CSE 548: Analysis of Algorithms

Prerequisites Review 3
(Deterministic Quicksort and
Average Case Analysis)

Rezaul A. Chowdhury

Department of Computer Science
SUNY Stony Brook
Fall 2019

The Divide-and-Conquer Process in Merge Sort

Suppose we want to sort a typical subarray A[p..r].

DiviDe: Split A[p..r] at midpoint g into two subarrays A[p..q] and
Alq + 1..7] of equal or almost equal length.

CoNQUER: Recursively sort A[p..q] and A[g + 1..r].

CoMBINE: Merge the two sorted subarrays A|p..q] and Alq + 1..7]

to obtain a longer sorted subarray A[p..r].

The DIVIDE step is cheap — takes only ©(1) time.

But the COMBINE step is costly — takes ®(n) time, where n is the
length of A[p..r].

The Divide-and-Conquer Process in Quicksort

Suppose we want to sort a typical subarray A|[p..r].

DIVIDE: Partition A[p..r] into two (possibly empty) subarrays
Alp..q — 1] and A|q + 1..r] and find index g such that

each element of A[p..q — 1] is < Alq], and

each element of A[qg + 1..r] is = A[q].

CONQUER: Recursively sort A[p..q — 1] and A[g + 1..r].

CoMBINE: Since A[q] is “equal or larger” and “equal or smaller” than

everything to its left and right, respectively, and both left and right
parts are sorted, subarray A[p..r] is also sorted.

The CoMBINE step is cheap — takes only ©(1) time.

But the DIVIDE step is costly — takes ®(n) time, where n is the
length of A[p..r].

Quicksort

Input: A subarray A[p : v | of r — p + 1 numbers, where p < 7.

Output: Elements of A[p : r | rearranged in non-decreasing order of value.

QUICKSORT (A, p, r)

—
.

if p < r then

2. // partition A[p..r] into A[p..q — 1] and A[q + 1..r] such that everything in
Alp..q — 1] is < A[q] and everything in A[q + 1..7] is = A[q]

q = PARTITION (A, p,)

// recursively sort the left part

QUICKSORT (A, p,g-1)

// recursively sort the right part

N oo o AW

QUICKSORT (A, g+ 1, r)

Partition

Input: A subarray A[p : v | of r — p + 1 numbers, where p < 7.

Output: Elements of A[p : r] are rearranged such that for some q € [p,]
everythingin A[p : ¢ —1]is < A[q] and everythingin A[g + 1:7] is >
Alq]. Index q is returned.

PARTITION (A, p,)

x = Alr]
i=p-—1
forj=ptor—1
if Alj] < x
i=i+1
exchange A[i] with A[j]
exchange A[i + 1] with A[r]

0O N o0 U A W N =

returni + 1

Correctiness of Partition

Input: A subarray A[p : v | of r — p + 1 numbers, where p < 7.

Output: Elements of A[p : r] are rearranged such that for some q € [p,]

everythingin A[p : ¢ —1]is < A[q] and everythingin A[g + 1:7] is >

Alq]. Index q is returned.

PARTITION (A, p, r)
1. x=A[r]
2 i=p—1
3 forj=ptor—1
4 if Alj] < x
5. [=i0+1
6 exchange A[i] with A[j]
7 exchange A[i + 1] with A[r]
8 return i+ 1

Loop Invariant

At the start of each iteration of the
for loop of lines 3—6, for any array
index k,

1. ifp<k<i
then Alk] < x.

2. ifi+1<k<j-1,
then Alk] > x.

3. ifk=rm,
then Alk] = x.

Running Time of Partition

Input: A subarray A[p : v | of r — p + 1 numbers, where p < 7.

Output: Elements of A[p : r] are rearranged such that for some q € [p,]

everythingin A[p : ¢ —1]is < A[q] and everythingin A[g + 1:7] is >

Alq]. Index q is returned.

PARTITION (A, p, r)
1. x=A[r]
2 i=p—1
3 forj=ptor—1
4 if Alj] < x
5. [=i0+1
6 exchange A[i] with A[j]
7 exchange A[i + 1] with A[r]
8 return i+ 1

letn=r—p+ 1.

The loop of lines 3—6 takes
O(r—1—p+1) =0(n) time.

Lines 1, 2, 7 and 8 take ©(1) time each.

Hence, the overall running time is ©(n).

Worst-case Running Time of Quicksort

QUICKSORT (A, p, r)

1. if p <r then

2. // partition A[p..r] into A[p..q — 1]
and A[q + 1..r] such that everything
in A[p..q — 1] is < A[q] and everything
inA[g + 1..7] is = A[q]

q = PARTITION (A, p,)

// recursively sort the left part

QUICKSORT (A, p, g - 1)

// recursively sort the right part

N w AW

QUICKSORT (A, g+ 1, 1)

Assuming n = r — p + 1, the worst-case running time of quicksort:

0(1) if n=1,
T(n) = {przlqaz(r{’r(q —p)+Tr—q@)}+0Mn) ifn>1.

Replacing g with k + p — 1, we get:

0(1) ifn=1,
T =) max Ttk = D)+ T =K} +0(n) if n> 1.

1<k<n

Worst-case Running Time of Quicksort (Upper Bound)

Forn > 1 and a constantc > O,

T(n) = max{T(k—1)+T(n—-k)}+cn

1<k<n

Our guess for upper bound: T(n) < c¢;n? for constant ¢; > 0.
Using this bound on the right side of the recurrence equation, we get.

