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Merging Two Soried Subarrays

Input: Two subarrays A[p : g ] and A[q + 1:r] insorted order (p < g <Tr).
Output: A single sorted subarray A[ p : r | by merging the input subarrays.

MERGE ( A, p, q, ')

n=q—-p+1
n, =r—gq
Let L[1:n, + 1] and R[1:n, + 1] be new arrays
fori=1ton,
L[i] =Alp+i—-1]
forj=1ton,
Rj1 = Alg +/]
Lln; +1] = o
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fork=ptor
if L[i] < R[j]
Alk] = L[i]
i=i+1
else Alk] = R[j]
j=j+1
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Loop Invariants

We use loop invariants to prove correctness of iterative algorithms

A loop invariant is associated with a given loop of an algorithm,
and it is a formal statement about the relationship among variables
of the algorithm such that

— [ Initialization ] It is true prior to the first iteration of the loop

— [ Maintenance ] If it is true before an iteration of the loop, it
remains true before the next iteration

— [ Termination ] When the loop terminates, the invariant gives us
a useful property that helps show that the algorithm is correct



Merging Two Soried Subarrays

Input: Two subarrays A[p : g ] and A[q + 1:r] insorted order (p < g <Tr).
Output: A single sorted subarray A[ p : r | by merging the input subarrays.

MERGE ( A, p, q, ')

1. m=q-p+1 Loop Invariant

2 m=reg At the start of each iteration of the
3. Let L[1:n, + 1] and R[1:n, + 1] be new arrays . .

4 foriciton for Iqop of lines 12-17 the following
5. Ll =Alp+i—1] invariant holds:

6. forj=1ton, .

7 RUl=4lg+] The subarray A|p: k — 1] contains

8. Lin+1]=oo the k — p smallest elements of

9 Rln,+1]=c L[1:ny + 1] and R[1:n, + 1],

10. i=1 .

n o in sorted order.

12. k=pt . .

. ! y “[L_]ZZL] Moreover, L[i] and R[j] are the

14, ATk = L[i] smallest elements of their arrays that
15. i=i+1 have not been copied back into A.

16. else Alk] = R[j]
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Merging Two Soried Subarrays

Input: Two subarrays A[p : g ] and A[q + 1:r] insorted order (p < g <Tr).

Output: A single sorted subarray A[ p : r | by merging the input subarrays.

MERGE ( A, p, q, ')
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Running Time

letn=7r—p+ 1.
Thenn = nq + n,.

The loop in lines 4-5 takes ©(n,) time.
The loop in lines 6-7 takes ©(n,) time.
The loop in lines 12-17 takes O(n) time.
Lines 1-3 and 8-11 take ©(1) time.

Overall running time
=0(ny) +0(ny,) +0(n) +6(1)
= 0(n)



Divide-and-Conquer

1. Divide: divide the original problem into smaller
subproblems that are easier to solve

2. Conquer: solve the smaller subproblems
( perhaps recursively )

3. Merge: combine the solutions to the smaller subproblems
to obtain a solution for the original problem



Intuition Behind Merge Sort

Base case: We know how to correctly sort an array containing
only a single element.

Indeed, an array of one number is already trivially sorted!

Reduction to base case ( recursive divide-and-conquer ):

At each level of recursion we split the current subarray at the
midpoint ( approx ) to obtain two subsubarrays of equal or
almost equal lengths, and sort them recursively.

We are guaranteed to reach subproblems of size 1 ( i.e., the
base case size ) eventually which are trivially sorted.

Merge: We know how to merge two ( recursively ) sorted
subarrays to obtain a longer sorted subarray.



Merge Sori

Input: A subarray A[ p : v | of r — p + 1 numbers, where p < 7.

Output: Elements of A[ p : r | rearranged in non-decreasing order of value.

MERGE-SORT ( A, p, I)

1. if p <r then
2. /1 split A[p..r] into two approximately equal halves A[p..q] and A[qg + 1..7]

// recursively sort the left half
MERGE-SORT ( A, p, q )

// recursively sort the right half
MERGE-SORT (A, g+ 1, r)

// merge the two sorted halves and put the sorted sequence in A[p..r]
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MERGE (A, p, q, I')




Correctness of Merge Sort

MERGE-SORT (A, p, r)

if p <r then
/1 split A[p..r] into two approximately equal halves A[p..q] and A[q + 1..7]
= |Br
a= l 2 J

/1 recursively sort the left half

1
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3

4

5. MERGE-SORT (A, p, q)
6 // recursively sort the right half

7 MERGE-SORT ( A, g+ 1, )

8 // merge the two sorted halves and put the sorted sequence in A[p..r]
9

MERGE (A, p, q, r)

The proof has two parts.
- First we will show that the algorithm terminates.

