
CSE 548: Analysis of Algorithms

Prerequisites Review 1

(Divide-and-Conquer Algorithms:

Merge Sort)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Fall 2019

1

Merging Two Sorted Subarrays

Input: Two subarrays 𝐴[𝑝 ∶ 𝑞] and 𝐴 𝑞 + 1: 𝑟 in sorted order (𝑝 ≤ 𝑞 < 𝑟).

Output: A single sorted subarray 𝐴[𝑝 ∶ 𝑟] by merging the input subarrays.

2

Loop Invariants

We use loop invariants to prove correctness of iterative algorithms

A loop invariant is associated with a given loop of an algorithm,
and it is a formal statement about the relationship among variables
of the algorithm such that

― [Initialization] It is true prior to the first iteration of the loop

― [Maintenance] If it is true before an iteration of the loop, it
remains true before the next iteration

― [Termination] When the loop terminates, the invariant gives us
a useful property that helps show that the algorithm is correct

3

Merging Two Sorted Subarrays

Input: Two subarrays 𝐴[𝑝 ∶ 𝑞] and 𝐴 𝑞 + 1: 𝑟 in sorted order (𝑝 ≤ 𝑞 < 𝑟).

Output: A single sorted subarray 𝐴[𝑝 ∶ 𝑟] by merging the input subarrays.

Loop Invariant
At the start of each iteration of the
for loop of lines 12‒17 the following
invariant holds:

The subarray 𝐴 𝑝: 𝑘 − 1 contains
the 𝑘 − 𝑝 smallest elements of
𝐿 1: 𝑛1 + 1 and 𝑅 1: 𝑛2 + 1 ,
in sorted order.

Moreover, 𝐿 𝑖 and 𝑅 𝑗 are the
smallest elements of their arrays that
have not been copied back into 𝐴.

4

Merging Two Sorted Subarrays

Input: Two subarrays 𝐴[𝑝 ∶ 𝑞] and 𝐴 𝑞 + 1: 𝑟 in sorted order (𝑝 ≤ 𝑞 < 𝑟).

Output: A single sorted subarray 𝐴[𝑝 ∶ 𝑟] by merging the input subarrays.

Running Time

Let 𝑛 = 𝑟 − 𝑝 + 1.
Then 𝑛 = 𝑛1 + 𝑛2.

The loop in lines 4‒5 takes Θ 𝑛1 time.

The loop in lines 6‒7 takes Θ 𝑛2 time.

The loop in lines 12‒17 takes Θ 𝑛 time.

Lines 1‒3 and 8‒11 take Θ 1 time.

Overall running time

= Θ 𝑛1 + Θ 𝑛2 + Θ 𝑛 + Θ 1

= Θ 𝑛
5

Divide-and-Conquer

1. Divide: divide the original problem into smaller

subproblems that are easier to solve

2. Conquer: solve the smaller subproblems

(perhaps recursively)

3. Merge: combine the solutions to the smaller subproblems

to obtain a solution for the original problem

7

Intuition Behind Merge Sort

1. Base case: We know how to correctly sort an array containing

only a single element.

Indeed, an array of one number is already trivially sorted!

2. Reduction to base case (recursive divide-and-conquer):

At each level of recursion we split the current subarray at the

midpoint (approx) to obtain two subsubarrays of equal or

almost equal lengths, and sort them recursively.

We are guaranteed to reach subproblems of size 1 (i.e., the

base case size) eventually which are trivially sorted.

3. Merge: We know how to merge two (recursively) sorted

subarrays to obtain a longer sorted subarray.

8

Merge Sort

Input: A subarray 𝐴[𝑝 ∶ 𝑟] of 𝑟 − 𝑝 + 1 numbers, where 𝑝 ≤ 𝑟.

Output: Elements of 𝐴[𝑝 ∶ 𝑟] rearranged in non-decreasing order of value.

MERGE-SORT (A, p, r)

1. if 𝑝 < 𝑟 then

2. // split 𝐴 𝑝. . 𝑟 into two approximately equal halves 𝐴 𝑝. . 𝑞 and 𝐴 𝑞 + 1. . 𝑟

3. 𝑞 =
𝑝+𝑟

2

4. // recursively sort the left half

5. MERGE-SORT (A, p, q)

6. // recursively sort the right half

7. MERGE-SORT (A, q + 1, r)

8. // merge the two sorted halves and put the sorted sequence in 𝐴 𝑝. . 𝑟

9. MERGE (A, p, q, r)

9

Correctness of Merge Sort

The proof has two parts.

