

NIL
5

NIL
NIL

APSP:

Floyd-Warshall with Predecessor Matrix

0
00
DO = | o
2
00
0
00
D = | o
2
o)

8 8§ O W

S 1 O w

8 o8 w

8 o8 w

NSO § ~ 8

NSO 8§ ~ 8

—4 NIL
7 NIL
00 n® = | NJL
o0 4
0 NIL

—4 NIL
7 NIL
00 nw =| NIL

—2 4
0 NIL

NIL

NIL
NIL

NIL

&N

NIL

NIL
NIL

NIL

NIL
NIL

NIL

NIL

NIL
NIL

NIL

NIL
NIL

NIL
NIL
NIL

NIL

NIL

APSP:

Floyd-Warshall with Predecessor Matrix

0
o)
DWW =] o
2
00
0
00
D@ =| o
2
00

S 1 O W

S 1 o w

8 o8 w

S 8§ @

NSO § ~ 8

N O Ul - b

—4 NIL
7 NIL
00 nw =1 NIL

—2 4
0 NIL

—4 NIL

7 NIL

11 n@ =1 NIL

—2 4
0 NIL

NIL

NIL

NIL

ON)

NIL

NIL
NIL

NIL

NIL
NIL

NIL

NIL

NIL
NIL

NIL
1
NIL

NN =

NIL

APSP: Floyd-Warshall with Predecessor Matrix

0O 3 8
o 0 ['e)
D@ =0 14 0
2 5 =5
O 00 ©o
0 3 3
0 0 0
DB =] 0 4 0
2 —1 -5
O 00 0

N O Ul - b

O O Ul - b

n® =

nGd =

NIL
NIL
NIL

NIL

NIL
NIL
NIL

NIL

NIL

&N

NIL

NIL

w W

NIL

NIL
NIL

NIL

NIL
NIL

NIL

APSP: Floyd-Warshall with Predecessor Matrix

DB =

D@ —

NN WO

OO Ul = B

O © Ul = B»

—4

11

e =

4 =

NIL
NIL
NIL

NIL

NIL

IO NN NN

NIL

w W

NIL

UJUJUJEF—*
=~

NIL
NIL

NIL

i

NIL

APSP: Floyd-Warshall with Predecessor Matrix

)

™ v v

NIL

1
0
4

0
3
7
2
38

D)

APSP: Floyd-Warshall's Algorithm

FLOYD-WARSHALL (W)

1. n < W.rows

2. D@ «w

3. fork <1 tondo

4. let D = (dl(]k)) be a new n x n matrix

5. fori«1tondo

6. forj < 1tondo

7. di(J’-() < min (dg-‘_l), dgj_l) + d,({’;_l))
8. return D™

Running Time = ©(n3)
Space Complexity = 0(n3)

APSP: Floyd-Warshall's Algorithm

But D) depends only on D*~1).

FLOYD-WARSHALL-QUADRATIC-SPACE (W)

1. n < W.rows
2. let D = (dl(]O)) and DW = (dl(]l)) be new n x n matrices
3. D@ «w
4, fork <1 tondo
5. fori«1tondo
6. forj < 1tondo
(1) : © 40 , ;(0)
7. dl-j < min (dij , dyy +dkj)
8. D@ « p®
9. return D©

Running Time = ©(n3)
Space Complexity = 0(n?)

APSP: Floyd-Warshall's Algorithm

Can be solved in-place!

FLOYD-WARSHALL-IN-PLACE (W)

1. n < W.rows

2 fork < 1 tondo

3 fori« 1tondo

4, for j < 1 ton do

5 wij & min(wij, Wik + ij)
6 return W

Running Time = ©(n3)
Space Complexity = 0(n?)

