
CSE 548: Analysis of Algorithms

Prerequisites Review 4

(Heaps and Heapsort)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Fall 2019

Selection Sort

Input: An array 𝐴[1 ∶ 𝑛] of 𝑛 numbers.

Output: Elements of 𝐴[1 ∶ 𝑛] rearranged in non-decreasing order of value.

SELECTION-SORT (A)

1. for 𝑗 = 𝐴. 𝑙𝑒𝑛𝑔𝑡ℎ downto 2

2. // find the index of an entry with the largest value in 𝐴 1. . 𝑗

3. 𝑚𝑎𝑥 = 1

4. for 𝑖 = 2 to 𝑗

5. if 𝐴 𝑖 > 𝐴 𝑚𝑎𝑥

6. 𝑚𝑎𝑥 = 𝑖

7. // swap 𝐴 𝑗 and 𝐴 𝑚𝑎𝑥

8. 𝐴 𝑗 ↔ 𝐴 𝑚𝑎𝑥

This way of finding the index of an entry
with the largest value in a subarray of
length 𝑚 takes Θ 𝑚 time, which is bad!

Selection Sort

𝑇 𝑛 = ෍

2≤𝑗≤𝑛

𝐿 𝑗

= ෍

2≤𝑗≤𝑛

Θ 𝑗 = Θ ෍

2≤𝑗≤𝑛

𝑗 = Θ 𝑛2

Then running time of SELECTION-SORT,

Let 𝐿 𝑚 be the time needed to find the index of an entry with the
largest value in a subarray of length 𝑚.

Selection Sort

= ෍

2≤𝑗≤𝑛

O log 𝑗 = O ෍

2≤𝑗≤𝑛

log 𝑗 = O 𝑛 log 𝑛

running time of SELECTION-SORT will be,

If we can decrease 𝐿 𝑚 , then the running time of SELECTION-SORT will
also decrease. For example, if we have 𝐿 𝑚 = O log𝑚 ,

How can you decrease 𝐿 𝑚 to O log𝑚 ?

𝑇 𝑛 = ෍

2≤𝑗≤𝑛

𝐿 𝑗

Heap (Binary Heap)

A (binary) heap data structure is an array object that
can be viewed as a nearly complete binary tree.

Each node of the tree corresponds to an
element of the array.

The tree is completely filled on all levels
except possibly the last, which is filled
from the left up to a point.

An array 𝐴 that represents a heap is an
object with two attributes:

𝐴. 𝑙𝑒𝑛𝑔𝑡ℎ, which gives the number of
elements in the array.

𝐴. ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒, which represents how many elements in the heap are
stored within array 𝐴.

Though 𝐴 1. . 𝐴. 𝑙𝑒𝑛𝑔𝑡ℎ may contain numbers, only 𝐴 1. . 𝐴. ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒
contain valid elements of the heap, where 1 ≤ 𝐴. ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 ≤ 𝐴. 𝑙𝑒𝑛𝑔𝑡ℎ.

Parent and Children

The root of the tree is 𝐴 1 .

Given the index 𝑖 of a node, we can
easily compute the indices of its parent,
left child and right child.

PARENT (i)

1. return
𝑖

2

LEFT (i)

1. return 2𝑖

RIGHT (i)

1. return 2𝑖 + 1

A node with no child is called a leaf.

A node with at least one child is called
an internal node.

A node has 0, 1 or 2 children.

Max-Heap and Min-Heap

The root of the tree is 𝐴 1 .

Max-heap. Each node 𝑖 > 1 satisfies the
max-heap property: 𝐴 PARENT 𝑖 ≥ 𝐴 𝑖 .

Min-heap. Each node 𝑖 > 1 satisfies the
min-heap property: 𝐴 PARENT 𝑖 ≤ 𝐴 𝑖 .

Hence, the largest element in a
max-heap is stored at the root.

Hence, the smallest element in a min-heap is stored at the root.

We will use max-heaps in the
heapsort algorithm which can be
viewed as improved selection sort.

Min-heaps commonly implement priority queues which have many
applications, e.g., in shortest paths computation.

Height and Levels of a Heap

The root of the tree is 𝐴 1 .

Height of a node = Number of edges on the longest simple downward
path from that node to a leaf.

Height of a heap = height of its root.

0

1

2

3

𝑙𝑒𝑣𝑒𝑙

Levels:
Level of the root, LEVEL 1 = 0

Level of node 𝑖 > 1, LEVEL 𝑖 = LEVEL PARENT 𝑖 + 1

A heap of height ℎ has exactly ℎ + 1 levels, numbered from 0 to ℎ.

Height of an 𝒏-node Binary Heap

Let ℎ be the height of a heap containing 𝑛 > 0 elements.

So, the heap will have exactly ℎ + 1 levels.

0

1

2

3

𝑙𝑒𝑣𝑒𝑙

Let 𝑛𝑙 be the number of nodes at level 𝑙, where 0 ≤ 𝑙 ≤ ℎ.

Clearly, 𝑛𝑙 = 2𝑙 for 0 ≤ 𝑙 ≤ ℎ − 1,
and 1 ≤ 𝑛𝑙 ≤ 2𝑙 for 𝑙 = ℎ.

Also 𝑛 = 𝑛0 + 𝑛1 +⋯+ 𝑛ℎ = σ𝑙=0
ℎ 𝑛𝑙.

