
1

CSE 548: Analysis of Algorithms

Prerequisites Review 6

(Greedy Algorithms)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Fall 2019

An Activity-Selection Problem

Suppose:

− You are given a set 𝑆 = 𝑎1, 𝑎2, … , 𝑎𝑛 of 𝑛 proposed

activities that wish to use a resource, such as a lecture hall,

which can serve only one activity at a time.

− Each activity 𝑎𝑖 has a start time 𝑠𝑖 and finish time 𝑓𝑖, where

0 ≤ 𝑠𝑖 < 𝑓𝑖 < ∞. If selected, activity 𝑎𝑖 takes place during

the half-open time interval 𝑠𝑖 , 𝑓𝑖 .

− Activities 𝑎𝑖 and 𝑎𝑗 are compatible if the intervals 𝑠𝑖 , 𝑓𝑖

and 𝑠𝑗 , 𝑓𝑗 do not overlap. That is, 𝑎𝑖 and 𝑎𝑗 are compatible

if 𝑠𝑖 ≥ 𝑓𝑗 or 𝑠𝑗 ≥ 𝑓𝑖.

Goal: Select a maximum-size subset of mutually compatible activities.

2

Assume that the activities are sorted in monotonically increasing

order of finish time: 𝑓1 ≤ 𝑓2 ≤ 𝑓3 ≤ ⋯ ≤ 𝑓𝑛−1 ≤ 𝑓𝑛.

An Activity-Selection Problem
An example set 𝑺 of activities

3

𝒊 1 2 3 4 5 6 7 8 9 10 11

𝒔𝒊 1 3 0 5 3 5 6 8 8 2 12

𝒇𝒊 4 5 6 7 9 9 10 11 12 14 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

𝑎1

𝑎2

𝑎3

𝑎4

𝑎5

𝑎6

𝑎7

𝑎8

𝑎9

𝑎10

𝑎11

An Activity-Selection Problem
An example set 𝑺 of activities

4

𝒊 1 2 3 4 5 6 7 8 9 10 11

𝒔𝒊 1 3 0 5 3 5 6 8 8 2 12

𝒇𝒊 4 5 6 7 9 9 10 11 12 14 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

𝑎1

𝑎2

𝑎3

𝑎4

𝑎5

𝑎6

𝑎7

𝑎8

𝑎9

𝑎10

𝑎11

A mutually compatible
set of activities

An Activity-Selection Problem
An example set 𝑺 of activities

5

𝒊 1 2 3 4 5 6 7 8 9 10 11

𝒔𝒊 1 3 0 5 3 5 6 8 8 2 12

𝒇𝒊 4 5 6 7 9 9 10 11 12 14 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

𝑎1

𝑎2

𝑎3

𝑎4

𝑎5

𝑎6

𝑎7

𝑎8

𝑎9

𝑎10

𝑎11

A largest mutually
compatible set of activities

An Activity-Selection Problem
An example set 𝑺 of activities

6

𝒊 1 2 3 4 5 6 7 8 9 10 11

𝒔𝒊 1 3 0 5 3 5 6 8 8 2 12

𝒇𝒊 4 5 6 7 9 9 10 11 12 14 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

𝑎1

𝑎2

𝑎3

𝑎4

𝑎5

𝑎6

𝑎7

𝑎8

𝑎9

𝑎10

𝑎11

Another largest mutually
compatible set of activities

Activity-Selection: Optimal Substructure

Let 𝑆𝑖𝑗 = set of activities that start after 𝑎𝑖 finishes and finishes

before 𝑎𝑗 starts

𝐴𝑖𝑗 = a maximum set of mutually compatible activities in 𝑆𝑖𝑗,

which includes some activity 𝑎𝑘

Now by including 𝑎𝑘 in an optimal solution we are left with the

following two subproblems:

− finding mutually compatible activities in 𝑆𝑖𝑘

− finding mutually compatible activities in 𝑆𝑘𝑗

Let 𝐴𝑖𝑘 = 𝐴𝑖𝑗 ∩ 𝑆𝑖𝑘 and 𝐴𝑘𝑗 = 𝐴𝑖𝑗 ∩ 𝑆𝑘𝑗.

Then 𝐴𝑖𝑗 = 𝐴𝑖𝑘 ∪ 𝑎𝑘 ∪ 𝐴𝑘𝑗 and 𝐴𝑖𝑗 = 𝐴𝑖𝑘 + 𝐴𝑘𝑗 + 1.

The cut-and-paste argument shows that the optimal solution 𝐴𝑖𝑗

must also include optimal solutions to subproblems for 𝑆𝑖𝑘 and 𝑆𝑘𝑗 .
7

Activity-Selection: Recurrence Relation

We have, 𝐴𝑖𝑗 = 𝐴𝑖𝑘 ∪ 𝑎𝑘 ∪ 𝐴𝑘𝑗 and 𝐴𝑖𝑗 = 𝐴𝑖𝑘 + 𝐴𝑘𝑗 + 1.

Let 𝑐 𝑖, 𝑗 = size of an optimal solution for the set 𝑆𝑖𝑗.

Then

𝑐 𝑖, 𝑗 = ቐ
0, 𝑖𝑓 𝑆𝑖𝑗 = ∅,

max
𝑎𝑘∈𝑆𝑖𝑗

𝑐 𝑖, 𝑘 + 𝑐 𝑘, 𝑗 + 1 , 𝑖𝑓𝑆𝑖𝑗 ≠ ∅.

Hence, we can use either recursion with memorization or bottom-up

dynamic programming to solve the problem in Θ 𝑛3 time.

Can we do better?

8

Activity-Selection: Improvement (Greedy Choice)

𝑐 𝑖, 𝑗 = ቐ
0, 𝑖𝑓 𝑆𝑖𝑗 = ∅,

max
𝑎𝑘∈𝑆𝑖𝑗

𝑐 𝑖, 𝑘 + 𝑐 𝑘, 𝑗 + 1 , 𝑖𝑓𝑆𝑖𝑗 ≠ ∅.

Instead of iterating over all 𝑎𝑘 ∈ 𝑆𝑖𝑗 and checking solutions to

subproblems for 𝑆𝑖𝑘 and 𝑆𝑘𝑗 to find the optimal 𝑎𝑘, can we find the

optimal 𝑎𝑘 without even solving the subproblems?

Observe that among the activities we choose for our solution, one

must be the first one to finish. Intuitively, therefore, we should

choose the activity in the input with the earliest finish time, since

that would leave the resource available for as many of the activities

that follow it as possible.

9

Activity-Selection: Improvement (Greedy Choice)

Let’s consider choosing the activity in the input with the earliest

finish time.

Since the activities set in the input 𝑆 = 𝑎1, 𝑎2, … , 𝑎𝑛 sorted in

monotonically increasing order of finish time, i.e., 𝑓1 ≤ 𝑓2 ≤ 𝑓3 ≤

⋯ ≤ 𝑓𝑛−1 ≤ 𝑓𝑛, we should choose 𝑎1 to be in our solution.

Let 𝑆𝑘 = 𝑎𝑖 ∈ 𝑆|𝑠𝑖 ≥ 𝑓𝑘 , i.e., the set of activities that start after

activity 𝑎𝑘 finishes.

If we make the greedy choice of activity 𝑎1, then 𝑆1 remains as the

only subproblem to solve.

Optimal substructure tells us that if 𝑎1 is in the optimal solution,

then an optimal solution to the original problem consists of activity

𝑎1 and all the activities in an optimal solution to the subproblem 𝑆1.

But is the intuition correct?
10

Activity-Selection: Improvement (Greedy Choice)

THEOREM: Consider any nonempty subproblem 𝑆𝑘, and let 𝑎𝑚 be an

activity in 𝑆𝑘 with the earliest finish time. Then 𝑎𝑚 is included in

some maximum-size subset of mutually compatible activities of 𝑆𝑘.

PROOF: Let 𝐴𝑘 = a maximum-size subset of mutually compatible

activities in 𝑆𝑘.

Let 𝑎𝑗 be the activity in 𝐴𝑘 with the earliest finish time.

If 𝑎𝑗 = 𝑎𝑚, we are done, since we have shown that 𝑎𝑚 is in some

maximum-size subset of mutually compatible activities of 𝑆𝑘.

If 𝑎𝑗 ≠ 𝑎𝑚, let 𝐴𝑘
′ = 𝐴𝑘 − 𝑎𝑗 ∪ 𝑎𝑚 .

The activities in 𝐴𝑘
′ are disjoint because the activities in 𝐴𝑘 are

disjoint, 𝑎𝑗 is the first activity in 𝐴𝑘 to finish, and 𝑓𝑚 ≤ 𝑓𝑗.