T(n) < max{c;(k—1)?+c;(n —k)?} + cn

1<k<n

= T(n) < ¢; max {(k — 1%+ (n— k)z} + cn

1<k<n

But (k — 1)? + (n — k)? reaches its maximum value for k = 1 and k = n.

Hence,
T(M) <c(1-12+m—-1)?%)+cn
>Tmn) <ci(n—1)?%+cn
=>Tn) <cn®—(c;(2n—1) —cn)

Worst-case Running Time of Quicksort (Upper Bound)

But for ¢c; = ¢, we have,
ci2n—1)>c(2n—-1)
=>c(2n—1) = 2cn—c
=>c(2n—1)—cn=>cn—c

Butn>1=>cn>c=>cn—-—c=>=0,andthus
ct@2n—1)—cn=0
= —(c;2n—1)—-cn) <0
= cn? — (c;(2n—1) — cn) < ¢yn?

But T(n) < ¢yn? — (c;(2n — 1) — cn).

Hence, T(n) < ¢yn® forc; = c.

Worst-case Running Time of Quicksort (Lower Bound)

Forn > 1 and a constantc > O,

T(n) = max{T(k—1)+T(n—-k)}+cn

1<k<n

Our guess for lower bound: T(n) > c,n? for constant ¢, > 0.
Using this bound on the right side of the recurrence equation, we get.

T(n) = max {c,(k —1)?+ c;(n—k)?} + cn

1<k<n

= T(n) = ¢, max {(k — 1%+ (n— k)z} + cn

1<k<n

But (k — 1)? + (n — k)? reaches its maximum value for k = 1 and k = n.

Hence,
T(n) = c,(1—12+(n—1)2)+cn
>Tm) =>c,(n—1)2 +cn
= T(n) = c;n? + (en — ¢,(2n — 1))

Worst-case Running Time of Quicksort (Lower Bound)

C
But for ¢, < > We have,

c,(2n—1) < %(Zn - 1)

= c,(2n—1) Scn—%

a

>cm—c,2n—-1) ==

[\

But ¢ > 0, and thus
cn—c,(2n—1) >0

= c;n? + (en — ¢,(2n — 1)) > ¢,n?

But T(n) = c,n? + (cn —c,(2n — 1)).

C
Hence, T(n) = c,n? forc, < =

Worst-case Running Time of Quicksort (Tight Bound)

We have proved that
T(n) < ¢ n? forcy = c,

C
and T(n) = c,n* forc, < =

Cc

Thus c,n? < T(n) < ¢yn? for constants ¢; = ¢ and ¢, < .

Hence, T(n) = 0(n?).

Average Case Running Time of Quicksort

QUICKSORT (A, p, r)

1. if p <r then

2. // partition A[p..r] into A[p..q — 1]
and A[q + 1..r] such that everything
in A[p..q — 1] is < A[q] and everything
inA[g + 1..7] is = A[q]

q = PARTITION (A, p,)

// recursively sort the left part

QUICKSORT (A, p, g - 1)

// recursively sort the right part

N w AW

QUICKSORT (A, g+ 1, 1)

(o(1) ifn=1
T(n) =<% z Tk—1)+Tn—k)}+06(m) ifn>1

\. 1<k<n

Average Case Running Time of Quicksort

Forn > 1 and a constantc > O,
T(n) = = YrckenlT(k = 1)+ T(n = k)} + cn

=>nT(n) = X1<penlTk = 1) + T(n — k)} + cn?
= nT(n) = 2 ¥ocpen-1 T (k) + cn® - (1)

Replacing n withn — 1,
>Mm-DTM—1) =2 Yo<ken-—2T (k) +c(n — 1)% - (2)

Subtracting equation (2) from equation (1), we get
nTm) —(n—1DTn—-1)=2T(n—1)+c(2n—-1)
=>nTn)—n+1DT(n—1)=c(2n—-1)

Dividing both sides by n(n + 1), we get

M _ T(n-1) _ c(2n-1)
n+1 n o n(n+1)

Average Case Running Time of Quicksort

Assuming % = A(n), we get from the equation from the previous slide,
c(2n-1)

n(n+1)

c(2n-1)

n(n+1)

An) —An—-1) =

=>An) =An—-1) +

2C C
= A(n) = A(n — 1) + m — n(ntl)

2C
= A(n) <A(Tl—1)+m

2C
n+1

:>A(n)<A(n—2)+2nC+

> A(n) < A(n—3) + 25 4 264 20
n—-1 n n+1

2c 2C 2C 2C

= A(n) <A(n_k)+n—k+2 n—k+3+”.+ n +n+1

2C

> AM) <A +Z 4+ 4+ X4
3 4 n n+1

Average Case Running Time of Quicksort

Since A(1) = @ = 0(1), we get,

:>A(n)<®(1)+2c(;+i+---+1+i)

n n+1

=>A(n)<®(1)+20(1+;+ Tty +_1)_2C(1+%)

ButH,,; =1+ 2424 +2+ " isthen+ 1'st Harmonic Number,
2 3 n n+1l

and lim H,,; =In(n+ 1) + y, where y = 0.5772 is known as the

n—->0o

Euler-Mascheroni constant.
Hence, forn - o0: A(n) < 2c(In(n+ 1) +y) — 3c + 6(1)
= An) < 2cln(n+ 1) + 6(1)
77;(M < 2cin(n + 1) + 0(1)

=>Tn) <2c(n+ Dln(n+ 1) + 6(n)
= T(n) = O(nlogn)

