CSE 548: Analysis of Algorithms

Prerequisites Review 2
(Insertion Sort and Selection Sort)

Rezaul A. Chowdhury

Department of Computer Science
SUNY Stony Brook
Fall 2019

Insertion Sori

Input: An array A[1 : n | of n numbers.

Output: Elements of A[1 : n] rearranged in non-decreasing order of value.

INSERTION-SORT (A)

1. forj=2to A length
key = Alj]
// insert A[j] into the sorted sequence A[1..j — 1]
i=j—1
while i > 0 and Al[i] > key
Ali + 1] = A[i]
i=i—1

Ali + 1] = key

© N o U~ w N

Loop Invariants

We use loop invariants to prove correctness of iterative algorithms

A loop invariant is associated with a given loop of an algorithm,
and it is a formal statement about the relationship among variables
of the algorithm such that

— [Initialization] It is true prior to the first iteration of the loop

— [Maintenance] If it is true before an iteration of the loop, it
remains true before the next iteration

— [Termination] When the loop terminates, the invariant gives us
a useful property that helps show that the algorithm is correct

Loop Invariants for Insertion Sort

INSERTION-SORT (A)

1
2
3
4
5.
6
7
8

for j =2 to A.length
key = AlJ]
// insert A[j] into the sorted sequence A[1..j — 1]
i=j—1
while i > 0 and Al[i] > key
Ali + 1] = A[i]
i=i—1

Ali + 1] = key

Loop Invariants for Insertion Sort

INSERTION-SORT (A)

1. for j =2 to A.length

Invariant 1: A[1..j — 1] consists of the elements

originally in A[1..j — 1], but in sorted order

key = A[j]
// insert A[j] into the sorted sequence A[1..j — 1]
i=j—1
while i > 0 and A[i] > key
Ali + 1] = A[i]
i=i—1

Ali + 1] = key

© N o U~ w N

Loop Invariants for Insertion Sort

INSERTION-SORT (A)

1. for j =2 to A.length

Invariant 1: A[1..j — 1] consists of the elements

originally in A[1..j — 1], but in sorted order

2. key = A[j]
3. // insert A[j] into the sorted sequence A[1..j — 1]
4, i=j—1
5. while i > 0 and A[i] > key
Invariant 2: A[i..j] are each > key
6. Ali + 1] = Ali]
7. i=i—1

8. Ali + 1] = key

Loop Invariant 1: Initialization

INSERTION-SORT (A)

1. forj=2to A.length

Invariant 1: A[1..j — 1] consists of the elements

originally in A[1..j — 1], but in sorted order

2. key = Alj]
3. // insert A[j] into the sorted sequence A[1..j — 1]
4. i=j-1
5. while i > 0 and A[i] > key

| Invariant 2: A[i..j] are each = key |

Ali +1] = A[i]

7. i=i—1
8. Ali + 1] = key

At the start of the first iteration of the loop (inlines1 —8):j = 2

Hence, subarray A[1..j — 1] consists of a single element A[1], which is
in fact the original element in A[1].

The subarray consisting of a single element is trivially sorted.

Hence, the invariant holds initially.

Loop Invariant 1: Maintenance

INSERTION-SORT (A)

1. forj=2to A.length

Invariant 1: A[1..j — 1] consists of the elements

originally in A[1..j — 1], but in sorted order

2. key = Alj]
3. // insert A[j] into the sorted sequence A[1..j — 1]
4. i=j-1
5. while i > 0 and A[i] > key

| Invariant 2: A[i..j] are each = key |

Ali +1] = A[i]

7. i=i—1
8. Ali + 1] = key

We assume that invariant 1 holds before the start of the current iteration.

Hence, the following holds: A[1..j — 1] consists of the elements originally
in A[1..j — 1], but in sorted order.

For invariant 1 to hold before the start of the next iteration, the following
must hold at the end of the current iteration:

A[1..]] consists of the elements originally in A[1..j], but in sorted order.

We use invariant 2 to prove this.

Loop Invariant 1: Maintenance
Loop Invariant 2: Initialization

INSERTION-SORT (A)

1. forj=2to A.length

Invariant 1: A[1..j — 1] consists of the elements

originally in A[1..j — 1], but in sorted order

2. key = Alj]
3. // insert A[j] into the sorted sequence A[1..j — 1]
4. i=j-1
5. while i > 0 and A[i] > key

| Invariant 2: A[i..j] are each = key |

Ali +1] = A[i]

7. i=i—1
8. Ali + 1] = key

At the start of the first iteration of the loop (inlines5 -7)i =j—1
Hence, subarray Ali.. j] consists of only two entries: A[i] and A[]].

We know the following:
— Ali] > key (explicitly tested in line 5)
— Alj] = key (from line 2)

Hence, invariant 2 holds initially.

Loop Invariant 1: Maintenance
Loop Invariant 2: Maintenance

INSERTION-SORT (A)

1. forj=2to A.length

Invariant 1: A[1..j — 1] consists of the elements

originally in A[1..j — 1], but in sorted order

2. key = Alj]
3. // insert A[j] into the sorted sequence A[1..j — 1]
4. i=j-1
5. while i > 0 and A[i] > key

| Invariant 2: A[i..j] are each = key |

Ali +1] = A[i]

7. i=i—1
8. Ali + 1] = key

We assume that invariant 2 holds before the start of the current iteration.
Hence, the following holds: Ali..j] are each = key.