‒ First we will show that the algorithm terminates.

‒ Then we will show that the algorithm produces correct

results (assuming the algorithm terminates).

10

Termination Guarantee

Size of the input subarray, 𝑛 = 𝑟 − 𝑝 + 1

Size of the left half, 𝑛1 = 𝑞 − 𝑝 + 1

Size of the right half, 𝑛2 = 𝑟 − 𝑞 + 1 + 1 = 𝑟 − 𝑞

We will show the following: 𝑛1 < 𝑛 and 𝑛2 < 𝑛

Meaning: Sizes of subproblems decrease by at least 1 in each

recursive call, and so there cannot be more than 𝑛 − 1 levels of

recursion. So, MERGE-SORT will terminate in finite time. 11

Termination Guarantee

A problem will be recursively subdivided (i.e., lines 5 and 7 will be

executed) provided the following holds in line 1: 𝑝 < 𝑟

But 𝑝 < 𝑟 implies:

𝑝 + 𝑟 < 2𝑟 ⇒
𝑝+𝑟

2
< 𝑟 ⇒

𝑝+𝑟

2
< 𝑟

⇒ 𝑞 < 𝑟 ⇒ 𝑞 − 𝑝 + 1 < 𝑟 − 𝑝 + 1 ⇒ 𝑛1 < 𝑛

12

Termination Guarantee

A problem will be recursively subdivided (i.e., lines 5 and 7 will be

executed) provided the following holds in line 1: 𝑝 < 𝑟

𝑝 < 𝑟 also implies:

2𝑝 < 𝑝 + 𝑟 ⇒ 𝑝 <
𝑝+𝑟

2
⇒ 𝑝 ≤

𝑝+𝑟

2
⇒ 𝑝 ≤ 𝑞

⇒ −𝑞 ≤ −𝑝 ⇒ 𝑟 − 𝑞 ≤ 𝑟 − 𝑝 ⇒ 𝑟 − 𝑞 < 𝑟 − 𝑝 + 1 ⇒ 𝑛2 < 𝑛

13

Inductive Proof of Correctness

Base Case: The algorithm is trivially correct when 𝑟 ≥ 𝑝, i.e., 𝑛 ≤ 1.

Let 𝑛 = 𝑟 − 𝑝 + 1.

Inductive Hypothesis: Suppose the algorithm works correctly for all

integral values of 𝑛 not larger than 𝑘, where 𝑘 ≥ 1 is an integer.

Inductive Step: We will prove that the algorithm works correctly for

𝑛 = 𝑘 + 1.

14

Inductive Proof of Correctness

When 𝑛 = 𝑘 + 1, lines 2‒9 of the algorithm will be executed

because 𝑘 ≥ 1 ⇒ 𝑛 > 1 ⇒ 𝑟 − 𝑝 + 1 > 1 ⇒ 𝑝 < 𝑟 holds in line 1.

The algorithm splits the input subarray 𝐴 𝑝: 𝑟 into two parts:

𝐴 𝑝: 𝑞 and 𝐴 𝑞 + 1: 𝑟 , where 𝑞 =
𝑝+𝑟

2
.

The recursive call in line 5 sorts the left part 𝐴 𝑝: 𝑞 . Since 𝐴 𝑝: 𝑞

containis 𝑛1 = 𝑞 − 𝑝 + 1 < 𝑛 ⇒ 𝑛1 ≤ 𝑘 numbers, it is sorted

correctly (using inductive hypothesis).
15

Inductive Proof of Correctness

The recursive call in line 7 sorts the right part 𝐴 𝑞 + 1: 𝑟 . Since

𝐴 𝑞 + 1: 𝑟 containis 𝑛2 = 𝑟 − 𝑞 < 𝑛 ⇒ 𝑛2 ≤ 𝑘 numbers, it is

sorted correctly (using inductive hypothesis).

We know that the MERGE algorithm can merge two sorted arrays

correctly. So, line 9 correctly merges the sorted left and right parts

of the input subarray into a single sorted sequence in 𝐴 𝑝: 𝑞 .

Therefore, the algorithm works correctly for 𝑛 = 𝑘 + 1, and

consequently for all integral values of 𝑛. 16

Analyzing Divide-and-Conquer Algorithms

Let 𝑇 𝑛 be the running time of the algorithm on a problem of size 𝑛.

