CSE 548: Analysis of Algorithms

Prerequisites Review 2
(Insertion Sort and Selection Sort)

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Fall 2019
Insertion Sort

Input: An array $A[1:n]$ of n numbers.

INSERTION-SORT (A)

1. **for** $j = 2$ to A.length
2. \(key = A[j] \)
3. // insert $A[j]$ into the sorted sequence $A[1..j - 1]$
4. \(i = j - 1 \)
5. **while** $i > 0$ and $A[i] > key$
7. \(i = i - 1 \)
8. \(A[i + 1] = key \)
Loop Invariants

We use loop invariants to prove correctness of iterative algorithms.

A loop invariant is associated with a given loop of an algorithm, and it is a formal statement about the relationship among variables of the algorithm such that

- **[Initialization]** It is true prior to the first iteration of the loop.
- **[Maintenance]** If it is true before an iteration of the loop, it remains true before the next iteration.
- **[Termination]** When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct.
Loop Invariants for Insertion Sort

Insertion-Sort (A)

1. *for* $j = 2$ *to* $A.length$
2. $key = A[j]$
3. // insert $A[j]$ into the sorted sequence $A[1..j - 1]$
4. $i = j - 1$
5. *while* $i > 0$ *and* $A[i] > key$
7. $i = i - 1$
8. $A[i + 1] = key$
Loop Invariants for Insertion Sort

Insertion-Sort (A)

1. **for** \(j = 2 \) **to** \(A.\text{length} \)

 Invariant 1: \(A[1..j-1] \) consists of the elements originally in \(A[1..j-1] \), but in sorted order

2. \(key = A[j] \)

3. // insert \(A[j] \) into the sorted sequence \(A[1..j-1] \)

4. \(i = j - 1 \)

5. **while** \(i > 0 \) **and** \(A[i] > key \)

7. \(i = i - 1 \)

8. \(A[i+1] = key \)
Loop Invariants for Insertion Sort

Insertion-Sort (A)

1. **for** \(j = 2 \) **to** \(A.length \)

 Invariant 1: \(A[1..j - 1] \) consists of the elements originally in \(A[1..j - 1] \), but in sorted order

2. \(key = A[j] \)

3. // insert \(A[j] \) into the sorted sequence \(A[1..j - 1] \)

4. \(i = j - 1 \)

5. **while** \(i > 0 \) **and** \(A[i] > key \)

 Invariant 2: \(A[i..j] \) are each \(\geq key \)

7. \(i = i - 1 \)

8. \(A[i + 1] = key \)
Loop Invariant 1: Initialization

At the start of the first iteration of the loop (in lines 1 – 8): \(j = 2 \)

The subarray consisting of a single element is trivially sorted.

Hence, the invariant holds initially.
Loop Invariant 1: Maintenance

We assume that invariant 1 holds before the start of the current iteration. Hence, the following holds: $A[1..j-1]$ consists of the elements originally in $A[1..j-1]$, but in sorted order.

For invariant 1 to hold before the start of the next iteration, the following must hold at the end of the current iteration:

$A[1..j]$ consists of the elements originally in $A[1..j]$, but in sorted order.

We use invariant 2 to prove this.
At the start of the first iteration of the loop (in lines 5−7): \(i = j - 1 \)

Hence, subarray \(A[i..j] \) consists of only two entries: \(A[i] \) and \(A[j] \).

We know the following:

\(- \quad A[i] > key \) (explicitly tested in line 5)
\(- \quad A[j] = key \) (from line 2)

Hence, invariant 2 holds initially.
Loop Invariant 1: Maintenance
Loop Invariant 2: Maintenance

\[\text{INSERTION-SORT}(A) \]

1. \(\text{for } j = 2 \text{ to } A.\text{length} \)
 \[\text{Invariant 1: } A[1..j-1] \text{ consists of the elements} \]
 \[\text{originally in } A[1..j-1], \text{ but in sorted order} \]
2. \(key = A[j] \)
3. \(/ \) insert \(A[j] \) into the sorted sequence \(A[1..j-1] \)
4. \(i = j - 1 \)
5. while \(i > 0 \text{ and } A[i] > key \)
 \[\text{Invariant 2: } A[i..j] \text{ are each } \geq key \]
7. \(i = i - 1 \)
8. \(A[i+1] = key \)

We assume that invariant 2 holds before the start of the current iteration.

Hence, the following holds: \(A[i..j] \) are each \(\geq key \).

Since line 6 copies \(A[i] \) which is known to be \(> key \) to \(A[i+1] \) which also held a value \(\geq key \), the following holds at the end of the current iteration: \(A[i+1..j] \) are each \(\geq key \).

Before the start of the next iteration the check \(A[i] > key \) in line 5 ensures that invariant 2 continues to hold.
Loop Invariant 1: Maintenance
Loop Invariant 2: Maintenance

Observe that the inner loop (in lines 5 – 7) does not destroy any data because though the first iteration overwrites $A[j]$, that $A[j]$ has already been saved in key in line 2.

As long as key is copied back into a location in $A[1..j]$ without destroying any other element in that subarray, we maintain the invariant that $A[1..j]$ contains the first j elements of the original list.
Loop Invariant 1: Maintenance
Loop Invariant 2: Termination

When the inner loop terminates we know the following.

