CSE 548: Analysis of Algorithms

Prerequisites Review 1
(Divide-and-Conquer Algorithms:
Merge Sort)

Rezaul A. Chowdhury

Department of Computer Science
SUNY Stony Brook
Fall 2019

Merging Two Soried Subarrays

Input: Two subarrays A[p : g] and A[q + 1:r] insorted order (p < g <Tr).
Output: A single sorted subarray A[p : r | by merging the input subarrays.

MERGE (A, p, q, ')

n=q—-p+1
n, =r—gq
Let L[1:n, + 1] and R[1:n, + 1] be new arrays
fori=1ton,
L[i] =Alp+i—-1]
forj=1ton,
Rj1 = Alg +/]
Lln; +1] = o

¥ e N o bk w N

R[n, +1] =

—
e

i=1

- -
N =

j=1
fork=ptor
if L[i] < R[j]
Alk] = L[i]
i=i+1
else Alk] = R[j]
j=j+1

e N . N —.
~N o0 g AW

Loop Invariants

We use loop invariants to prove correctness of iterative algorithms

A loop invariant is associated with a given loop of an algorithm,
and it is a formal statement about the relationship among variables
of the algorithm such that

— [Initialization] It is true prior to the first iteration of the loop

— [Maintenance] If it is true before an iteration of the loop, it
remains true before the next iteration

— [Termination] When the loop terminates, the invariant gives us
a useful property that helps show that the algorithm is correct

Merging Two Soried Subarrays

Input: Two subarrays A[p : g] and A[q + 1:r] insorted order (p < g <Tr).
Output: A single sorted subarray A[p : r | by merging the input subarrays.

MERGE (A, p, q, ')

1. m=q-p+1 Loop Invariant

2 m=reg At the start of each iteration of the
3. Let L[1:n, + 1] and R[1:n, + 1] be new arrays . .

4 foriciton for Iqop of lines 12-17 the following
5. Ll =Alp+i—1] invariant holds:

6. forj=1ton, .

7 RUl=4lg+] The subarray A|p: k — 1] contains

8. Lin+1]=oo the k — p smallest elements of

9 Rln,+1]=c L[1:ny + 1] and R[1:n, + 1],

10. i=1 .

n o in sorted order.

12. k=pt . .

. ! y “[L_]ZZL] Moreover, L[i] and R[j] are the

14, ATk = L[i] smallest elements of their arrays that
15. i=i+1 have not been copied back into A.

16. else Alk] = R[j]

—
~

j=j+1

Merging Two Soried Subarrays

Input: Two subarrays A[p : g] and A[q + 1:r] insorted order (p < g <Tr).

Output: A single sorted subarray A[p : r | by merging the input subarrays.

MERGE (A, p, q, ')

n=q—-p+1
n, =r—gq
Let L[1:n, + 1] and R[1:n, + 1] be new arrays
fori=1ton,
L[i] =Alp+i—-1]
forj=1ton,
Rj1 = Alg +/]
Lln; +1] = o

¥ e N o bk w N

R[n, +1] =

—
e

i=1

—
—_

. oj=1

—
L

fork=ptor
if L[i] < R[j]
Alk] = L[i]
i=i+1
else Alk] = R[j]
j=j+1

e N . N —.
~N o0 g AW

Running Time

letn=7r—p+ 1.
Thenn = nq + n,.

The loop in lines 4-5 takes ©(n,) time.
The loop in lines 6-7 takes ©(n,) time.
The loop in lines 12-17 takes O(n) time.
Lines 1-3 and 8-11 take ©(1) time.

Overall running time
=0(ny) +0(ny,) +0(n) +6(1)
= 0(n)

Divide-and-Conquer

1. Divide: divide the original problem into smaller
subproblems that are easier to solve

2. Conquer: solve the smaller subproblems
(perhaps recursively)

3. Merge: combine the solutions to the smaller subproblems
to obtain a solution for the original problem

Intuition Behind Merge Sort

Base case: We know how to correctly sort an array containing
only a single element.

Indeed, an array of one number is already trivially sorted!

Reduction to base case (recursive divide-and-conquer):

At each level of recursion we split the current subarray at the
midpoint (approx) to obtain two subsubarrays of equal or
almost equal lengths, and sort them recursively.

We are guaranteed to reach subproblems of size 1 (i.e., the
base case size) eventually which are trivially sorted.

Merge: We know how to merge two (recursively) sorted
subarrays to obtain a longer sorted subarray.

Merge Sori

Input: A subarray A[p : v | of r — p + 1 numbers, where p < 7.

Output: Elements of A[p : r | rearranged in non-decreasing order of value.

MERGE-SORT (A, p, I)

1. if p <r then
2. /1 split A[p..r] into two approximately equal halves A[p..q] and A[qg + 1..7]

// recursively sort the left half
MERGE-SORT (A, p, q)

// recursively sort the right half
MERGE-SORT (A, g+ 1, r)

// merge the two sorted halves and put the sorted sequence in A[p..r]

O 00 N o U1 M

MERGE (A, p, q, I')

Correctness of Merge Sort

MERGE-SORT (A, p, r)

if p <r then
/1 split A[p..r] into two approximately equal halves A[p..q] and A[q + 1..7]
= |Br
a= l 2 J

/1 recursively sort the left half

1
2

3

4

5. MERGE-SORT (A, p, q)
6 // recursively sort the right half

7 MERGE-SORT (A, g+ 1,)

8 // merge the two sorted halves and put the sorted sequence in A[p..r]
9

MERGE (A, p, q, r)

The proof has two parts.
- First we will show that the algorithm terminates.