Since 𝐴𝑘
′ = 𝐴𝑘 , we conclude that 𝐴𝑘

′ is a maximum-size subset of

mutually compatible activities of 𝑆𝑘, and it includes 𝑎𝑚.
11

Activity-Selection: Recursive Algorithm

RECURSIVE-ACTIVITY-SELECTOR (𝑠, 𝑓, 𝑘, 𝑛)

1. 𝑚 𝑘 + 1

3. 𝑚𝑚+ 1

2. while 𝑚 ≤ 𝑛 and 𝑠 𝑚 < 𝑓 𝑘

4. if 𝑚 ≤ 𝑛 then

5. return 𝑎𝑚 ∪ RECURSIVE-ACTIVITY-SELECTOR (𝑠, 𝑓, 𝑚, 𝑛)

6. else return ∅

12

Greedy Activity Selection
An example set 𝑺 of activities

13

𝒊 1 2 3 4 5 6 7 8 9 10 11

𝒔𝒊 1 3 0 5 3 5 6 8 8 2 12

𝒇𝒊 4 5 6 7 9 9 10 11 12 14 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

𝑎1

𝑎2

𝑎3

𝑎4

𝑎5

𝑎6

𝑎7

𝑎8

𝑎9

𝑎10

𝑎11

Greedy Activity Selection
An example set 𝑺 of activities

14

𝒊 1 2 3 4 5 6 7 8 9 10 11

𝒔𝒊 1 3 0 5 3 5 6 8 8 2 12

𝒇𝒊 4 5 6 7 9 9 10 11 12 14 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

𝑎1

𝑎2

𝑎3

𝑎4

𝑎5

𝑎6

𝑎7

𝑎8

𝑎9

𝑎10

𝑎11

Greedy Activity Selection
An example set 𝑺 of activities

15

𝒊 1 2 3 4 5 6 7 8 9 10 11

𝒔𝒊 1 3 0 5 3 5 6 8 8 2 12

𝒇𝒊 4 5 6 7 9 9 10 11 12 14 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

𝑎1

𝑎2

𝑎3

𝑎4

𝑎5

𝑎6

𝑎7

𝑎8

𝑎9

𝑎10

𝑎11

Greedy Activity Selection
An example set 𝑺 of activities

16

𝒊 1 2 3 4 5 6 7 8 9 10 11

𝒔𝒊 1 3 0 5 3 5 6 8 8 2 12

𝒇𝒊 4 5 6 7 9 9 10 11 12 14 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

𝑎1

𝑎2

𝑎3

𝑎4

𝑎5

𝑎6

𝑎7

𝑎8

𝑎9

𝑎10

𝑎11

Greedy Activity Selection
An example set 𝑺 of activities

17

𝒊 1 2 3 4 5 6 7 8 9 10 11

𝒔𝒊 1 3 0 5 3 5 6 8 8 2 12

𝒇𝒊 4 5 6 7 9 9 10 11 12 14 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

𝑎1

𝑎2

𝑎3

𝑎4

𝑎5

𝑎6

𝑎7

𝑎8

𝑎9

𝑎10

𝑎11

Greedy Activity Selection
An example set 𝑺 of activities

18

𝒊 1 2 3 4 5 6 7 8 9 10 11

𝒔𝒊 1 3 0 5 3 5 6 8 8 2 12

𝒇𝒊 4 5 6 7 9 9 10 11 12 14 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

𝑎1

𝑎2

𝑎3

𝑎4

𝑎5

𝑎6

𝑎7

𝑎8

𝑎9

𝑎10

𝑎11

Greedy Activity Selection
An example set 𝑺 of activities

19

𝒊 1 2 3 4 5 6 7 8 9 10 11

𝒔𝒊 1 3 0 5 3 5 6 8 8 2 12

𝒇𝒊 4 5 6 7 9 9 10 11 12 14 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

𝑎1

𝑎2

𝑎3

𝑎4

𝑎5

𝑎6

𝑎7

𝑎8

𝑎9

𝑎10

𝑎11

Greedy Activity Selection
An example set 𝑺 of activities

20

𝒊 1 2 3 4 5 6 7 8 9 10 11

𝒔𝒊 1 3 0 5 3 5 6 8 8 2 12

𝒇𝒊 4 5 6 7 9 9 10 11 12 14 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

𝑎1

𝑎2

𝑎3

𝑎4

𝑎5

𝑎6

𝑎7

𝑎8

𝑎9

𝑎10

𝑎11

Activity-Selection: Iterative Algorithm

GREEDY-ACTIVITY-SELECTOR (𝑠, 𝑓)

1. 𝑛 𝑠. 𝑙𝑒𝑛𝑔𝑡ℎ

3. 𝑘 1

2. 𝐴 𝑎1

4. for 𝑚 2 to 𝑛 do

5. if 𝑠 𝑚 ≥ 𝑓 𝑘 then

8. return 𝐴

7. 𝑘𝑚

6. 𝐴 𝐴 ∪ 𝑎𝑚

Running time = Θ 𝑛

21

The Minimum Spanning Tree (MST) Problem

We are given a weighted connected undirected graph 𝐺 = 𝑉, 𝐸

with vertex set 𝑉 and edge set 𝐸, and a weight function 𝑤 such

that for each edge 𝑢, 𝑣 ∈ 𝐸, 𝑤 𝑢, 𝑣 represents its weight.

Our goal is to find an acyclic subset 𝑇 ⊆ 𝐸 that connects all

vertices of 𝑉 and whose total weight 𝑤 𝑇 = σ 𝑢,𝑣 ∈𝑇𝑤 𝑢, 𝑣 is

minimized.

Since 𝑇 is acyclic and connects all of the vertices, it must form a

tree, which we call a spanning tree since it “spans” the graph 𝐺.

We call the problem of determining the tree 𝑇 the minimum-

spanning-tree problem.

22

The Minimum Spanning Tree (MST) Problem

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

A weighted undirected graph

23

The Minimum Spanning Tree (MST) Problem

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

A weighted undirected graph

Its MST (in red) of total weight 𝟑𝟕

24

MST: Greedy Strategy for Growing an MST

We are given a weighted connected undirected graph 𝐺 = 𝑉, 𝐸

with vertex set 𝑉 and edge set 𝐸, and a weight function 𝑤 such

that for each edge 𝑢, 𝑣 ∈ 𝐸, 𝑤 𝑢, 𝑣 represents its weight.

Suppose set 𝐴 ⊂ 𝐸 is a subset of some MST of 𝐺.

Now if edge 𝑢, 𝑣 ∈ 𝐸 but edge 𝑢, 𝑣 ∉ 𝐴, we call 𝑢, 𝑣 a safe

edge provided 𝐴 ∪ 𝑢, 𝑣 is also a subset of an MST of 𝐺.

25

MST: Greedy Strategy for Growing an MST

Generic-MST (𝐺 = 𝑉, 𝐸 , 𝑤)

1. 𝐴 ← ∅

2. while 𝐴 does not form a spanning tree of 𝐺 do

3. find an edge 𝑢, 𝑣 ∈ 𝐸 that is safe for 𝐴

4. 𝐴 ← 𝐴 ∪ 𝑢, 𝑣

5. return 𝐴

26

MST: Finding Safe Edges

A cut 𝑆, 𝑉 ∖ 𝑆 of an undirected graph 𝐺 = 𝑉, 𝐸 is a partition of 𝑉.

We say that an edge 𝑢, 𝑣 ∈ 𝐸 crosses the cut 𝑆, 𝑉 ∖ 𝑆 if one of its

endpoints is in 𝑆 and the other is in 𝑉 ∖ 𝑆.

We say that a cut respects a set 𝐴 of edges if no edge in 𝐴 crosses the

cut.

An edge is a light edge crossing a cut if its weight is the minimum of

any edge crossing the cut.

Note that there can be more than one light edge crossing a cut in the

case of ties.

More generally, we say that an edge is a light edge satisfying a given

property if its weight is the minimum of any edge satisfying the

property. 27

MST: Finding Safe Edges

28

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4 𝑆

𝑉 − 𝑆

𝑆

𝑉 − 𝑆

Green vertices belong to set 𝑆, i.e., 𝑆 = 𝑎, 𝑏, 𝑑, 𝑒 .

White vertices belong to set 𝑉 − 𝑆, i.e., 𝑉 − 𝑆 = 𝑐, 𝑓, 𝑔, ℎ, 𝑖 .

The red line represent the cut 𝑆, 𝑉 − 𝑆 .

Dotted edges are the cut edges, i.e., they cross the red line.

Blue thick edges form set 𝐴, i.e.,

𝐴 = 𝑎, 𝑏 , 𝑐, 𝑓 , 𝑐, 𝑖 , 𝑓, 𝑔 , 𝑔, ℎ .

MST: Finding Safe Edges

THEOREM: Let 𝐺 = 𝑉, 𝐸 be a connected, undirected graph with a

real-valued weight function 𝑤 defined on 𝐸. Let 𝐴 be a subset of 𝐸

that is included in some minimum spanning tree for 𝐺, and let

𝑆, 𝑉 ∖ 𝑆 be any cut of 𝐺 that respects 𝐴, and let 𝑢, 𝑣 be a light

edge crossing 𝑆, 𝑉 ∖ 𝑆 . Then, edge 𝑢, 𝑣 is safe for 𝐴.

COROLLARY: Let 𝐺 = 𝑉, 𝐸 be a connected, undirected graph with a

real-valued weight function 𝑤 defined on 𝐸. Let 𝐴 be a subset of 𝐸

that is included in some minimum spanning tree for 𝐺, and let 𝐶 =

𝑉𝐶 , 𝐸𝐶 be a connected component (tree) in the forest 𝐺𝐴 = 𝑉, 𝐴

If 𝑢, 𝑣 is a light edge crossing 𝐶 to some other component of 𝐺𝐴,

then edge 𝑢, 𝑣 is safe for 𝐴.

29

A Disjoint-Set Data Structure
(for Kruskal’s MST Algorithm)

MAKE-SET(𝒙): create a new set 𝑥 containing only element 𝑥.

Element 𝑥 becomes the representative of the set.

FIND(𝒙): returns a pointer to the representative of the set

containing 𝑥

UNION(𝒙, 𝒚): replace the dynamic sets 𝑆𝑥 and 𝑆𝑦 containing

𝑥 and 𝑦, respectively, with the set 𝑆𝑥 ∪ 𝑆𝑦

A disjoint-set data structure maintains a collection of disjoint

dynamic sets. Each set is identified by a representative which must

be a member of the set.