- Then we will show that the algorithm produces correct
results ( assuming the algorithm terminates ).



Termination Guarantee

MERGE-SORT (A, p, r)

if p <r then
/1 split A[p..r] into two approximately equal halves A[p..q] and A[q + 1..7]
= |Br
a= l 2 J

/1 recursively sort the left half

1
2
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4

5. MERGE-SORT (A, p, q)
6 // recursively sort the right half

7 MERGE-SORT ( A, g+ 1, )

8 // merge the two sorted halves and put the sorted sequence in A[p..r]
9

MERGE (A, p, q, r)

Size of the input subarray, n =r—p +1
Size of the left half, ny =q—p + 1
r—@+1)+1=r—gq

Size of the right half, n,

We will show the following:|ny <nandn, <n

Meaning: Sizes of subproblems decrease by at least 1 in each
recursive call, and so there cannot be more than n — 1 levels of
recursion. So, MERGE-SORT will terminate in finite time.



Termination Guarantee

MERGE-SORT (A, p, r)

if p <r then
/1 split A[p..r] into two approximately equal halves A[p..q] and A[q + 1..7]

-

/1 recursively sort the left half

1
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5. MERGE-SORT (A, p, q)
6 // recursively sort the right half

7 MERGE-SORT ( A, g+ 1, )

8 // merge the two sorted halves and put the sorted sequence in A[p..r]
9

MERGE (A, p, q, r)

A problem will be recursively subdivided ( i.e., lines 5 and 7 will be
executed ) provided the following holds inline 1: p <7

But p < r implies:

p+’r<2r:>—< =>{ ‘<
>qg<r=>q-—-p+1l<r—p+1l=>n<n



Termination Guarantee

MERGE-SORT (A, p, r)

if p <r then
/1 split A[p..r] into two approximately equal halves A[p..q] and A[q + 1..7]
= |Br
a= l 2 J

/1 recursively sort the left half

1
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5. MERGE-SORT (A, p, q)
6 // recursively sort the right half

7 MERGE-SORT ( A, g+ 1, )

8 // merge the two sorted halves and put the sorted sequence in A[p..r]
9

MERGE (A, p, q, r)

A problem will be recursively subdivided ( i.e., lines 5 and 7 will be
executed ) provided the following holds inline 1: p <7

p < r also implies:
2p<p+r=>p<p7+7ﬂ=>pﬁlp7+r‘=>p£q

>—q<-p>3r—q<r—-p=>r—q<r—-pt+l=n,<n



Inductive Proof of Correctness

MERGE-SORT (A, p, r)

if p <r then
/1 split A[p..r] into two approximately equal halves A[p..q] and A[q + 1..7]

-

/1 recursively sort the left half

// recursively sort the right half

1
2
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5. MERGE-SORT (A, p, q)
6

7 MERGE-SORT ( A, g+ 1, )
8

9

// merge the two sorted halves and put the sorted sequence in A[p..r]

MERGE (A, p, q, r)

letn=r—p+ 1.
Base Case: The algorithm is trivially correct whenr = p, i.e.,, n < 1.

Inductive Hypothesis: Suppose the algorithm works correctly for all
integral values of n not larger than k, where k = 1 is an integer.

Inductive Step: We will prove that the algorithm works correctly for
n=k+1.



Inductive Proof of Correctness

MERGE-SORT (A, p, r)

1. ifp <r then
/1 split A[p..r] into two approximately equal halves A[p..q] and A[q + 1..7]

2
o asl]
4 /1 recursively sort the left half

5 MERGE-SORT (A, p, q)

6. // recursively sort the right half

7 MERGE-SORT ( A, g+ 1, )

8 // merge the two sorted halves and put the sorted sequence in A[p..r]
9 MERGE (A, p, q, r)

Whenn = k + 1, lines 2-9 of the algorithm will be executed
becausek=>1=>n>1=>r—p+1>1=p<rholdsinline 1.

The algorithm splits the input subarray A|[p: r] into two parts:
p+r

Alp:qland Alqg + 1: 7], where g = \

The recursive call in line 5 sorts the left part A[p: q]. Since A[p: q]
containisn; =q—p+ 1 <n = ny < knumbers, it is sorted
correctly (using inductive hypothesis).