― If the problem size is small enough, say 𝑛 ≤ 𝑐 for some constant 𝑐,

the straightforward solution takes Θ 1 time.

― Suppose our division of the problem yields 𝑎 subproblems, each of

which is 1/𝑏 the size of the original.

― Let 𝐷 𝑛 = time needed to divide the problem into subproblems.

― Let 𝐶 𝑛 = time needed to combine the solutions to the

subproblems into the solution to the original problem.

Then 𝑇 𝑛 = ቐ
Θ 1 𝑖𝑓 𝑛 ≤ 𝑐,

𝑎𝑇
𝑛

𝑏
+ 𝐷 𝑛 + 𝐶 𝑛 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

17

Analysis of Merge Sort

Let 𝑇 𝑛 be the worst-case running time of MERGE-SORT on 𝑛 numbers.

We reason as follows to set up the recurrence for 𝑇 𝑛 .

― When 𝑛 = 1, MERGE-SORT takes Θ 1 time.

― When 𝑛 > 1, we break down the running time as follows.

▪ Divide: This step simply computes the middle of the subarray, which takes

constant time. Hence, 𝐷 𝑛 = Θ 1 .

▪ Conquer: We recursively solve 2 subproblems of size 𝑛/2 each, which adds

2𝑇 𝑛/2 to the running time.

▪ Combine: The MERGE procedure takes Θ 𝑛 time on an 𝑛-element subarray.

Hence, 𝐶 𝑛 = Θ 𝑛 .

Then 𝑇 𝑛 = ቐ
Θ 1 𝑖𝑓 𝑛 = 1,

2𝑇
𝑛

2
+ Θ 𝑛 𝑖𝑓 𝑛 > 1.

18

Analysis of Merge Sort (Upper Bound)

Let us assume for simplicity that 𝑛 = 2𝑘 for some integer 𝑘 ≥ 0,

and for constants 𝑐1 and 𝑐2:

𝑇 𝑛 ≤ ቐ
𝑐1 𝑖𝑓 𝑛 = 1,

2𝑇
𝑛

2
+ 𝑐2𝑛 𝑖𝑓 𝑛 > 1;

where, 𝑐1 is an upper bound on the time needed to solve a problem of

size 1, and 𝑐2 is an upper bound on the time per array element of the

divide and combine steps.

Let’s see how the recursion unfolds.

19

Analysis of Merge Sort (Upper Bound)

𝑇 𝑛

Running time on an input of size 𝑛 = 2𝑘 for some integer 𝑘 ≥ 0:

20

Analysis of Merge Sort (Upper Bound)

𝑐2𝑛

𝑇
𝑛

2
𝑇

𝑛

2

1

Unfolding the recurrence up to level 1:

21

Analysis of Merge Sort (Upper Bound)

𝑐2𝑛

𝑐2
𝑛

2
𝑐2
𝑛

2

𝑇
𝑛

22
𝑇

𝑛

22
𝑇

𝑛

22
𝑇

𝑛

22

2

Unfolding the recurrence up to level 2:

22

Analysis of Merge Sort (Upper Bound)

𝑐2𝑛

𝑐2
𝑛

2
𝑐2
𝑛

2

𝑐2
𝑛

22
𝑐2

𝑛

22
𝑐2

𝑛

22
𝑐2

𝑛

22

𝑇
𝑛

23
𝑇

𝑛

23
𝑇

𝑛

23
𝑇

𝑛

23
𝑇

𝑛

23
𝑇

𝑛

23
𝑇

𝑛

23
𝑇

𝑛

23

3

Unfolding the recurrence up to level 3:

23

Analysis of Merge Sort (Upper Bound)

𝑐2𝑛

𝑐2
𝑛

2
𝑐2
𝑛

2

𝑐2
𝑛

22
𝑐2

𝑛

22
𝑐2

𝑛

22
𝑐2

𝑛

22

𝑇
𝑛

2𝑘
𝑇

𝑛

2𝑘
𝑇

𝑛

2𝑘
𝑇

𝑛

2𝑘
𝑇

𝑛

2𝑘
𝑇

𝑛

2𝑘
𝑇

𝑛

2𝑘
𝑇

𝑛

2𝑘

𝑘

Unfolding the recurrence up to level 𝑘:

24

Analysis of Merge Sort (Upper Bound)