- $A[1..i]$ is sorted with each element $\leq key$
 - if $i = 0$, true by default
 - if $i > 0$, true because $A[1..i]$ is sorted and $A[i] \leq key$

- $A[i + 1..j]$ is sorted with each element $\geq key$ because the following held before i was decremented: $A[i..j]$ is sorted with each item $\geq key$

- $A[i + 1] = A[i + 2]$ if the loop was executed at least once, and
- $A[i + 1] = key$ otherwise
Loop Invariant 1: Maintenance
Loop Invariant 2: Termination

When the inner loop terminates we know the following.

- $A[1..i]$ is sorted with each element \leq key
- $A[i + 1..j]$ is sorted with each element \geq key

Given the facts above, line 8 does not destroy any data, and gives us $A[1..j]$ as the sorted permutation of the original data in $A[1..j]$.

```
INSERTION-SORT (A)
1. for j = 2 to A.length
   Invariant 1: A[1..j-1] consists of the elements originally in A[1..j-1], but in sorted order
2. key = A[j]
4. i = j - 1
5. while i > 0 and A[i] > key
   Invariant 2: A[i..j] are each $\geq$ key
7. i = i - 1
8. A[i+1] = key
```
Loop Invariant 1: Termination

When the outer loop terminates we know that $j = A.length + 1$.
Hence, $A[1..j - 1]$ is the entire array $A[1..A.length]$, which is sorted and contains the original elements of $A[1..A.length]$.

Algorithm: Insertion-Sort

```
INSERTION-SORT (A)

1. for $j = 2$ to $A.length$
   - Invariant 1: $A[1..j-1]$ consists of the elements originally in $A[1..j-1]$, but in sorted order
   - $key = A[j]$
   - $i = j - 1$
   - while $i > 0$ and $A[i] > key$
     - Invariant 2: $A[i..j]$ are each $\geq key$
   - $i = i - 1$
   - $A[i+1] = key$
```
Worst Case Runtime of Insertion Sort (Upper Bound)

Insertion-Sort (A)

1. for \(j = 2 \) to \(A\).length
2. key = \(A[j] \)
3. // insert \(A[j] \) into the sorted sequence \(A[1..j-1] \)
4. \(i = j - 1 \)
5. while \(i > 0 \) and \(A[i] > key \)
7. \(i = i - 1 \)
8. \(A[i+1] = key \)

<table>
<thead>
<tr>
<th>cost</th>
<th>times</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_1)</td>
<td>(n)</td>
</tr>
<tr>
<td>(c_2)</td>
<td>(n - 1)</td>
</tr>
<tr>
<td>(c_4)</td>
<td>(n - 1)</td>
</tr>
<tr>
<td>(c_5)</td>
<td>(\sum j)</td>
</tr>
<tr>
<td>(c_6)</td>
<td>(\sum (j - 1))</td>
</tr>
<tr>
<td>(c_7)</td>
<td>(\sum (j - 1))</td>
</tr>
<tr>
<td>(c_8)</td>
<td>(n - 1)</td>
</tr>
</tbody>
</table>

Running time, \(T(n) \leq c_1 n + c_2 (n - 1) + c_4 (n - 1) + c_5 \sum_{j=2}^{n} j + c_6 \sum_{j=2}^{n} (j - 1) + c_7 \sum_{j=2}^{n} (j - 1) + c_8 (n - 1) \)

\[= 0.5(c_5 + c_6 + c_7)n^2 + 0.5(2c_1 + 2c_2 + 2c_4 + c_5 - c_6 - c_7 + 2c_8)n - (c_2 + c_4 + c_5 + c_8) \n \]

\[\Rightarrow T(n) = O(n^2) \]
Best Case Runtime of Insertion Sort (Lower Bound)

Insertion-Sort (A)

1. **for** \(j = 2 \) **to** \(A.\text{length} \)
2. \(key = A[j] \)
3. \(// \) insert \(A[j] \) into the sorted sequence \(A[1..j-1] \)
4. \(i = j - 1 \)
5. **while** \(i > 0 \) **and** \(A[i] > key \)
7. \(i = i - 1 \)
8. \(A[i+1] = key \)

Running time, \(T(n) \geq c_1n + c_2(n - 1) + c_4(n - 1) \)

\[+ c_5(n - 1) + c_8(n - 1) \]

\[= (c_1 + c_2 + c_4 + c_5 + c_8)n - (c_2 + c_4 + c_5 + c_8) \]

\[\Rightarrow T(n) = \Omega(n) \]
Selection Sort

\[
\text{SELECTION-SORT}(A)
\]

1. \textbf{for} $j = 1$ \textbf{to} A.length
2. \quad // find the index of an entry with the smallest value in $A[j..A.length]$
3. \quad \text{min} = j
4. \textbf{for} $i = j + 1$ \textbf{to} A.length
5. \quad \textbf{if} $A[i] < A[\text{min}]$
6. \quad \quad \text{min} = i
7. \quad // swap $A[j]$ and $A[\text{min}]$
8. \quad $A[j] \leftrightarrow A[\text{min}]$