Since line 6 copies A[i] which is known to be > key to A[i + 1] which also
held a value = key, the following holds at the end of the current iteration:
Ali + 1..j] are each = key.

Before the start of the next iteration the check A[i] > key in line 5 ensures
that invariant 2 continues to hold.

Loop Invariant 1: Maintenance
Loop Invariant 2: Maintenance

INSERTION-SORT (A)

1. forj=2to A.length

Invariant 1: A[1..j — 1] consists of the elements

originally in A[1..j — 1], but in sorted order

2. key = Alj]
3. // insert A[j] into the sorted sequence A[1..j — 1]
4. i=j-1
5. while i > 0 and A[i] > key

| Invariant 2: A[i..j] are each = key |

Ali +1] = A[i]

7. i=i—1
8. Ali + 1] = key

Observe that the inner loop (in lines 5 — 7) does not destroy any data
because though the first iteration overwrites A[j], that A[j] has already
been saved in key in line 2.

As long as key is copied back into a location in A[1..j] without destroying
any other element in that subarray, we maintain the invariant that A[1.. /]
contains the first j elements of the original list.

Loop Invariant 1: Maintenance
Loop Invariant 2: Termination

INSERTION-SORT (A)

1. forj=2to A.length

Invariant 1: A[1..j — 1] consists of the elements

originally in A[1..j — 1], but in sorted order

2. key = Alj]
3. // insert A[j] into the sorted sequence A[1..j — 1]
4. i=j-1
5. while i > 0 and A[i] > key

| Invariant 2: A[i..j] are each = key |

Ali +1] = A[i]

7. i=i—1
8. Ali + 1] = key

When the inner loop terminates we know the following.

— A[1..i] is sorted with each element < key
= jfi =0, true by default
= ifi > 0, true because A[1..i] is sorted and A[i] < key

— Ali + 1..j] is sorted with each element > key because the following
held before i was decremented: A[i..] is sorted with each item > key

— Ali + 1] = Ali + 2] if the loop was executed at least once, and
Ali + 1] = key otherwise

Loop Invariant 1: Maintenance
Loop Invariant 2: Termination

INSERTION-SORT (A)

1. forj=2to A.length

Invariant 1: A[1..j — 1] consists of the elements

originally in A[1..j — 1], but in sorted order

2. key = Alj]
3. // insert A[j] into the sorted sequence A[1..j — 1]
4. i=j-1
5. while i > 0 and A[i] > key

| Invariant 2: A[i..j] are each = key |

Ali +1] = A[i]

7. i=i—1
8. Ali + 1] = key

When the inner loop terminates we know the following.

— A[1..i] is sorted with each element < key
— Ali + 1..j] is sorted with each element > key
— Ali+ 1] = Ali + 2] or Ali + 1] = key

Given the facts above, line 8 does not destroy any data, and gives us
A[1..]] as the sorted permutation of the original data in A[1../].

Loop Invariant 1: Termination

INSERTION-SORT (A)

1. forj=2to A.length

Invariant 1: A[1..j — 1] consists of the elements

originally in A[1..j — 1], but in sorted order

2. key = Alj]
3. // insert A[j] into the sorted sequence A[1..j — 1]
4. i=j-1
5. while i > 0 and A[i] > key
| Invariant 2: A[i..j] are each = key |
6. Ali +1] = A[i]
7. i=i—1
8. Ali + 1] = key

When the outer loop terminates we know that j = A.length + 1.

Hence, A[1..j — 1] is the entire array A[1..A.length], which is sorted and
contains the original elements of A[1.. A. length].

Worst Case Runtime of Insertion Sort (Upper Bound)

INSERTION-SORT (A)

key = AlJ]

1

2

3

4 i=j—1
5.

6

7

8

for j =2 to A.length

// insert A[j] into the sorted sequence A[1..j — 1] -

Running time, T (n)

<cn+cn—1)+c,(n—1)

+Cs Z?:z]' + Ce Z?:z(/' -1+ Z?:z(i — 1) +cg(n—1)
= 0.5(cs + ¢ + ¢;)n? + 0.5(2¢; + 2¢, + 2¢4 + 5 — ¢ — 7 + 2¢cg)n

_(Cz + Cy + Cs + C8)

= T(n) = 0(n?)

Best Case Runtime of Insertion Sort (Lower Bound)

INSERTION-SORT (A) cost times
1 forj=2to A.length -—------------mmsmsree e €L n
2 key = A[j] e C;
3 // insert A[j] into the sorted sequence A[1..j —1] 0 : I
4 [=J—1 o Cs
5. while i > 0 and Ali] > key ----------------mommme e Cs
6 Ali+1] =4[] e Co
7 [=10 — 1 - Cy ’
8 Ali + 1] = key --------mmremmm e Cg n—1

Running time, T(n) = cin+c,(n—1) +c,(n—1)
+cc(n—1) +cg(n—1)

:(C1+C2+C4+C5+C8)n_(C2+C4+C5+C8)

= Tn) = Q(n)

Selection Sort

Input: An array A[1 : n | of n numbers.

Output: Elements of A[1 : n] rearranged in non-decreasing order of value.

SELECTION-SORT (A)

1. forj=1to A length
// find the index of an entry with the smallest value in A[j.. A. length]
min = j
fori=j+1toA.length

if Ali] < A[min]

min =i

/1 swap A[j] and A[min]
A[j] & A[min]

© N o U~ w N