The collection is maintained under the following operations:

30

MAKE-SET (𝑥)

1. 𝜋 𝑥 ← 𝑥

2. 𝑟𝑎𝑛𝑘 𝑥 ← 0

UNION (𝑥, 𝑦)

1. LINK (FIND (𝑥), FIND (𝑦))

LINK (𝑥, 𝑦)

1. if 𝑟𝑎𝑛𝑘 𝑥 > 𝑟𝑎𝑛𝑘 𝑦 then 𝜋 𝑦 ← 𝑥

2. else 𝜋 𝑥 ← 𝑦

3. if 𝑟𝑎𝑛𝑘 𝑥 = 𝑟𝑎𝑛𝑘 𝑦 then 𝑟𝑎𝑛𝑘 𝑦 ← 𝑟𝑎𝑛𝑘 𝑦 + 1

FIND (𝑥)

1. if 𝑥 ≠ 𝜋 𝑥 then 𝜋 𝑥 ← FIND (𝜋 𝑥)

2. return 𝜋 𝑥

A Disjoint-Set Data Structure
(for Kruskal’s MST Algorithm)

31

A Disjoint-Set Data Structure
(for Kruskal’s MST Algorithm)

THEOREM: A sequence of 𝑁 MAKE-SET, UNION and FIND operations of

which exactly 𝑛 ≤ 𝑁 are MAKE-SET operations takes  𝑁𝛼 𝑛

times to execute, where 𝛼 𝑛 is the extremely slowly growing

Inverse Ackermann Function which has a value no larger than 3 for

all practical values of 𝑛.

PROOF: We will prove this later in the semester.

32

MST: Kruskal’s Algorithm

MST-Kruskal (𝐺 = 𝑉, 𝐸 , 𝑤)

1. 𝐴 ← ∅

2. for each vertex 𝑣 ∈ 𝐺. 𝑉 do

3. MAKE-SET(𝑣)

4. sort the edges of 𝐺. 𝐸 into nondecreasing order by weight 𝑤

5. for each edge 𝑢, 𝑣 ∈ 𝐺. 𝐸 taken in nondecreasing order by weight do

6. if FIND-SET(𝑢) ≠ FIND-SET(𝑣) then

7. 𝐴 ← 𝐴 ∪ 𝑢, 𝑣

8. UN ION (𝑢, 𝑣)

9. return 𝐴

33

MST: Kruskal’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

Initial State

34

MST: Kruskal’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

(1) edge 𝒉, 𝒈

35

MST: Kruskal’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

(1) edge 𝒉, 𝒈

36

MST: Kruskal’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

(2) edge 𝒊, 𝒄

37

MST: Kruskal’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

(2) edge 𝒊, 𝒄

38

MST: Kruskal’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

(3) edge 𝒈, 𝒇

39

MST: Kruskal’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

(3) edge 𝒈, 𝒇

40

MST: Kruskal’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

(4) edge 𝒂, 𝒃

41

MST: Kruskal’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

(4) edge 𝒂, 𝒃

42

MST: Kruskal’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

(5) edge 𝒄, 𝒇

43

MST: Kruskal’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

(5) edge 𝒄, 𝒇

44

MST: Kruskal’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

(6) edge 𝒊, 𝒈

45

MST: Kruskal’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

(6) edge 𝒊, 𝒈

46

MST: Kruskal’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

(7) edge 𝒄, 𝒅

47

MST: Kruskal’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

(7) edge 𝒄, 𝒅

48

MST: Kruskal’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

(8) edge 𝒊, 𝒉

49

MST: Kruskal’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

(8) edge 𝒊, 𝒉

50

MST: Kruskal’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

(9) edge 𝒂, 𝒉

51

MST: Kruskal’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

(9) edge 𝒂, 𝒉

52

MST: Kruskal’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

(10) edge 𝒃, 𝒄

53

MST: Kruskal’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

(10) edge 𝒃, 𝒄

54

MST: Kruskal’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

(11) edge 𝒅, 𝒆

55

MST: Kruskal’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

(11) edge 𝒅, 𝒆

56

MST: Kruskal’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

(12) edge 𝒆, 𝒇

57

MST: Kruskal’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

(12) edge 𝒆, 𝒇

58

MST: Kruskal’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

(13) edge 𝒃, 𝒉

59

MST: Kruskal’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

(13) edge 𝒃, 𝒉

60

MST: Kruskal’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

(14) edge 𝒅, 𝒇

61

MST: Kruskal’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

(14) edge 𝒅, 𝒇

62

MST: Kruskal’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

(14) edge 𝒅, 𝒇

Total weight = 𝟑𝟕

63

MST: Kruskal’s Algorithm

MST-Kruskal (𝐺 = 𝑉, 𝐸 , 𝑤)

1. 𝐴 ← ∅

2. for each vertex 𝑣 ∈ 𝐺. 𝑉 do

3. MAKE-SET(𝑣)

4. sort the edges of 𝐺. 𝐸 into nondecreasing order by weight 𝑤

5. for each edge 𝑢, 𝑣 ∈ 𝐺. 𝐸 taken in nondecreasing order by weight do

6. if FIND-SET(𝑢) ≠ FIND-SET(𝑣) then

7. 𝐴 ← 𝐴 ∪ 𝑢, 𝑣

8. UN ION (𝑢, 𝑣)

9. return 𝐴

Let 𝑛 = |𝑉| and 𝑚 = |𝐸|. Since 𝐺 is connected, we have 𝑚 ≥ 𝑛 − 1.

Then the sorting in step 4 can be done in  𝑚 log𝑚 time.

#disjoint-set operations performed, 𝑁 = 2𝑚 + 2𝑛 − 1, of which

#MAKE-SET: 𝑛, #FIND-SET: 2𝑚, #UNION: 𝑛 − 1

So, total time taken by disjoint-set operations =  𝑛 +𝑚 𝛼 𝑛

Hence, MST-Kruskal’s running time =  𝑚 log𝑚
64

MST: Prim’s Algorithm

MST-Prim (𝐺 = 𝑉, 𝐸 , 𝑤, 𝑟)

1. for each vertex 𝑣 ∈ 𝐺. 𝑉 do

2. 𝑣. 𝑑 ← ∞

3. 𝑣. 𝜋 ← 𝑁𝐼𝐿

4. 𝑟. 𝑑 ← 0

5. Min-Heap 𝑄 ← ∅

6. for each vertex 𝑣 ∈ 𝐺. 𝑉 do

7. INSERT(𝑄, 𝑣)

8. while 𝑄 ≠ ∅ do

9. 𝑢 ← EXTRACT-MIN(𝑄)

10. for each 𝑢, 𝑣 ∈ 𝐺. 𝐸 do

11. if 𝑣 ∈ 𝑄 and 𝑤 𝑢, 𝑣 < 𝑣. 𝑑 then

12. 𝑣. 𝑑 ← 𝑤 𝑢, 𝑣

13. 𝑣. 𝜋 ← 𝑢

14. DECREASE-KEY(𝑄, 𝑣, 𝑤 𝑢, 𝑣)

65

MST: Prim’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

Initial State

66

MST: Prim’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

Step 𝟏: add vertex 𝒂 to MST

67

MST: Prim’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

Step 𝟏′: update neighbors of 𝒂

68

MST: Prim’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

Step 𝟐: add vertex 𝒃 through edge 𝒂, 𝒃

69

MST: Prim’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

Step 𝟐′: update neighbors of 𝒃

70

MST: Prim’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

Step 𝟑: add vertex 𝒄 through edge 𝒃, 𝒄

71

MST: Prim’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

Step 𝟑′: update neighbors of 𝒄

72

MST: Prim’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

Step 𝟒: add vertex 𝒊 through edge 𝒄, 𝒊

73

MST: Prim’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

Step 𝟒′: update neighbors of 𝒊

74

MST: Prim’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

Step 𝟓: add vertex 𝒇 through edge 𝒄, 𝒇

75

MST: Prim’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

Step 𝟓′: update neighbors of 𝒇

76

MST: Prim’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

Step 𝟔: add vertex 𝒈 through edge 𝒇, 𝒈

77

MST: Prim’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

Step 𝟔′: update neighbors of 𝒈

78

MST: Prim’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

Step 𝟕: add vertex 𝒉 through edge 𝒈, 𝒉

79

MST: Prim’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

Step 𝟕′: update neighbors of 𝒉

80

MST: Prim’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

Step 𝟖: add vertex 𝒅 through edge 𝒄, 𝒅

81

MST: Prim’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

Step 𝟖′: update neighbors of 𝒅

82

MST: Prim’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

Step 𝟗: add vertex 𝒆 through edge 𝒅, 𝒆

83

MST: Prim’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

Step 𝟗′: update neighbors of 𝒆

84

MST: Prim’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

Done

Total weight = 𝟑𝟕

85

MST: Prim’s Algorithm

Let 𝑛 = 𝑉 and 𝑚 = 𝐸

INSERTS = 𝑛
EXTRACT-MINS = 𝑛
DECREASE-KEYS ≤ 𝑚

Total cost
≤ 𝑛 𝑐𝑜𝑠𝑡𝐼𝑛𝑠𝑒𝑟𝑡 + 𝑐𝑜𝑠𝑡𝐸𝑥𝑡𝑟𝑎𝑐𝑡−𝑀𝑖𝑛

+𝑚 𝑐𝑜𝑠𝑡𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒−𝐾𝑒𝑦

MST-Prim (𝐺 = 𝑉, 𝐸 , 𝑤, 𝑟)