Height of an 𝒏-node Binary Heap

But 1 ≤ 𝑛ℎ ≤ 2ℎ

⇒ 1+ 2ℎ − 1 ≤ 𝑛ℎ + 2ℎ − 1 ≤ 2ℎ + 2ℎ − 1

⇒ 2ℎ ≤ 𝑛 ≤ 2ℎ+1 − 1

⇒ 2ℎ ≤ 𝑛 < 2ℎ+1

⇒ log2 𝑛 − 1 < ℎ ≤ log2 𝑛

We have, 𝑛 = σ𝑙=0
ℎ 𝑛𝑙 = 𝑛ℎ + σ𝑙=0

ℎ−1𝑛𝑙 = 𝑛ℎ + σ𝑙=0
ℎ−12𝑙 = 𝑛ℎ + 2ℎ − 1 .

Since ℎ is an integer, and the only integer > log2 𝑛 − 1 and ≤ log2 𝑛 is
log2 𝑛 , we have ℎ = log2 𝑛 .

Maintaining Heap Property
Input: An array 𝐴 and an index 𝑖 into the array with the subtrees rooted at
LEFT 𝑖 and RIGHT 𝑖 are max-heaps, but 𝐴 𝑖 might be smaller than its
children and thus violating the max-heap property.

Output: Array 𝐴 with its elements rearranged so that the subtree rooted at
index 𝑖 is a max-heap.

MAX-HEAPIFY (A, i)

1. 𝑙 = LEFT 𝑖

2. 𝑟 = RIGHT 𝑖

3. if 𝑙 ≤ 𝐴. ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 and 𝐴 𝑙 > 𝐴 𝑖

4. 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 = 𝑙

5. else 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 = 𝑖

6. if 𝑟 ≤ 𝐴. ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 and 𝐴 𝑟 > 𝐴 𝑙𝑎𝑟𝑔𝑒𝑠𝑡

7. 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 = 𝑟

8. if 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 ≠ 𝑖

9. exchange 𝐴 𝑖 with 𝐴 𝑙𝑎𝑟𝑔𝑒𝑠𝑡

10. MAX-HEAPIFY (𝐴, 𝑙𝑎𝑟𝑔𝑒𝑠𝑡)

Building a Max-Heap

Input: An array 𝐴 1: 𝑛 , where 𝑛 = 𝐴. 𝑙𝑒𝑛𝑔𝑡ℎ.

Output: Array 𝐴 with its elements rearranged so that the entire array is now
a max-heap.

BUILD-MAX-HEAP (A)

1. 𝐴. ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 = 𝐴. 𝑙𝑒𝑛𝑔𝑡ℎ

2. for 𝑖 = 𝐴. 𝑙𝑒𝑛𝑔𝑡ℎ/2 downto 1

3. MAX-HEAPIFY (𝐴, 𝑖)

The Heapsort Algorithm

HEAPSORT (A)

1. BUILD-MAX-HEAP (𝐴)

2. for 𝑖 = 𝐴. 𝑙𝑒𝑛𝑔𝑡ℎ downto 2

3. exchange 𝐴 1 with 𝐴 𝑖

4. 𝐴. ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 = 𝐴. ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 − 1

5. MAX-HEAPIFY (𝐴, 1)

Input: An array 𝐴[1 ∶ 𝑛] of 𝑛 numbers.

Output: Elements of 𝐴[1 ∶ 𝑛] rearranged in non-decreasing order of value.

Priority Queues

A priority queue is a data structure for maintaining a set 𝑆 of elements,
each with an associated value called a key.

A max-priority queue supports the following operations:

INSERT 𝑆, 𝑥 inserts the element 𝑥 into the set 𝑆, which is equivalent to
the operation 𝑆 = 𝑆 ∪ 𝑥 .

MAXIMUM 𝑆 returns the element of 𝑆 with the largest key.

EXTRACT−MAX 𝑆 removes and returns the element of 𝑆 with the
largest key.

INCREASE−KEY 𝑆, 𝑥, 𝑘 increases the value of element 𝑥’s key to the new
value 𝑘, which is assumed to be at least as large as 𝑥’s current key value.

A Max-Heap as a Max-Priority Queue

HEAP-EXTRACT-MAX (A)

1. if 𝐴. ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 < 1

2. error “heap underflow”

3. 𝑚𝑎𝑥 = 𝐴 1

4. 𝐴 1 = 𝐴 𝐴. ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒

5. 𝐴. ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 = 𝐴. ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 − 1

6. MAX-HEAPIFY (𝐴, 1)

7. return 𝑚𝑎𝑥

HEAP-MAXIMUM (A)

1. return 𝐴 1

A Max-Heap as a Max-Priority Queue

HEAP-INCREASE-KEY (A, i, key)

1. if 𝑘𝑒𝑦 < 𝐴 𝑖

2. error “new key is smaller than current key”

3. 𝐴 𝑖 = 𝑘𝑒𝑦

4. while 𝑖 > 1 and 𝐴 PARENT 𝑖 < 𝐴 𝑖

5. exchange 𝐴 𝑖 with 𝐴 PARENT 𝑖

6. 𝑖 = PARENT 𝑖

MAX-HEAP-INSERT (A, key)

1. 𝐴. ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 = 𝐴. ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 + 1

2. 𝐴 𝐴. ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 = −∞

3. HEAP-INCREASE-KEY (𝐴, 𝐴. ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒, 𝑘𝑒𝑦)