- Then we will show that the algorithm produces correct
results (assuming the algorithm terminates).

Termination Guarantee

MERGE-SORT (A, p, r)

if p <r then
/1 split A[p..r] into two approximately equal halves A[p..q] and A[q + 1..7]
= |Br
a= l 2 J

/1 recursively sort the left half

1
2

3

4

5. MERGE-SORT (A, p, q)
6 // recursively sort the right half

7 MERGE-SORT (A, g+ 1,)

8 // merge the two sorted halves and put the sorted sequence in A[p..r]
9

MERGE (A, p, q, r)

Size of the input subarray, n =r—p +1
Size of the left half, ny =q—p + 1
r—@+1)+1=r—gq

Size of the right half, n,

We will show the following:|ny <nandn, <n

Meaning: Sizes of subproblems decrease by at least 1 in each
recursive call, and so there cannot be more than n — 1 levels of
recursion. So, MERGE-SORT will terminate in finite time.

Termination Guarantee

MERGE-SORT (A, p, r)

if p <r then
/1 split A[p..r] into two approximately equal halves A[p..q] and A[q + 1..7]

-

/1 recursively sort the left half

1
2

3

4

5. MERGE-SORT (A, p, q)
6 // recursively sort the right half

7 MERGE-SORT (A, g+ 1,)

8 // merge the two sorted halves and put the sorted sequence in A[p..r]
9

MERGE (A, p, q, r)

A problem will be recursively subdivided (i.e., lines 5 and 7 will be
executed) provided the following holds inline 1: p <7

But p < r implies:

p+’r<2r:>—< =>{ ‘<
>qg<r=>q-—-p+1l<r—p+1l=>n<n

Termination Guarantee

MERGE-SORT (A, p, r)

if p <r then
/1 split A[p..r] into two approximately equal halves A[p..q] and A[q + 1..7]
= |Br
a= l 2 J

/1 recursively sort the left half

1
2

3

4

5. MERGE-SORT (A, p, q)
6 // recursively sort the right half

7 MERGE-SORT (A, g+ 1,)

8 // merge the two sorted halves and put the sorted sequence in A[p..r]
9

MERGE (A, p, q, r)

A problem will be recursively subdivided (i.e., lines 5 and 7 will be
executed) provided the following holds inline 1: p <7

p < r also implies:
2p<p+r=>p<p7+7ﬂ=>pﬁlp7+r‘=>p£q

>—q<-p>3r—q<r—-p=>r—q<r—-pt+l=n,<n

Inductive Proof of Correctness

MERGE-SORT (A, p, r)

if p <r then
/1 split A[p..r] into two approximately equal halves A[p..q] and A[q + 1..7]

-

/1 recursively sort the left half

// recursively sort the right half

1
2

3

4

5. MERGE-SORT (A, p, q)
6

7 MERGE-SORT (A, g+ 1,)
8

9

// merge the two sorted halves and put the sorted sequence in A[p..r]

MERGE (A, p, q, r)

letn=r—p+ 1.
Base Case: The algorithm is trivially correct whenr = p, i.e.,, n < 1.

Inductive Hypothesis: Suppose the algorithm works correctly for all
integral values of n not larger than k, where k = 1 is an integer.

Inductive Step: We will prove that the algorithm works correctly for
n=k+1.

Inductive Proof of Correctness

MERGE-SORT (A, p, r)

1. ifp <r then
/1 split A[p..r] into two approximately equal halves A[p..q] and A[q + 1..7]

2
o asl]
4 /1 recursively sort the left half

5 MERGE-SORT (A, p, q)

6. // recursively sort the right half

7 MERGE-SORT (A, g+ 1,)

8 // merge the two sorted halves and put the sorted sequence in A[p..r]
9 MERGE (A, p, q, r)

Whenn = k + 1, lines 2-9 of the algorithm will be executed
becausek=>1=>n>1=>r—p+1>1=p<rholdsinline 1.

The algorithm splits the input subarray A|[p: r] into two parts:
p+r

Alp:qland Alqg + 1: 7], where g = \

The recursive call in line 5 sorts the left part A[p: q]. Since A[p: q]
containisn; =q—p+ 1 <n = ny < knumbers, it is sorted
correctly (using inductive hypothesis).

Inductive Proof of Correctness

MERGE-SORT (A, p, r)

if p <r then
/1 split A[p..r] into two approximately equal halves A[p..q] and A[q + 1..7]
= |2t
= l 2 J

/1 recursively sort the left half

1
2

3

4

5. MERGE-SORT (A, p, q)
6 // recursively sort the right half

7 MERGE-SORT (A, g+ 1,)

8 // merge the two sorted halves and put the sorted sequence in A[p..r]
9

MERGE (A, p, q, r)

The recursive call in line 7 sorts the right part A[g + 1:7]. Since
Alg + 1:r] containisn, =r —q < n = n, < k numbers, itis
sorted correctly (using inductive hypothesis).