1. for each vertex 𝑣 ∈ 𝐺. 𝑉 do

2. 𝑣. 𝑑 ← ∞

3. 𝑣. 𝜋 ← 𝑁𝐼𝐿

4. 𝑟. 𝑑 ← 0

5. Min-Heap 𝑄 ← ∅

6. for each vertex 𝑣 ∈ 𝐺. 𝑉 do

7. INSERT(𝑄, 𝑣)

8. while 𝑄 ≠ ∅ do

9. 𝑢 ← EXTRACT-MIN(𝑄)

10. for each 𝑢, 𝑣 ∈ 𝐺. 𝐸 do

11. if 𝑣 ∈ 𝑄 and 𝑤 𝑢, 𝑣 < 𝑣. 𝑑 then

12. 𝑣. 𝑑 ← 𝑤 𝑢, 𝑣

13. 𝑣. 𝜋 ← 𝑢

14. DECREASE-KEY(𝑄, 𝑣, 𝑤 𝑢, 𝑣)

86

MST: Prim’s Algorithm

Let 𝑛 = 𝑉 and 𝑚 = 𝐸

For Binary Heap (worst-case costs):

𝑐𝑜𝑠𝑡𝐼𝑛𝑠𝑒𝑟𝑡 =  log 𝑛
𝑐𝑜𝑠𝑡𝐸𝑥𝑡𝑟𝑎𝑐𝑡−𝑀𝑖𝑛 =  log 𝑛
𝑐𝑜𝑠𝑡𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒−𝐾𝑒𝑦 =  log 𝑛

∴ Total cost (worst-case)

=  𝑚 + 𝑛 log 𝑛

MST-Prim (𝐺 = 𝑉, 𝐸 , 𝑤, 𝑟)

1. for each vertex 𝑣 ∈ 𝐺. 𝑉 do

2. 𝑣. 𝑑 ← ∞

3. 𝑣. 𝜋 ← 𝑁𝐼𝐿

4. 𝑟. 𝑑 ← 0

5. Min-Heap 𝑄 ← ∅

6. for each vertex 𝑣 ∈ 𝐺. 𝑉 do

7. INSERT(𝑄, 𝑣)

8. while 𝑄 ≠ ∅ do

9. 𝑢 ← EXTRACT-MIN(𝑄)

10. for each 𝑢, 𝑣 ∈ 𝐺. 𝐸 do

11. if 𝑣 ∈ 𝑄 and 𝑤 𝑢, 𝑣 < 𝑣. 𝑑 then

12. 𝑣. 𝑑 ← 𝑤 𝑢, 𝑣

13. 𝑣. 𝜋 ← 𝑢

14. DECREASE-KEY(𝑄, 𝑣, 𝑤 𝑢, 𝑣)

87

MST: Prim’s Algorithm

Let 𝑛 = 𝑉 and 𝑚 = 𝐸

For Fibonacci Heap (amortized):

𝑐𝑜𝑠𝑡𝐼𝑛𝑠𝑒𝑟𝑡 =  1
𝑐𝑜𝑠𝑡𝐸𝑥𝑡𝑟𝑎𝑐𝑡−𝑀𝑖𝑛 =  log 𝑛
𝑐𝑜𝑠𝑡𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒−𝐾𝑒𝑦 =  1

∴ Total cost (amortized)
=  𝑚 + 𝑛 log 𝑛

MST-Prim (𝐺 = 𝑉, 𝐸 , 𝑤, 𝑟)

1. for each vertex 𝑣 ∈ 𝐺. 𝑉 do

2. 𝑣. 𝑑 ← ∞

3. 𝑣. 𝜋 ← 𝑁𝐼𝐿

4. 𝑟. 𝑑 ← 0

5. Min-Heap 𝑄 ← ∅

6. for each vertex 𝑣 ∈ 𝐺. 𝑉 do

7. INSERT(𝑄, 𝑣)

8. while 𝑄 ≠ ∅ do

9. 𝑢 ← EXTRACT-MIN(𝑄)

10. for each 𝑢, 𝑣 ∈ 𝐺. 𝐸 do

11. if 𝑣 ∈ 𝑄 and 𝑤 𝑢, 𝑣 < 𝑣. 𝑑 then

12. 𝑣. 𝑑 ← 𝑤 𝑢, 𝑣

13. 𝑣. 𝜋 ← 𝑢

14. DECREASE-KEY(𝑄, 𝑣, 𝑤 𝑢, 𝑣)

88

The Single-Source Shortest Paths (SSSP) Problem

We are given a weighted, directed graph 𝐺 = 𝑉, 𝐸 with vertex

set 𝑉 and edge set 𝐸, and a weight function 𝑤 such that for each

edge 𝑢, 𝑣 ∈ 𝐸, 𝑤 𝑢, 𝑣 represents its weight.

We are also given a source vertex 𝑠 ∈ 𝑉.

Our goal is to find a shortest path (i.e., a path of the smallest total

edge weight) from 𝑠 to each vertex 𝑣 ∈ 𝑉.

89

SSSP: Relxation

INITIALIZE-SINGLE-SOURCE (𝐺 = 𝑉, 𝐸 , 𝑠)

1. for each vertex 𝑣 ∈ 𝐺. 𝑉 do

2. 𝑣. 𝑑 ← ∞

3. 𝑣. 𝜋 ← 𝑁𝐼𝐿

4. 𝑠. 𝑑 ← 0

RELAX (𝑢, 𝑣, 𝑤)

1. if 𝑢. 𝑑 + 𝑤 𝑢, 𝑣 < 𝑣. 𝑑 then

2. 𝑣. 𝑑 ← 𝑢. 𝑑 + 𝑤 𝑢, 𝑣

3. 𝑣. 𝜋 ← 𝑢

90

SSSP: Properties of Shortest Paths and Relxation

The weight 𝑤 𝑝 of path 𝑝 = ⟨𝑣0, 𝑣1, … , 𝑣𝑘⟩ is the sum of the

weights of its constituent edges:

𝑤 𝑝 =෍

𝑖=1

𝑘

𝑤 𝑣𝑖−1, 𝑣𝑖

We define the shortest-path weight 𝛿 𝑢, 𝑣 from 𝑢 to 𝑣 by

𝛿 𝑢, 𝑣 = ቊ
min 𝑤 𝑝 : 𝑝 is 𝑢 ~ 𝑣 , if there is a path from 𝑢 to 𝑣,

∞, otherwise.

A shortest path from vertex 𝑢 to vertex 𝑣 is then defined as any

path 𝑝 with weight 𝑤 𝑝 = 𝛿 𝑢, 𝑣 .

91

SSSP: Properties of Shortest Paths and Relxation

Triangle inequality (Lemma 24.10 of CLRS)

For any edge 𝑢, 𝑣 ∈ 𝐸, we have 𝛿 𝑠, 𝑣 ≤ 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣 .

Upper-bound inequality (Lemma 24.11 of CLRS)

We always have 𝑣. 𝑑 ≥ 𝛿 𝑠, 𝑣 for all vertices 𝑣 ∈ 𝑉, and once

𝑣. 𝑑 achieves the value 𝛿 𝑢, 𝑣 , it never changes.

No-path property (Corollary 24.12 of CLRS)

If there is no path from 𝑠 to 𝑣, then we always have

𝑣. 𝑑 = 𝛿 𝑠, 𝑣 = ∞.

Convergence property (Lemma 24.14 of CLRS)

If 𝑠 ⤳ 𝑢 → 𝑣 is a shortest path in 𝐺 for some 𝑢, 𝑣 ∈ 𝑉, and if

𝑢. 𝑑 = 𝛿 𝑠, 𝑢 at any time prior to relaxing edge 𝑢, 𝑣 , then

𝑣. 𝑑 = 𝛿 𝑠, 𝑣 at all times afterward.

92

SSSP: Properties of Shortest Paths and Relxation

Path-relaxation property (Lemma 24.15 of CLRS)

If 𝑝 = ⟨𝑣0, 𝑣1, … , 𝑣𝑘⟩ is a shortest path from 𝑠 = 𝑣0 to 𝑣𝑘,

and we relax the edges of 𝑝 in the order 𝑣0, 𝑣1 , 𝑣1, 𝑣2 ,

… , 𝑣𝑘−1, 𝑣𝑘 , then 𝑣𝑘 . 𝑑 = 𝛿 𝑠, 𝑣𝑘 . This property holds

regardless of any other relaxation steps that occur, even if

they are intermixed with relaxations on the edges of 𝑝.

Predecessor-subgraph property (Lemma 24.17 of CLRS)

Once 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 for all 𝑣 ∈ 𝑉, the predecessor subgraph

is a shortest-paths tree rooted at 𝑠.

93

Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

Input: Weighted graph 𝐺 = 𝑉, 𝐸 with vertex set 𝑉 and edge set 𝐸, a
weight function 𝑤, and a source vertex 𝑠 ∈ 𝐺 𝑉 .

Output: For all 𝑣 ∈ 𝐺 𝑉 , 𝑣. 𝑑 is set to the shortest distance from 𝑠 to 𝑣.