Inductive Proof of Correctness

MERGE-SORT (A, p, r)

if p <r then
/1 split A[p..r] into two approximately equal halves A[p..q] and A[q + 1..7]
= |2t
= l 2 J

/1 recursively sort the left half

1
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3

4

5. MERGE-SORT (A, p, q)
6 // recursively sort the right half

7 MERGE-SORT ( A, g+ 1, )

8 // merge the two sorted halves and put the sorted sequence in A[p..r]
9

MERGE (A, p, q, r)

The recursive call in line 7 sorts the right part A[g + 1:7]. Since
Alg + 1:r] containisn, =r —q < n = n, < k numbers, itis
sorted correctly (using inductive hypothesis).

We know that the MERGE algorithm can merge two sorted arrays

correctly. So, line 9 correctly merges the sorted left and right parts
of the input subarray into a single sorted sequence in A[p: q].

Therefore, the algorithm works correctly forn = k + 1, and
consequently for all integral values of n.



Analyzing Divide-and-Conquer Algorithms

Let T (n) be the running time of the algorithm on a problem of size n.

— If the problem size is small enough, say n < ¢ for some constant c,
the straightforward solution takes ©(1) time.

— Suppose our division of the problem yields a subproblems, each of
which is 1/b the size of the original.

— Let D(n) = time needed to divide the problem into subproblems.

— Let C(n) = time needed to combine the solutions to the
subproblems into the solution to the original problem.

( 0(1) if n<c,

ThenT(n) =4 (%) +D(n) +C(n) otherwise.
\




Analysis of Merge Sort

Let T (n) be the worst-case running time of MERGE-SORT on n numbers.

We reason as follows to set up the recurrence for T'(n).
— When n = 1, MERGE-SORT takes ©(1) time.

— Whenn > 1, we break down the running time as follows.

= Divide: This step simply computes the middle of the subarray, which takes
constant time. Hence, D(n) = 0(1).

= Conquer: We recursively solve 2 subproblems of size n/2 each, which adds
2T (n/2) to the running time.

= Combine: The MERGE procedure takes ©(n) time on an n-element subarray.
Hence, C(n) = 0(n).

(e ifn=1,

Then T(n) = 12T (g) +0(Mn) ifn>1.




Analysis of Merge Sort ( Upper Bound )

Let us assume for simplicity that n = 2% for some integer k > 0,
and for constants ¢; and ¢,:

( C1 if n=1,
n

<
I'(n) _<2T(2)+czn if n>1;
\

where, ¢4 is an upper bound on the time needed to solve a problem of
size 1, and ¢, is an upper bound on the time per array element of the
divide and combine steps.

Let’s see how the recursion unfolds.



Analysis of Merge Sort ( Upper Bound )

Running time on an input of size n = 2% for some integer k > 0:

T(n)



Analysis of Merge Sort ( Upper Bound )

Unfolding the recurrence up to level 1:



Analysis of Merge Sort ( Upper Bound )

Unfolding the recurrence up to level 2:
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Analysis of Merge Sort ( Upper Bound )

Unfolding the recurrence up to level 3:
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Analysis of Merge Sort ( Upper Bound )

Unfolding the recurrence up to level k:
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Analysis of Merge Sort ( Upper Bound )

Butn = 2F = zik = 1, and there will be n nodes (leaves) at level k:

N
/N N\
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Analysis of Merge Sort ( Upper Bound )

ThenT (Zn—k) =T(1) = cq:
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Analysis of Merge Sort ( Upper Bound )

Total work at each level:
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Analysis of Merge Sort ( Upper Bound )

Total work across all levels:

N
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C2 22 CZ 22 CZ 22 """"" ) Czn
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C1 C1 XX Cl Cl XX Cl C1 XX C1 Cl ————— ) Cln

\ }

n Total: c,nk + cyn




Analysis of Merge Sort ( Upper Bound )

Butn = 2% = k = log, n:
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n Total: c,nlog, n + cyn

= 0(nlogn)



Analysis of Merge Sort ( Upper Bound )

Hence, we have:
T(n) < O(nlogn)

Implying:
T(n) = 0(nlogn)



Analysis of Merge Sort ( Lower Bound )

Assuming n = 2% for some integer k > 0, for some constants ¢ and
c,, we have:

( c1 if n=1,

n
ZT(E) +cn ifn>1;
\

T(n) =+

where, c; is a lower bound on the time needed to solve a problem of
size 1, and ¢, is a lower bound on the time per array element of the
divide and combine steps.

Using the approach we used for proving the upper bound, we have:

T(n) = O(nlogn)

Implying:
T(n) = Q(nlogn)



Analysis of Merge Sort ( Tight Bound )

We have proved, upper bound: T(n) = O(nlogn)
and lower bound: T(n) = Q(nlogn)

Combining we get the tight bound:
T(n) = 0(nlogn)