We know that the MERGE algorithm can merge two sorted arrays

correctly. So, line 9 correctly merges the sorted left and right parts
of the input subarray into a single sorted sequence in A[p: q].

Therefore, the algorithm works correctly forn = k + 1, and
consequently for all integral values of n.

Analyzing Divide-and-Conquer Algorithms

Let T (n) be the running time of the algorithm on a problem of size n.

— If the problem size is small enough, say n < ¢ for some constant c,
the straightforward solution takes ©(1) time.

— Suppose our division of the problem yields a subproblems, each of
which is 1/b the size of the original.

— Let D(n) = time needed to divide the problem into subproblems.

— Let C(n) = time needed to combine the solutions to the
subproblems into the solution to the original problem.

(0(1) if n<c,

ThenT(n) =4 (%) +D(n) +C(n) otherwise.
\

Analysis of Merge Sort

Let T (n) be the worst-case running time of MERGE-SORT on n numbers.

We reason as follows to set up the recurrence for T'(n).
— When n = 1, MERGE-SORT takes ©(1) time.

— Whenn > 1, we break down the running time as follows.

= Divide: This step simply computes the middle of the subarray, which takes
constant time. Hence, D(n) = 0(1).

= Conquer: We recursively solve 2 subproblems of size n/2 each, which adds
2T (n/2) to the running time.

= Combine: The MERGE procedure takes ©(n) time on an n-element subarray.
Hence, C(n) = 0(n).

(e ifn=1,

Then T(n) = 12T (g) +0(Mn) ifn>1.

Analysis of Merge Sort (Upper Bound)

Let us assume for simplicity that n = 2% for some integer k > 0,
and for constants ¢; and ¢,:

(C1 if n=1,
n

<
I'(n) _<2T(2)+czn if n>1;
\

where, ¢4 is an upper bound on the time needed to solve a problem of
size 1, and ¢, is an upper bound on the time per array element of the
divide and combine steps.

Let’s see how the recursion unfolds.

Analysis of Merge Sort (Upper Bound)

Running time on an input of size n = 2% for some integer k > 0:

T(n)

Analysis of Merge Sort (Upper Bound)

Unfolding the recurrence up to level 1:

Analysis of Merge Sort (Upper Bound)

Unfolding the recurrence up to level 2:

\

- Vs

22

\

=)

Analysis of Merge Sort (Upper Bound)

Unfolding the recurrence up to level 3:

N N\
\ /N /N
Sl) @ R) B)

Analysis of Merge Sort (Upper Bound)

Unfolding the recurrence up to level k:

N
/N N\

SANANVARA

S)G 1) 6)

Analysis of Merge Sort (Upper Bound)

Butn = 2F = zik = 1, and there will be n nodes (leaves) at level k:

N
/N N\

SVANVANVARVAN

v T(1) TQ) «-- T(1) T(1) -+ T(1) T(1) --- T(1) T(1)
\ J

Analysis of Merge Sort (Upper Bound)

ThenT (Zn—k) =T(1) = cq:

e
AN yaN

WAWAWAWA

Analysis of Merge Sort (Upper Bound)

Total work at each level:

N
A VNVAN

C2 22 CZ 22 CZ 22 """"") Czn

WAWANWAWA

C1 C1 XX Cl Cl XX Cl C1 XX C1 Cl —————) Cln

Analysis of Merge Sort (Upper Bound)

Total work across all levels:

N
A VNVAN

C2 22 CZ 22 CZ 22 """"") Czn

WAWANWAWA

C1 C1 XX Cl Cl XX Cl C1 XX C1 Cl —————) Cln

\ }

n Total: c,nk + cyn

Analysis of Merge Sort (Upper Bound)

Butn = 2% = k = log, n:

N
A VNVAN

C2 22 CZ 22 CZ 22 ---------) CZTI,

WAWANWAWA

C1 €1 °°° (1 C1 °°° O C1 *°° c1T ~""°% > Cn
\ J
|
n Total: c,nlog, n + cyn

= 0(nlogn)

Analysis of Merge Sort (Upper Bound)

Hence, we have:
T(n) < O(nlogn)

Implying:
T(n) = 0(nlogn)

Analysis of Merge Sort (Lower Bound)

Assuming n = 2% for some integer k > 0, for some constants ¢ and
c,, we have:

(c1 if n=1,

n
ZT(E) +cn ifn>1;
\

T(n) =+

where, c; is a lower bound on the time needed to solve a problem of
size 1, and ¢, is a lower bound on the time per array element of the
divide and combine steps.

Using the approach we used for proving the upper bound, we have:

T(n) = O(nlogn)

Implying:
T(n) = Q(nlogn)

Analysis of Merge Sort (Tight Bound)

We have proved, upper bound: T(n) = O(nlogn)
and lower bound: T(n) = Q(nlogn)

Combining we get the tight bound:
T(n) = 0(nlogn)