Dijkstra-SSSP (𝐺 = 𝑉, 𝐸 , 𝑤, 𝑠)

1. for each vertex 𝑣 ∈ 𝐺. 𝑉 do

2. 𝑣. 𝑑 ← ∞

3. 𝑣. 𝜋 ← 𝑁𝐼𝐿

4. 𝑠. 𝑑 ← 0

5. Min-Heap 𝑄 ← ∅

6. for each vertex 𝑣 ∈ 𝐺. 𝑉 do

7. INSERT(𝑄, 𝑣)

8. while 𝑄 ≠ ∅ do

9. 𝑢 ← EXTRACT-MIN(𝑄)

10. for each 𝑢, 𝑣 ∈ 𝐺. 𝐸 do

11. if 𝑢. 𝑑 + 𝑤 𝑢, 𝑣 < 𝑣. 𝑑 then

12. 𝑣. 𝑑 ← 𝑢. 𝑑 + 𝑤 𝑢, 𝑣

13. 𝑣. 𝜋 ← 𝑢

14. DECREASE-KEY(𝑄, 𝑣, 𝑢. 𝑑 + 𝑤 𝑢, 𝑣)
94

SSSP: Dijkstra’s Algorithm

𝑡 𝑥

𝑦 𝑧

𝑠

10

1

2

5

∞ ∞

∞ ∞

0
3 2 6 49

7

Initial State (with initial tentative distances)

95

SSSP: Dijkstra’s Algorithm

𝑡 𝑥

𝑦 𝑧

𝑠

10

1

2

5

∞ ∞

∞ ∞

0
3 2 6 49

7

Step 𝟏: add vertex 𝒔 to SPT

96

SSSP: Dijkstra’s Algorithm

𝑡 𝑥

𝑦 𝑧

𝑠

10

1

2

5

10 ∞

5 ∞

0
3 2 6 49

7

Step 𝟏′: update neighbors of 𝒔

97

SSSP: Dijkstra’s Algorithm

𝑡 𝑥

𝑦 𝑧

𝑠

10

1

2

5

10 ∞

5 ∞

0
3 2 6 49

7

Step 𝟐: add vertex 𝒚 through edge 𝒔, 𝒚

98

SSSP: Dijkstra’s Algorithm

𝑡 𝑥

𝑦 𝑧

𝑠

10

1

2

5

8 14

5 7

0
3 2 6 49

7

Step 𝟐′: update neighbors of 𝒚

99

SSSP: Dijkstra’s Algorithm

𝑡 𝑥

𝑦 𝑧

𝑠

10

1

2

5

8 14

5 7

0
3 2 6 49

7

Step 𝟑: add vertex 𝒛 through edge 𝒚, 𝒛

100

SSSP: Dijkstra’s Algorithm

𝑡 𝑥

𝑦 𝑧

𝑠

10

1

2

5

8 13

5 7

0
3 2 6 49

7

Step 𝟑′: update neighbors of 𝒛

101

SSSP: Dijkstra’s Algorithm

𝑡 𝑥

𝑦 𝑧

𝑠

10

1

2

5

8 13

5 7

0
3 2 6 49

7

Step 𝟒: add vertex 𝒕 through edge 𝒚, 𝒕

102

SSSP: Dijkstra’s Algorithm

𝑡 𝑥

𝑦 𝑧

𝑠

10

1

2

5

8 9

5 7

0
3 2 6 49

7

Step 𝟒′: update neighbors of 𝒕

103

SSSP: Dijkstra’s Algorithm

𝑡 𝑥

𝑦 𝑧

𝑠

10

1

2

5

8 9

5 7

0
3 2 6 49

7

Step 𝟓: add vertex 𝒙 through edge 𝒕, 𝒙

104

SSSP: Dijkstra’s Algorithm

𝑡 𝑥

𝑦 𝑧

𝑠

10

1

2

5

8 9

5 7

0
3 2 6 49

7

Step 𝟓′: update neighbors of 𝒙

105

SSSP: Dijkstra’s Algorithm

𝑡 𝑥

𝑦 𝑧

𝑠

10

1

2

5

8 9

5 7

0
3 2 6 49

7

Done

106

SSSP: Dijkstra’s Algorithm

One undirected edge ⇒ Two directed edges

𝑥

𝑦

𝑐

𝑥

𝑦

𝑐 𝑐

107

SSSP: Dijkstra’s Algorithm

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

Initial State (with initial tentative distances)

∞ ∞ ∞

∞ ∞ ∞

∞0 ∞

108

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

Step 𝟏: add vertex 𝒂 to SPT

SSSP: Dijkstra’s Algorithm

∞ ∞ ∞

∞ ∞ ∞

∞0 ∞

109

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

Step 𝟏′: update neighbors of 𝒂

SSSP: Dijkstra’s Algorithm

4 ∞ ∞

8 ∞ ∞

∞0 ∞

110

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

Step 𝟐: add vertex 𝒃 through edge 𝒂, 𝒃

SSSP: Dijkstra’s Algorithm

4 ∞ ∞

8 ∞ ∞

∞0 ∞

111

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

SSSP: Dijkstra’s Algorithm

4 12 ∞

8 ∞ ∞

∞0 ∞

Step 𝟐′: update neighbors of 𝒃

112

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

SSSP: Dijkstra’s Algorithm

4 12 ∞

8 ∞ ∞

∞0 ∞

Step 𝟑: add vertex 𝒉 through edge 𝒂, 𝒉

113

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

SSSP: Dijkstra’s Algorithm

4 12 ∞

8 9 ∞

150 ∞

Step 𝟑′: update neighbors of 𝒉

114

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

SSSP: Dijkstra’s Algorithm

4 12 ∞

8 9 ∞

150 ∞

Step 𝟒: add vertex 𝒈 through edge 𝒉, 𝒈

115

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

SSSP: Dijkstra’s Algorithm

4 12 ∞

8 9 11

150 ∞

Step 𝟒′: update neighbors of 𝒈

116

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

SSSP: Dijkstra’s Algorithm

4 12 ∞

8 9 11

150 ∞

Step 𝟓: add vertex 𝒇 through edge 𝒈, 𝒇

117

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

SSSP: Dijkstra’s Algorithm

4 12 25

8 9 11

150 21

Step 𝟓′: update neighbors of 𝒇

118

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

SSSP: Dijkstra’s Algorithm

4 12 25

8 9 11

150 21

Step 𝟔: add vertex 𝒄 through edge 𝒃, 𝒄

119

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

SSSP: Dijkstra’s Algorithm

4 12 19

8 9 11

140 21

Step 𝟔′: update neighbors of 𝒄

120

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

SSSP: Dijkstra’s Algorithm

4 12 19

8 9 11

140 21

Step 𝟕: add vertex 𝒊 through edge 𝒄, 𝒊

121

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

SSSP: Dijkstra’s Algorithm

4 12 19

8 9 11

140 21

Step 𝟕′: update neighbors of 𝒊

122

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

SSSP: Dijkstra’s Algorithm

4 12 19

8 9 11

140 21

Step 𝟖: add vertex 𝒅 through edge 𝒄, 𝒅

123

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

SSSP: Dijkstra’s Algorithm

4 12 19

8 9 11

140 21

Step 𝟖′: update neighbors of 𝒅

124

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

SSSP: Dijkstra’s Algorithm

4 12 19

8 9 11

140 21

Step 𝟗: add vertex 𝒆 through edge 𝒇, 𝒆

125

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

SSSP: Dijkstra’s Algorithm

4 12 19

8 9 11

140 21

Step 𝟗′: update neighbors of 𝒆

126

𝑏 𝑐 𝑑

ℎ 𝑔 𝑓

𝑖 𝑒𝑎

4

8 7

9

1 2

8 10

11 14

7 6

2

4

SSSP: Dijkstra’s Algorithm

4 12 19

8 9 11

140 21

Done

127

Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

Input: Weighted graph 𝐺 = 𝑉, 𝐸 with vertex set 𝑉 and edge set 𝐸, a
weight function 𝑤, and a source vertex 𝑠 ∈ 𝐺 𝑉 .

Output: For all 𝑣 ∈ 𝐺 𝑉 , 𝑣. 𝑑 is set to the shortest distance from 𝑠 to 𝑣.

Let 𝑛 = 𝐺 𝑉 and 𝑚 = 𝐺 𝐸

INSERTS = 𝑛
EXTRACT-MINS = 𝑛
DECREASE-KEYS ≤ 𝑚

Total cost
≤ 𝑛 𝑐𝑜𝑠𝑡𝐼𝑛𝑠𝑒𝑟𝑡 + 𝑐𝑜𝑠𝑡𝐸𝑥𝑡𝑟𝑎𝑐𝑡−𝑀𝑖𝑛

+𝑚 𝑐𝑜𝑠𝑡𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒−𝐾𝑒𝑦

128

Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

Input: Weighted graph 𝐺 = 𝑉, 𝐸 with vertex set 𝑉 and edge set 𝐸, a
weight function 𝑤, and a source vertex 𝑠 ∈ 𝐺 𝑉 .

Output: For all 𝑣 ∈ 𝐺 𝑉 , 𝑣. 𝑑 is set to the shortest distance from 𝑠 to 𝑣.

Let 𝑛 = 𝐺 𝑉 and 𝑚 = 𝐺 𝐸

For Binary Heap (worst-case costs):

𝑐𝑜𝑠𝑡𝐼𝑛𝑠𝑒𝑟𝑡 =  log 𝑛
𝑐𝑜𝑠𝑡𝐸𝑥𝑡𝑟𝑎𝑐𝑡−𝑀𝑖𝑛 =  log 𝑛
𝑐𝑜𝑠𝑡𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒−𝐾𝑒𝑦 =  log 𝑛

∴ Total cost (worst-case)

=  𝑚 + 𝑛 log 𝑛

129

Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

Input: Weighted graph 𝐺 = 𝑉, 𝐸 with vertex set 𝑉 and edge set 𝐸, a
weight function 𝑤, and a source vertex 𝑠 ∈ 𝐺 𝑉 .