𝑐2𝑛

𝑐2
𝑛

2
𝑐2
𝑛

2

𝑐2
𝑛

22
𝑐2

𝑛

22
𝑐2

𝑛

22
𝑐2

𝑛

22
𝑘

𝑇 1 𝑇 1 𝑇 1 𝑇 1 𝑇 1 𝑇 1 𝑇 1 𝑇 1

𝑛

But 𝑛 = 2𝑘 ⇒
𝑛

2𝑘
= 1, and there will be 𝑛 nodes (leaves) at level 𝑘:

25

Analysis of Merge Sort (Upper Bound)

𝑐2𝑛

𝑐2
𝑛

2
𝑐2
𝑛

2

𝑐2
𝑛

22
𝑐2

𝑛

22
𝑐2

𝑛

22
𝑐2

𝑛

22
𝑘

𝑛

𝑐1 𝑐1 𝑐1 𝑐1 𝑐1 𝑐1 𝑐1 𝑐1

Then 𝑇
𝑛

2𝑘
= 𝑇 1 = 𝑐1:

26

Analysis of Merge Sort (Upper Bound)

𝑐2𝑛

𝑐2
𝑛

2
𝑐2
𝑛

2

𝑐2
𝑛

22
𝑐2

𝑛

22
𝑐2

𝑛

22
𝑐2

𝑛

22
𝑘

𝑛

𝑐1 𝑐1 𝑐1 𝑐1 𝑐1 𝑐1 𝑐1 𝑐1

𝑐2𝑛

𝑐2𝑛

𝑐2𝑛

𝑐1𝑛

Total work at each level:

27

Analysis of Merge Sort (Upper Bound)

𝑐2𝑛

𝑐2
𝑛

2
𝑐2
𝑛

2

𝑐2
𝑛

22
𝑐2

𝑛

22
𝑐2

𝑛

22
𝑐2

𝑛

22
𝑘

𝑛

𝑐1 𝑐1 𝑐1 𝑐1 𝑐1 𝑐1 𝑐1 𝑐1

𝑐2𝑛

𝑐2𝑛

𝑐2𝑛

𝑐1𝑛

Total: 𝑐2𝑛𝑘 + 𝑐1𝑛

Total work across all levels:

28

Analysis of Merge Sort (Upper Bound)

𝑐2𝑛

𝑐2
𝑛

2
𝑐2
𝑛

2

𝑐2
𝑛

22
𝑐2

𝑛

22
𝑐2

𝑛

22
𝑐2

𝑛

22
𝑘

𝑛

𝑐1 𝑐1 𝑐1 𝑐1 𝑐1 𝑐1 𝑐1 𝑐1

𝑐2𝑛

𝑐2𝑛

𝑐2𝑛

𝑐1𝑛

Total: 𝑐2𝑛 log2 𝑛 + 𝑐1𝑛

= Θ 𝑛 log 𝑛

But 𝑛 = 2𝑘 ⇒ 𝑘 = log2 𝑛:

29

Analysis of Merge Sort (Upper Bound)

Hence, we have:

30

𝑇 𝑛 ≤ Θ 𝑛 log 𝑛

Implying:

𝑇 𝑛 = O 𝑛 log 𝑛

Analysis of Merge Sort (Lower Bound)

Assuming 𝑛 = 2𝑘 for some integer 𝑘 ≥ 0, for some constants 𝑐1
′ and

𝑐2
′ , we have:

𝑇 𝑛 ≥ ቐ
𝑐1
′ 𝑖𝑓 𝑛 = 1,

2𝑇
𝑛

2
+ 𝑐2

′𝑛 𝑖𝑓 𝑛 > 1;

where, 𝑐1
′ is a lower bound on the time needed to solve a problem of

size 1, and 𝑐2
′ is a lower bound on the time per array element of the

divide and combine steps.

31

Using the approach we used for proving the upper bound, we have:

𝑇 𝑛 ≥ Θ 𝑛 log 𝑛

Implying:

𝑇 𝑛 = Ω 𝑛 log 𝑛

Analysis of Merge Sort (Tight Bound)

32

We have proved, upper bound: 𝑇 𝑛 = O 𝑛 log 𝑛

and lower bound: 𝑇 𝑛 = Ω 𝑛 log 𝑛

Combining we get the tight bound:

𝑇 𝑛 = Θ 𝑛 log 𝑛