Output: For all 𝑣 ∈ 𝐺 𝑉 , 𝑣. 𝑑 is set to the shortest distance from 𝑠 to 𝑣.

Let 𝑛 = 𝐺 𝑉 and 𝑚 = 𝐺 𝐸

For Fibonacci Heap (amortized):

𝑐𝑜𝑠𝑡𝐼𝑛𝑠𝑒𝑟𝑡 =  1
𝑐𝑜𝑠𝑡𝐸𝑥𝑡𝑟𝑎𝑐𝑡−𝑀𝑖𝑛 =  log 𝑛
𝑐𝑜𝑠𝑡𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒−𝐾𝑒𝑦 =  1

∴ Total cost (amortized)
=  𝑚 + 𝑛 log 𝑛

130

Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

Input: Weighted graph 𝐺 = 𝑉, 𝐸 with vertex set 𝑉 and edge set 𝐸, a
weight function 𝑤, and a source vertex 𝑠 ∈ 𝐺 𝑉 .

Output: For all 𝑣 ∈ 𝐺 𝑉 , 𝑣. 𝑑 is set to the shortest distance from 𝑠 to 𝑣.

Let 𝑛 = 𝐺 𝑉 and 𝑚 = 𝐺 𝐸

INSERTS = 𝑛
EXTRACT-MINS = 𝑛
DECREASE-KEYS ≤ 𝑚

Total cost
≤ 𝑛 𝑐𝑜𝑠𝑡𝐼𝑛𝑠𝑒𝑟𝑡 + 𝑐𝑜𝑠𝑡𝐸𝑥𝑡𝑟𝑎𝑐𝑡−𝑀𝑖𝑛

+𝑚 𝑐𝑜𝑠𝑡𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒−𝐾𝑒𝑦

131

Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

Input: Weighted graph 𝐺 = 𝑉, 𝐸 with vertex set 𝑉 and edge set 𝐸, a
weight function 𝑤, and a source vertex 𝑠 ∈ 𝐺 𝑉 .

Output: For all 𝑣 ∈ 𝐺 𝑉 , 𝑣. 𝑑 is set to the shortest distance from 𝑠 to 𝑣.

Let 𝑛 = 𝐺 𝑉 and 𝑚 = 𝐺 𝐸

For Binary Heap (worst-case costs):

𝑐𝑜𝑠𝑡𝐼𝑛𝑠𝑒𝑟𝑡 =  log 𝑛
𝑐𝑜𝑠𝑡𝐸𝑥𝑡𝑟𝑎𝑐𝑡−𝑀𝑖𝑛 =  log 𝑛
𝑐𝑜𝑠𝑡𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒−𝐾𝑒𝑦 =  log 𝑛

∴ Total cost (worst-case)

=  𝑚 + 𝑛 log 𝑛

132

Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

Input: Weighted graph 𝐺 = 𝑉, 𝐸 with vertex set 𝑉 and edge set 𝐸, a
weight function 𝑤, and a source vertex 𝑠 ∈ 𝐺 𝑉 .

Output: For all 𝑣 ∈ 𝐺 𝑉 , 𝑣. 𝑑 is set to the shortest distance from 𝑠 to 𝑣.

Let 𝑛 = 𝐺 𝑉 and 𝑚 = 𝐺 𝐸

For Fibonacci Heap (amortized):

𝑐𝑜𝑠𝑡𝐼𝑛𝑠𝑒𝑟𝑡 =  1
𝑐𝑜𝑠𝑡𝐸𝑥𝑡𝑟𝑎𝑐𝑡−𝑀𝑖𝑛 =  log 𝑛
𝑐𝑜𝑠𝑡𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒−𝐾𝑒𝑦 =  1

∴ Total cost (worst-case)
=  𝑚 + 𝑛 log 𝑛

133

Flow Networks

134

A flow network 𝐺 = 𝑉, 𝐸 is a directed graph in which each edge 𝑢, 𝑣 ∈ 𝐸

has a nonnegative capacity 𝑐 𝑢, 𝑣 . Also, if 𝑢, 𝑣 ∈ 𝐸 then 𝑣, 𝑢 ∉ 𝐸. If

𝑢, 𝑣 ∉ 𝐸, then we define 𝑐 𝑢, 𝑣 = 0 for convenience, and we disallow

self-loops.

We distinguish two vertices in a flow network: a source 𝑠 and a sink 𝑡 .

For convenience, we assume that each vertex lies on some path from 𝑠 to 𝑡.

The graph is therefore connected and, since each vertex other than 𝑠 has at

least one entering edge, 𝐸 ≥ 𝑉 − 1.

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

12

14

𝑡4 7

Flows and the Maximum Flow Problem

135

Let 𝐺 = 𝑉, 𝐸 be a flow network with a capacity function 𝑐. Let 𝑠 be the

source of the network and let 𝑡 be the sink.

A flow in 𝐺 is a real-valued function 𝑓: 𝑉 × 𝑉 → ℝ that satisfies the following

two properties:

Capacity constraint: For all 𝑢, 𝑣 ∈ 𝑉, we require 0 ≤ 𝑓 𝑢, 𝑣 ≤ 𝑐 𝑢, 𝑣 .

Flow conservation: For all 𝑢 ∈ 𝑉 ∖ 𝑠, 𝑡 , we require σ𝑣∈V 𝑓 𝑣, 𝑢 =

σ𝑣∈V𝑓 𝑢, 𝑣 .

When 𝑢, 𝑣 ∉ 𝐸, there can be no flow from 𝑢 to 𝑣, and 𝑓 𝑢, 𝑣 = 0.

The value 𝑓 of a flow 𝑓 is defined as: 𝑓 = σ𝑣∈V𝑓 𝑠, 𝑣 − σ𝑣∈V 𝑓 𝑣, 𝑠 .

In the maximum-flow problem, we are

given a flow network 𝐺 with source 𝑠

and sink 𝑡 , and we wish to find a flow

of maximum value.

Maximum Flow: The Ford-Fulkerson Method

136

Input: A flow network 𝐺 = 𝑉, 𝐸 with a capacity function 𝑐, a source vertex
𝑠 and a sink vertex 𝑡.

Output: A maximum 𝑠 to 𝑡 flow.

FORD-FULKERSON (𝐺 = 𝑉, 𝐸 , 𝑠, 𝑡)

1. for each edge 𝑢, 𝑣 ∈ 𝐺. 𝐸 do

2. 𝑢, 𝑣 . 𝑓 ← 0

3. while there exists a path 𝑝 from 𝑠 to 𝑡 in the residual network 𝐺𝑓 do

4. 𝑐𝑓 𝑝 ← min 𝑐𝑓 𝑢, 𝑣 | 𝑢, 𝑣 is in 𝑝

5. for each edge 𝑢, 𝑣 in 𝑝 do

6. if 𝑢, 𝑣 ∈ 𝐺. 𝐸 then

7. 𝑢, 𝑣 . 𝑓 ← 𝑢, 𝑣 . 𝑓 + 𝑐𝑓 𝑝

8. else 𝑣, 𝑢 . 𝑓 ← 𝑣, 𝑢 . 𝑓 − 𝑐𝑓 𝑝

Maximum Flow: The Ford-Fulkerson Method

137

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

12

14

Original Network

𝑡4 7

Original Network

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

12

14

𝑡4 7

Maximum Flow: The Ford-Fulkerson Method

138

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

12

14

Step 1: Augmenting Path

𝑡4 7

Original Network

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

12

14

𝑡4 7

Residual capacity = 𝟒

Maximum Flow: The Ford-Fulkerson Method

139

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

12

14

Step 1: Augmenting Path

𝑡4 7

Step 1: Updating Flow

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

12

14

𝑡4 7

+4

+4

Residual capacity = 𝟒 Increase flow by 𝟒 along path
𝒔 → 𝒗𝟏 → 𝒗𝟑 → 𝒗𝟐 → 𝒗𝟒 → 𝒕

Maximum Flow: The Ford-Fulkerson Method

140

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

12

14

Step 1: Augmenting Path

𝑡4 7

Step 1: Updated Flow

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

4/12

4/14

𝑡4 7

Current 𝒔 to 𝒕 flow = 𝟒

Maximum Flow: The Ford-Fulkerson Method

141

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

8

10

Step 2: Residual Network

𝑡4 7

Step 1: Updated Flow

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

4/12

4/14

𝑡4 7

4

4

Maximum Flow: The Ford-Fulkerson Method

142

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

8

10

Step 2: Augmenting Path

𝑡4 7

Step 1: Updated Flow

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

4/12

4/14

𝑡4 7

4

4

Residual capacity = 𝟒

Maximum Flow: The Ford-Fulkerson Method

143

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

8

10

Step 2: Augmenting Path

𝑡4 7

Step 2: Updating Flow

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

4/12

4/14

𝑡4 7

4

4

+4

+4

Residual capacity = 𝟒 Increase flow by 𝟒 along path
𝒔 → 𝒗𝟒 → 𝒗𝟏 → 𝒗𝟑 → 𝒕

Maximum Flow: The Ford-Fulkerson Method

144

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

8

10

Step 2: Augmenting Path

𝑡4 7

Step 2: Updated Flow

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

8/12

4/14

𝑡4
/4 7

4

4

Current 𝒔 to 𝒕 flow = 𝟖

Maximum Flow: The Ford-Fulkerson Method

145

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

4

10

Step 3: Residual Network

𝑡4 7

Step 2: Updated Flow

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

8/12

4/14

𝑡4
/4 7

8

4

Maximum Flow: The Ford-Fulkerson Method

146

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

4

10

Step 3: Augmenting Path

𝑡4 7

Step 2: Updated Flow

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

8/12

4/14

𝑡4
/4 7

8

4

Residual capacity = 𝟒

Maximum Flow: The Ford-Fulkerson Method

147

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

4

10

Step 3: Augmenting Path

𝑡4 7

Step 3: Updating Flow

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

8/12

4/14

𝑡4
/4 7

8

4

+4

Residual capacity = 𝟒 Increase flow by 𝟒 along path
𝒔 → 𝒗𝟏 → 𝒗𝟒 → 𝒗𝟑 → 𝒕

Maximum Flow: The Ford-Fulkerson Method

148

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

4

10

Step 3: Augmenting Path

𝑡4 7

Step 3: Updated Flow

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

8/12

4/14

𝑡4 7

8

4

Current 𝒔 to 𝒕 flow = 𝟏𝟐

Maximum Flow: The Ford-Fulkerson Method

149

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

4

10

Step 4: Residual Network

𝑡4 7

Step 3: Updated Flow

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

8/12

4/14

𝑡4 7

8

4

Maximum Flow: The Ford-Fulkerson Method

150

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

4

10

Step 4: Augmenting Path

𝑡4 7

Step 3: Updated Flow

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

8/12

4/14

𝑡4 7

8

4

Residual capacity = 𝟕

Maximum Flow: The Ford-Fulkerson Method

151

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

4

10

Step 4: Augmenting Path

𝑡4 7

Step 4: Updating Flow

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

8/12

4/14

𝑡4 7

8

4 +7

+7

Increase flow by 𝟕 along path
𝒔 → 𝒗𝟐 → 𝒗𝟒 → 𝒗𝟑 → 𝒕

Maximum Flow: The Ford-Fulkerson Method

152

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

4

10

Step 4: Augmenting Path

𝑡4 7

Step 4: Updated Flow

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

8/12

11/14

𝑡4 7
/7

8

4

Current 𝒔 to 𝒕 flow = 𝟏𝟗

Maximum Flow: The Ford-Fulkerson Method

153

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

4

3

Step 5: Residual Network

𝑡4 7

Step 4: Updated Flow

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

8/12

11/14

𝑡4 7
/7

8

11

Maximum Flow: The Ford-Fulkerson Method

154

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

4

3

Step 5: Augmenting Path

𝑡4 7

Step 4: Updated Flow

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

8/12

11/14

𝑡4 7
/7

8

11

Residual capacity = 𝟒

Maximum Flow: The Ford-Fulkerson Method

155

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

4

3

Step 5: Augmenting Path

𝑡4 7

Step 5: Updating Flow

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

8/12

11/14

𝑡4 7
/7

8

11

+4

Residual capacity = 𝟒 Increase flow by 𝟒 along path
𝒔 → 𝒗𝟏 → 𝒗𝟑 → 𝒕

Maximum Flow: The Ford-Fulkerson Method

156

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

4

3

Step 5: Augmenting Path

𝑡4 7

Step 5: Updated Flow

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

12/12

11/14

𝑡4 7
/7

8

11

Current 𝒔 to 𝒕 flow = 𝟐𝟑

Maximum Flow: The Ford-Fulkerson Method

157

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

3

Step 6: Residual Network

𝑡4 7

Step 5: Updated Flow

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

12/12

11/14

𝑡4 7
/7

12

11

No augmenting path!

Maximum Flow: The Ford-Fulkerson Method

158

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

3

Step 6: Residual Network

𝑡4 7

Step 6: No Update

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

12/12

11/14

𝑡4 7
/7

12

11

Done!
Maximum 𝒔 to 𝒕 flow = 𝟐𝟑

No augmenting path!

The Ford-Fulkerson Method: Running Time

159

The running time of FORD-FULKERSON depends on how we find the

augmenting paths. If we choose them poorly, the algorithm might not even

terminate: the value of the flow will increase with successive augmentations,

but it need not even converge to the maximum flow value (e.g., might

happen when the capacities are irrational numbers).

In practice, the capacities are often integral. If the capacities are rational

numbers, we can apply an appropriate scaling transformation to make them

all integral. If 𝑓∗ denotes a maximum flow in the transformed network, then

a straightforward implementation of FORD-FULKERSON requires to find an

augmenting path at most 𝑓∗ times, since each augmentation increases the

flow value by at least one unit.

The Ford-Fulkerson Method: Running Time

160

Once the residual network 𝐺𝑓 is known, an augmenting path can be found in

𝑂 𝑚 + 𝑛 time using either a depth-first or a breadth-first search, where

𝑛 = 𝑉 and 𝑚 = 𝐸 . It is also easy to maintain the network, capacities and

flows in a way that allows one to find 𝐺𝑓 and update the flows in 𝑂 𝑚 + 𝑛

time during each augmentation.

The running time of FORD-FULKERSON is thus 𝑂 𝑚 + 𝑛 𝑓∗ which is simply

𝑂 𝑚 𝑓∗ as 𝑚 = Ω 𝑛 .

The Edmonds-Karp Algorithm

161

The Edmonds-Karp algorithm is an implementation of the FORD-FULKERSON

method in which the augmenting path 𝑝 in line 3 is found using a breadth-

first search. That is, 𝑝 is chosen as a shortest path from 𝑠 to 𝑡 in the residual

network, where each edge has unit distance (weight).

One can show that the Edmonds-Karp algorithm runs in 𝑂 𝑚2𝑛 time,

where 𝑛 = 𝐺. 𝑉 and 𝑚 = 𝐺. 𝐸 .

The Edmonds-Karp Algorithm

162

LEMMA 26.7 (CLRS): If the Edmonds-Karp algorithm is run on a flow

network 𝐺 = 𝑉, 𝐸 with source 𝑠 and and sink 𝑡, then for all

vertices 𝑣 ∈ 𝐺. 𝑉 ∖ 𝑠, 𝑡 , the shortest path distance 𝛿𝑓 𝑠, 𝑣 in the

residual network 𝐺𝑓 increases monotonically with each flow

augmentation.

PROOF: Let’s assume for contradiction that for some vertex 𝑣 ∈

𝐺. 𝑉 ∖ 𝑠, 𝑡 , there is a flow augmentation that causes the shortest-

path distance from 𝑠 to 𝑣 to decrease.

Let 𝑓 be the flow just before the first augmentation that decreases

some shortest-path distance, and let 𝑓′ be the flow just afterward.

Let 𝑣 be the vertex with the minimum 𝛿𝑓′ 𝑠, 𝑣 whose distance was

decreased by the augmentation, so that 𝛿𝑓′ 𝑠, 𝑣 < 𝛿𝑓 𝑠, 𝑣 .

The Edmonds-Karp Algorithm

163

PROOF (CONTINUED): Let 𝑝 = 𝑠 ↝ 𝑢 → 𝑣 be a shortest path from 𝑠 to

𝑣 in 𝐺𝑓, so that 𝑢, 𝑣 ∈ 𝐸𝑓, and 𝛿𝑓′ 𝑠, 𝑢 = 𝛿𝑓′ 𝑠, 𝑣 − 1.

Because of the way we chose 𝑣, we know that 𝛿𝑓′ 𝑠, 𝑢 ≥ 𝛿𝑓 𝑠, 𝑢 .

Then we must have 𝑢, 𝑣 ∉ 𝐸𝑓, as otherwise by triangle inequality:

𝛿𝑓 𝑠, 𝑣 ≤ 𝛿𝑓 𝑠, 𝑢 + 1 ≤ 𝛿𝑓′ 𝑠, 𝑢 + 1 = 𝛿𝑓′ 𝑠, 𝑣 ,

which contradicts our assumption that 𝛿𝑓′ 𝑠, 𝑣 < 𝛿𝑓 𝑠, 𝑣 .

How can we have 𝑢, 𝑣 ∉ 𝐸𝑓 and 𝑢, 𝑣 ∈ 𝐸𝑓′? The augmentation

must have increased the flow from 𝑣 to 𝑢. The Edmonds-Karp

algorithm always augments flow along shortest paths, and therefore

the shortest path from 𝑠 to 𝑢 in 𝐺𝑓 has 𝑣, 𝑢 as its last edge.

Therefore, 𝛿𝑓 𝑠, 𝑣 = 𝛿𝑓 𝑠, 𝑢 − 1 ≤ 𝛿𝑓′ 𝑠, 𝑢 − 1 = 𝛿𝑓′ 𝑠, 𝑣 − 2,

which contradicts our assumption that 𝛿𝑓′ 𝑠, 𝑣 < 𝛿𝑓 𝑠, 𝑣 .

The Edmonds-Karp Algorithm

164

THEOREM 26.8 (CLRS): If the Edmonds-Karp algorithm is run on a

flow network 𝐺 = 𝑉, 𝐸 with source 𝑠 and sink 𝑡, then the total

number of flow augmentations performed by the algorithm is

𝑂 𝑚𝑛 , where 𝑛 = 𝐺. 𝑉 and 𝑚 = 𝐺. 𝐸 .

PROOF: We say that an edge 𝑢, 𝑣 in a residual network 𝐺𝑓 is critical

on an augmenting path 𝑝 if 𝑐𝑓 𝑝 = 𝑐𝑓 𝑢, 𝑣 .

After we have augmented flow along an augmenting path, any critical

edge on the path disappears from the residual network. Moreover, at

least one edge on any augmenting path must be critical.

We will show that each of the 𝑚 edges can become critical at most

𝑛/2 times.

The Edmonds-Karp Algorithm

165

PROOF (CONTINUED): Let 𝑢, 𝑣 ∈ 𝐺. 𝑉 be connected by 𝑢, 𝑣 ∈ 𝐺. 𝐸.

Since augmenting paths are shortest paths, when 𝑢, 𝑣 is critical for

the first time, we have 𝛿𝑓 𝑠, 𝑣 = 𝛿𝑓 𝑠, 𝑢 + 1.

Once the flow is augmented, the edge 𝑢, 𝑣 disappears from the

residual network. It cannot reappear later on another augmenting

path until after the flow from 𝑢 to 𝑣 is decreased, which occurs only if

𝑣, 𝑢 appears on an augmenting path. If 𝑓′ is the flow in 𝐺 when this

event occurs, then we have 𝛿𝑓′ 𝑠, 𝑢 = 𝛿𝑓′ 𝑠, 𝑣 + 1.

Since 𝛿𝑓 𝑠, 𝑣 ≤ 𝛿𝑓′ 𝑠, 𝑣 by Lemma 26.7, we have:

𝛿𝑓′ 𝑠, 𝑢 = 𝛿𝑓′ 𝑠, 𝑣 + 1 ≥ 𝛿𝑓 𝑠, 𝑣 + 1 = 𝛿𝑓 𝑠, 𝑢 + 2.

The Edmonds-Karp Algorithm

166

PROOF (CONTINUED): Consequently, from the time 𝑢, 𝑣 becomes

critical to the time when it next becomes critical, the distance of 𝑢

from 𝑠 increases by at least 2. The distance of 𝑢 from 𝑠 is initially at

least 0. The intermediate vertices on a shortest path from 𝑠 to 𝑢

cannot contain 𝑠, 𝑢, or 𝑡 (since 𝑢, 𝑣 on an augmenting path implies

that 𝑢 ≠ 𝑡). Therefore, until 𝑢 becomes unreachable from 𝑠,

if ever, its distance is at most 𝑛 − 2. Thus, after the first time that

𝑢, 𝑣 becomes critical, it can become critical at most 𝑛 − 2 /2 =

𝑛/2 − 1 times more, for a total of at most 𝑛/2 times.

Since there are 𝑂 𝑚 pairs of vertices that can have an edge between

them in a residual network, the total number of critical edges during

the entire execution of the algorithm is 𝑂 𝑚𝑛 . Each augmenting

path has at least one critical edge, and hence the theorem follows.

Cuts of Flow Networks (Max-flow Min-cut Theorem)

167

A cut (𝑆, 𝑇) of flow network 𝐺 = (𝑉, 𝐸) is a partition of 𝑉 into 𝑆 and

𝑇 = 𝑉 ∖ 𝑆 such that 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑇.

(Unlike the “cut” used for MST’s, here the graph is directed, and we insist that 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑇.)

If 𝑓 is a flow, then the net flow 𝑓 𝑆, 𝑇 across 𝑆, 𝑇 is defined to be

𝑓 𝑆, 𝑇 = σ𝑢∈Sσ𝑣∈𝑇 𝑓 𝑢, 𝑣 − σ𝑢∈Sσ𝑣∈𝑇 𝑓 𝑣, 𝑢 .

The capacity of the cut 𝑆, 𝑇 is: 𝑐 𝑆, 𝑇 = σ𝑢∈Sσ𝑣∈𝑇 𝑐 𝑢, 𝑣 .

A minimum cut of a network is a cut of minimum capacity.

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

12/12

11/14

𝑡

1
/4 7
/7

𝑆 𝑇

Cuts of Flow Networks (Max-flow Min-cut Theorem)

168

LEMMA 26.4 (CLRS): Let 𝑓 be a flow in a flow network 𝐺 with source

𝑠 and sink 𝑡, and let 𝑆, 𝑇 be any cut of 𝐺. Then the net flow across

𝑆, 𝑇 is 𝑓 𝑆, 𝑇 = 𝑓 .

COROLLARY 26.5 (CLRS): The value of any flow 𝑓 in a flow network 𝐺

is bounded from above by the capacity of any cut of 𝐺.

Corollary 26.5 implies that in a flow network:

𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑎 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑓𝑙𝑜𝑤 ≤ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑎 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑐𝑢𝑡

Cuts of Flow Networks (Max-flow Min-cut Theorem)

169

THEOREM 26.6 (CLRS): If 𝑓 is a flow in a flow network 𝐺 = 𝑉, 𝐸 with

source 𝑠 and sink 𝑡, then the following conditions are equivalent:

1. 𝑓 is a maximum flow in 𝐺.

2. The residual network 𝐺𝑓 contains no augmenting paths.

3. 𝑓 = 𝑐 𝑆, 𝑇 for some cut 𝑆, 𝑇 of 𝐺.

Theorem 26.6 below says that, in fact, in a flow network:

𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑎 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑓𝑙𝑜𝑤 = 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑎 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑐𝑢𝑡

𝑣1 𝑣3

𝑣2 𝑣4

𝑠

12/12

11/14

𝑡4

7
/7

The Maximum Matching Problem

170

Given an undirected graph 𝐺 = 𝑉, 𝐸 , a matching is a subset of edges 𝑀 ⊆

𝐸 such that for all vertices 𝑣 ∈ 𝑉, at most one edge of 𝑀 is incident on 𝑣. We

say that a vertex 𝑣 ∈ 𝑉 is matched by the matching 𝑀 if some edge in 𝑀 is

incident on 𝑣; otherwise, 𝑣 is unmatched.

A maximum matching is a matching of maximum cardinality, that is, a

matching 𝑀 such that for any matching 𝑀′, we have 𝑀 ≥ 𝑀′ .

The Maximum Bipartite Matching Problem

171

We shall restrict our attention to finding maximum matchings in bipartite

graphs: graphs in which the vertex set can be partitioned into 𝑉 = 𝐿 ∪ 𝑅,

where 𝐿 and 𝑅 are disjoint and all edges in 𝐸 go between 𝐿 and 𝑅. We

further assume that every vertex in 𝑉 has at least one incident edge.

A bipartite graph

𝐿 𝑅

The Maximum Bipartite Matching Problem

172

We shall restrict our attention to finding maximum matchings in bipartite

graphs: graphs in which the vertex set can be partitioned into 𝑉 = 𝐿 ∪ 𝑅,

where 𝐿 and 𝑅 are disjoint and all edges in 𝐸 go between 𝐿 and 𝑅. We

further assume that every vertex in 𝑉 has at least one incident edge.

A bipartite matching

𝐿 𝑅

The Maximum Bipartite Matching Problem

173

We shall restrict our attention to finding maximum matchings in bipartite

graphs: graphs in which the vertex set can be partitioned into 𝑉 = 𝐿 ∪ 𝑅,

where 𝐿 and 𝑅 are disjoint and all edges in 𝐸 go between 𝐿 and 𝑅. We

further assume that every vertex in 𝑉 has at least one incident edge.

A maximum bipartite matching

𝐿 𝑅

The Maximum Bipartite Matching Problem

174

We shall restrict our attention to finding maximum matchings in bipartite

graphs: graphs in which the vertex set can be partitioned into 𝑉 = 𝐿 ∪ 𝑅,

where 𝐿 and 𝑅 are disjoint and all edges in 𝐸 go between 𝐿 and 𝑅. We

further assume that every vertex in 𝑉 has at least one incident edge.

Another maximum bipartite matching

𝐿 𝑅

Maximum Bipartite Matching using Network Flow

175

Given a bipartite graph 𝐺 = 𝑉, 𝐸 with 𝑉 = 𝐿 ∪ 𝑅, where 𝐿 and 𝑅 are

disjoint and all edges in 𝐸 go between 𝐿 and 𝑅.

𝐿 𝑅

Maximum Bipartite Matching using Network Flow

176

First, direct all edges from 𝐿 to 𝑅.

𝐿 𝑅

Maximum Bipartite Matching using Network Flow

177

Then add a source 𝑠 and a sink 𝑡.

For every vertex 𝑣 ∈ 𝐿, add an edge 𝑠, 𝑣 directed from 𝑠 to 𝑣.

For every vertex 𝑣 ∈ 𝑅, add an edge 𝑣, 𝑡 directed from 𝑣 to 𝑡.

𝐿 𝑅

𝑠 𝑡

Maximum Bipartite Matching using Network Flow

178

For every edge 𝑢, 𝑣 in this new directed graph, set capacity 𝑐 𝑢, 𝑣 = 1.

𝐿 𝑅

𝑠 𝑡

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1
1

1

Maximum Bipartite Matching using Network Flow

179

Now, find a maximum 𝑠 to 𝑡 flow 𝑓∗ in this new graph using FORD-FULKERSON.

One can show that 𝑓∗ will always be an integer and will be equal to the

maximum matching in the original bipartite graph.

Since 𝑓∗ < 𝑛 = 𝐿 ∪ 𝑅 , running time will be 𝑂 𝑚𝑛 , where 𝑚 = 𝐸 .

𝐿 𝑅

𝑠 𝑡

1

1/1

1/1

1

1/1

1/1

1/1

1/1

1

1

1/1

1 1/1

1

1
1

1/1

