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Mergeable Heap Operations

MAKE-HEAP( 𝒙 ): return a new heap containing only element 𝑥

INSERT( 𝑯,𝒙 ): insert element 𝑥 into heap 𝐻

MINIMUM( 𝑯 ): return a pointer to an element in 𝐻 containing 

the smallest key

EXTRACT-MIN( 𝑯 ): delete an element with the smallest key from 

𝐻 and return a pointer to that element

UNION( 𝑯𝟏, 𝑯𝟐 ): return a new heap containing all elements of 

heaps 𝐻1 and 𝐻2, and destroy the input heaps

More mergeable heap operations:

DECREASE-KEY( 𝑯,𝒙, 𝒌 ): change the key of element 𝑥 of heap 𝐻 to 

𝑘 assuming 𝑘 ≤ the current key of 𝑥

DELETE( 𝑯,𝒙 ): delete element 𝑥 from heap 𝐻
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Mergeable Heap Operations

Heap 
Operation

Binary Heap
( worst-case )

Binomial Heap
( amortized )

MAKE-HEAP  1  1

INSERT  log 𝑛  1

MINIMUM  1  1

EXTRACT-MIN  log 𝑛  log 𝑛

UNION  𝑛  1

DECREASE-KEY  log 𝑛 −

DELETE  log 𝑛 −
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Binomial Trees

A binomial tree 𝐵𝑘 is an ordered tree defined recursively as follows. 

− 𝐵0 consists of a single node

− For 𝑘 > 0, 𝐵𝑘 consists of two 𝐵𝑘−1’s that are linked together 

so that the root of one is the left child of the root of the other
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Binomial Trees

Some useful properties of 𝐵𝑘 are as follows.

1. it has exactly 2𝑘 nodes

2. its height is 𝑘

3. there are exactly 
𝑘
𝑖

nodes 

at depth 𝑖 = 0,1,2,… , 𝑘

4. the root has degree 𝑘

5. if the children of the root 

are numbered from left to 

right by 𝑘 − 1, 𝑘 − 2,… , 0, 

then child 𝑖 is the root of a 𝐵𝑖
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𝐵𝑘−1

𝐵𝑘−1

𝐵𝑘

Binomial Trees

Prove: 𝐵𝑘 has exactly 
𝑘
𝑖

nodes at depth 𝑖 = 0,1,2,… , 𝑘.

𝑠𝑘,0 = 𝑠𝑘−1,0

𝑠𝑘,1 = 𝑠𝑘−1,1 + 𝑠𝑘−1,0

𝑠𝑘,2 = 𝑠𝑘−1,2 + 𝑠𝑘−1,1

𝑠𝑘,3 = 𝑠𝑘−1,2

Proof: Suppose 𝐵𝑘 has 𝑠𝑘,𝑖 nodes at depth 𝑖.

𝑠𝑘,𝑖 = ቐ

0 𝑖𝑓 𝑖 < 0 𝑜𝑟 𝑖 > 𝑘,
1 𝑖𝑓 𝑖 = 𝑘 = 0,
𝑠𝑘−1,𝑖 + 𝑠𝑘−1,𝑖−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

𝐵0

𝑠0,0 = 1
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Binomial Trees

𝑠𝑘,𝑖 = ቐ

0 𝑖𝑓 𝑖 < 0 𝑜𝑟 𝑖 > 𝑘,
1 𝑖𝑓 𝑖 = 𝑘 = 0,
𝑠𝑘−1,𝑖 + 𝑠𝑘−1,𝑖−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Generating function:  𝑆𝑘 𝑧 = 𝑠𝑘,0 + 𝑠𝑘,1𝑧 + 𝑠𝑘,2𝑧
2 + …+ 𝑠𝑘,𝑘𝑧

𝑘

⇒ 𝑠𝑘,𝑖= [𝑘 ≥ 𝑖 ≥ 0] 𝑠𝑘−1,𝑖 + 𝑠𝑘−1,𝑖−1 + 𝑖 = 𝑘 = 0

𝑆𝑘≥0 𝑧 =෍
𝑖=0

𝑘

𝑠𝑘,𝑖𝑧
𝑖 =෍

𝑖=0

𝑘

𝑠𝑘−1,𝑖𝑧
𝑖 +෍

𝑖=0

𝑘

𝑠𝑘−1,𝑖−1𝑧
𝑖 + [𝑘 = 0]෍

𝑖=0

𝑘

[𝑖 = 0]𝑧𝑖

=෍
𝑖=0

𝑘−1

𝑠𝑘−1,𝑖𝑧
𝑖 + 𝑧෍

𝑖=0

𝑘−1

𝑠𝑘−1,𝑖𝑧
𝑖 + 𝑘 = 0

= 𝑆𝑘−1 𝑧 + 𝑧𝑆𝑘−1 𝑧 + 𝑘 = 0 = 1 + 𝑧 𝑆𝑘−1 𝑧 + [𝑘 = 0]

⇒ 𝑆𝑘 𝑧 = ቊ
1 𝑖𝑓 𝑘 = 0,

1 + 𝑧 𝑆𝑘−1 𝑧 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

= 1 + 𝑧 𝑘

Equating the coefficient of 𝑧𝑖 from both sides:  𝑠𝑘,𝑖 =
𝑘
𝑖
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Binomial Heaps

A binomial heap 𝐻 is a set of binomial trees that satisfies the 

following properties:
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Binomial Heaps

A binomial heap 𝐻 is a set of binomial trees that satisfies the 

following properties:

1. each node has a key

2. each binomial tree in 𝐻 obeys the min-heap property

3. for any integer 𝑘 ≥ 0, there is at most one binomial tree 

in 𝐻 whose root node has degree 𝑘

2512

18

1 106

8 14 29

11 17 38

27

min 𝐻
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Rank of Binomial Trees

The rank of a binomial tree node 𝑥, denoted 𝑟𝑎𝑛𝑘 𝑥 , is the 

number of children of 𝑥.

The figure on the right shows the rank

of each node in 𝐵3.

Observe that 𝑟𝑎𝑛𝑘 𝑟𝑜𝑜𝑡 𝐵𝑘 = 𝑘.

Rank of a binomial tree is the rank of

its root. Hence,

𝑟𝑎𝑛𝑘 𝐵𝑘 = 𝑟𝑎𝑛𝑘 𝑟𝑜𝑜𝑡 𝐵𝑘 = 𝑘

𝐵3

3

2 1

0

1 0 0

0
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A Basic Operation: Linking Two Binomial Trees

Given two binomial trees of the same rank, say, two 𝐵𝑘’s, we link 

them in constant time by making 

the root of one tree the left child 

of the root of the other, and thus 

producing a 𝐵𝑘+1.

If the trees are part of a binomial

min-heap, we always make the root

with the smaller key the parent,

and the one with the larger key

the child. 

Ties are broken arbitrarily.

𝐵𝑘+1

𝐵𝑘

6

14 29

38

𝐵𝑘

8

11 17

27

14



min 𝐻 = 𝑛𝑖𝑙

𝑯

1711

27

8 12

min 𝐻1

6

29 25

1 18

14

38

min 𝐻2

𝑯𝟏

𝑯𝟐

𝐵0𝐵1𝐵2

𝐵0𝐵1𝐵2

𝑙𝑖𝑛𝑘

𝐵0𝐵1𝐵2𝐵3

Binomial Heap Operations: UNION( 𝑯𝟏, 𝑯𝟐)
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18

18

12

min 𝐻

𝑯

1711

27

8

min 𝐻1

6

29 25

1

14

38

min 𝐻2

𝑯𝟏

𝑯𝟐

𝐵0𝐵1𝐵2

𝐵0𝐵1𝐵2

𝑙𝑖𝑛𝑘

𝐵0𝐵1𝐵2𝐵3

Binomial Heap Operations: UNION( 𝑯𝟏, 𝑯𝟐)
16



12

18

18

12

min 𝐻

𝑯

1711

27

8

min 𝐻1

6

29 25

1

14

38

min 𝐻2

𝑯𝟏

𝑯𝟐

𝐵0𝐵1𝐵2

𝐵0𝐵1𝐵2

𝑙𝑖𝑛𝑘
𝐵0𝐵1𝐵2𝐵3

Binomial Heap Operations: UNION( 𝑯𝟏, 𝑯𝟐)
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18

12

25

1

12

18

min 𝐻

𝑯

1711

27

8

min 𝐻1

6

2914

38

min 𝐻2

𝑯𝟏

𝑯𝟐

𝐵0𝐵1𝐵2

𝐵0𝐵1𝐵2

𝑙𝑖𝑛𝑘

1

2512

18

𝐵0𝐵1𝐵2𝐵3

Binomial Heap Operations: UNION( 𝑯𝟏, 𝑯𝟐)
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1

12

18

min 𝐻

𝑯

1711

27

8

min 𝐻1

6

2914

38

min 𝐻2

𝑯𝟏

𝑯𝟐

𝐵0𝐵1𝐵2

𝐵0𝐵1𝐵2

𝑙𝑖𝑛𝑘

1

2512

18

𝐵0𝐵1𝐵2𝐵3

Binomial Heap Operations: UNION( 𝑯𝟏, 𝑯𝟐)
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25

1

12

18

min 𝐻

𝑯

1711

27

8

min 𝐻1

6

2914

38

min 𝐻2

𝑯𝟏

𝑯𝟐

𝐵0𝐵1𝐵2

𝐵0𝐵1𝐵2

𝑙𝑖𝑛𝑘

1

2512

18

6

2914

381711

27

8

𝐵0𝐵1𝐵2𝐵3

Binomial Heap Operations: UNION( 𝑯𝟏, 𝑯𝟐)
20



25

1

12

18

min 𝐻

𝑯 = 𝑼𝒏𝒊𝒐𝒏 𝑯𝟏, 𝑯𝟐

1711

27

8

min 𝐻1

6

2914

38

min 𝐻2

𝑯𝟏

𝑯𝟐

𝐵0𝐵1𝐵2

𝐵0𝐵1𝐵2

𝐵0𝐵1𝐵2𝐵3

1

2512

18

6

2914

381711

27

8

Binomial Heap Operations: UNION( 𝑯𝟏, 𝑯𝟐)
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Binomial Heap Operations: UNION( 𝑯𝟏, 𝑯𝟐)

UNION 𝐻1, 𝐻2 works in exactly the same way as binary addition.

Let 𝑛𝑖 be the number of nodes in 𝐻𝑖 (𝑖 = 1,2).

Then the largest binomial tree in 𝐻𝑖

is a 𝐵𝑘𝑖, where 𝑘𝑖 = log2 𝑛𝑖 .

Thus 𝐻𝑖 can be treated as a 𝑘𝑖 + 1

bit binary number 𝑥𝑖, where bit 𝑗 is 1

if 𝐻𝑖 contains a 𝐵𝑗, and 0 otherwise.

If 𝐻 = 𝑈𝑛𝑖𝑜𝑛 𝐻1, 𝐻2 , then 𝐻 can 

be viewed as a 𝑘 = log2 𝑛 bit 

binary number 𝑥 = 𝑥1 + 𝑥2,

where 𝑛 = 𝑛1 + 𝑛2.
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UNION 𝐻1, 𝐻2 works in exactly the same way as binary addition.

Initially, 𝐻 does not contain any binomial trees.

Melding starts from 𝐵0 ( LSB ) and 

continues up to 𝐵𝑘 ( MSB ).

At each location 𝑗 ∈ [0, 𝑘], one 

encounters at most three ( 3 ) 𝐵𝑗’s: 

− at most 1 from 𝐻1 ( input ), 

− at most 1 from 𝐻2 ( input ), and 

− if 𝑗 > 0, at most 1 from 𝐻 ( carry )

Binomial Heap Operations: UNION( 𝑯𝟏, 𝑯𝟐)
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UNION 𝐻1, 𝐻2 works in exactly the same way as binary addition.

When the number of 𝐵𝑗’s at location 𝑗 ∈ [0, 𝑘] is:

− 0: location 𝑗 of 𝐻 is set to 𝑛𝑖𝑙

− 1: location 𝑗 of 𝐻 points to that 𝐵𝑗

− 2: the two 𝐵𝑗’s are linked to produce

a 𝐵𝑗+1 which is stored as a carry 

at location 𝑗 + 1 of 𝐻, and 

location 𝑗 is set to 𝑛𝑖𝑙

− 3: two 𝐵𝑗’s are linked to produce

a 𝐵𝑗+1 which is stored as a 

carry at location 𝑗 + 1 of 

𝐻, and the 3rd 𝐵𝑗 is 

stored at location 𝑗

Binomial Heap Operations: UNION( 𝑯𝟏, 𝑯𝟐)
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UNION 𝐻1, 𝐻2 works in exactly the same way as binary addition.

Worst case cost of UNION 𝐻1, 𝐻2 is clearly  log 𝑛 , where 𝑛 is 

the total number of nodes in 𝐻1 and 𝐻2.

Observe that this operation fills out

𝑘 + 1 locations of 𝐻, where 𝑘 = log2 𝑛 .

It does only  1 work for each

location.

Hence, total cost is  𝑘 =  log 𝑛 .

Binomial Heap Operations: UNION( 𝑯𝟏, 𝑯𝟐)
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One can improve the performance of UNION 𝐻1, 𝐻2 as follows. 

W.l.o.g., suppose 𝐻2 is at least as large as 𝐻1, i.e., 𝑛2 ≥ 𝑛1.

We also assume that 𝐻2 has enough 

space to store at least up to 𝐵𝑘, where, 

𝑘 = log2 𝑛1 + 𝑛2 .

Then instead of melding 𝐻1 and 𝐻2

to a new heap 𝐻, we can meld them

in-place at 𝐻2.

After melding till 𝐵𝑘1, we stop once 

the carry stops propagating.

The cost is  𝑘1 , but  𝑘2 .

Worst-case cost is still  𝑘 =  log 𝑛 .

Binomial Heap Operations: UNION( 𝑯𝟏, 𝑯𝟐)
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Step 1: 𝐻′ ← MAKE-HEAP 𝑥

Takes  1 time.

Step 2: 𝐻 ← UNION 𝐻,𝐻′

( in-place at 𝐻 )

Takes  log 𝑛 time, where

𝑛 is the number of nodes in 𝐻. 

Thus the worst-case cost of 

INSERT 𝐻, 𝑥 is  log 𝑛 , where

𝑛 is the number of items already

in the heap.

Binomial Heap Operations: INSERT( 𝑯, 𝒙 )

1711

27

8 12

min 𝐻

𝑯

𝐵0𝐵1𝐵2

8

17 12

5

11

27

min 𝐻

𝑯

𝐵0𝐵1𝐵2

5

𝑯′

𝐵0

min 𝐻′
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min 𝐻

𝐵0𝐵1𝐵2𝐵3

8

1711

272512

18

10 38

14 29

𝑯

Step 4: UNION 𝐻,𝐻′ and update the min pointer

Binomial Heap Operations: EXTRACT-MIN( 𝑯 )

min 𝐻
𝑯

𝐵0𝐵1𝐵2𝐵3

10

2512

18

6

2914

381711

27

8

6

Step 1:
remove  
minimum 
element

8

17 38

14 29

11

27

min 𝐻′ = 𝑛𝑖𝑙

𝑯′

𝐵0𝐵1𝐵2

Step 3: remove the root of the binomial 
tree with the minimum element, and form
a new binomial heap from the children of 
the removed root

2512

18

10

min 𝐻 = 𝑛𝑖𝑙

𝑯

𝐵0𝐵1𝐵2

Step 2: remove the binomial tree with 
the smallest root from the input heap
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Binomial Heap Operations: EXTRACT-MIN( 𝑯 )

min 𝐻
𝑯

𝐵0𝐵1𝐵2𝐵3

10

2512

18

6

2914

381711

27

8

6

Step 1:
remove  
minimum 
element

 1

Thus, the worst-case cost of 

EXTRACT-MIN 𝐻 is  log 𝑛

min 𝐻

𝐵0𝐵1𝐵2𝐵3

8

1711

272512

18

10 38

14 29

𝑯

Step 4: UNION 𝐻,𝐻′ and update the min pointer

8

17 38

14 29

11

27

min 𝐻′ = 𝑛𝑖𝑙

𝑯′

𝐵0𝐵1𝐵2

Step 3: remove the root of the binomial 
Tree with the minimum element, and form
a new binomial heap from the children of 
the removed root

 log 𝑛

 log 𝑛

2512

18

10

min 𝐻 = 𝑛𝑖𝑙

𝑯

𝐵0𝐵1𝐵2

Step 2: remove the binomial tree with 
the smallest root from the input heap

 1
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Binomial Heap Operations

Heap 
Operation

Worst-case

MAKE-HEAP  1

INSERT  log 𝑛

MINIMUM  1

EXTRACT-MIN  log 𝑛

UNION  log 𝑛

31



Amortized Analysis ( Accounting Method )

We maintain a credit account for every tree in the heap, and 

always maintain the following invariant:

ሥ

𝐵𝑗∈𝐻

𝑐𝑟𝑒𝑑𝑖𝑡 𝐵𝑗 = 1

MAKE-HEAP( 𝒙 ):

actual cost, 𝑐𝑖 = 1 ( for creating the singleton heap )

extra charge, 𝛿𝑖 = 1 ( for storing in the credit account 

of the new tree )

amortized cost, Ƹ𝑐𝑖 = 𝑐𝑖 + 𝛿𝑖 = 2 =  1

33



We maintain a credit account for every tree in the heap, and 

always maintain the following invariant:

LINK( 𝑩𝒌
(𝟏)
, 𝑩𝒌

(𝟐)
):

actual cost, 𝑐𝑖 = 1 ( for linking the two trees )

We use 𝑐𝑟𝑒𝑑𝑖𝑡 𝐵𝑘
(1)

pay for this actual work.

Let 𝐵𝑘+1 be the newly created tree. We restore the credit invariant 

by transferring 𝑐𝑟𝑒𝑑𝑖𝑡 𝐵𝑘
(2)

to 𝑐𝑟𝑒𝑑𝑖𝑡 𝐵𝑘+1 . 

Hence, amortized cost, Ƹ𝑐𝑖 = 𝑐𝑖 + 𝛿𝑖 = 1 − 1 = 0

Amortized Analysis ( Accounting Method )

ሥ

𝐵𝑗∈𝐻

𝑐𝑟𝑒𝑑𝑖𝑡 𝐵𝑗 = 1

34



We maintain a credit account for every tree in the heap, and 

always maintain the following invariant:

INSERT( 𝑯,𝒙 ):

Amortized cost of MAKE-HEAP 𝑥 is = 2

Then UNION 𝐻,𝐻′ is simply a sequence of free LINK operations 

with only a constant amount of additional work that do not create 

any new trees. Thus the credit invariant is maintained, and the 

amortized cost of this step is = 1.

Hence, amortized cost of INSERT, Ƹ𝑐𝑖 = 2 + 1 = 3 =  1

Amortized Analysis ( Accounting Method )

ሥ

𝐵𝑗∈𝐻

𝑐𝑟𝑒𝑑𝑖𝑡 𝐵𝑗 = 1
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We maintain a credit account for every tree in the heap, and 

always maintain the following invariant:

UNION( 𝑯𝟏, 𝑯𝟐 ):

UNION 𝐻1, 𝐻2 includes a sequence of free LINK operations that 

maintain the credit invariant.

But it also includes  log 𝑛 other operations that are not free 

( e.g., consider melding a heap with 𝑛 = 2𝑘 elements with one 

containing 𝑛 − 1 elements ). These operations do not create new 

trees (and so do not violate the credit invariant), and each cost  1 .

Hence, amortized cost of UNION, Ƹ𝑐𝑖 =  log 𝑛

Amortized Analysis ( Accounting Method )

ሥ

𝐵𝑗∈𝐻

𝑐𝑟𝑒𝑑𝑖𝑡 𝐵𝑗 = 1

36



We maintain a credit account for every tree in the heap, and 

always maintain the following invariant:

EXTRACT-MIN( 𝑯 ):

Steps 1 & 2: The  1 actual cost is paid for by the credit released 

by the deleted tree.

Step 3: Exposes  log 𝑛 new trees, and we charge 1 unit of extra 

credit for storing in the credit account of each such tree. 

Step 4: Performs a UNION that has  log 𝑛 amortized cost.

Hence, amortized cost of EXTRACT-MIN, Ƹ𝑐𝑖 =  log 𝑛

Amortized Analysis ( Accounting Method )

ሥ

𝐵𝑗∈𝐻

𝑐𝑟𝑒𝑑𝑖𝑡 𝐵𝑗 = 1
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Potential Function, 

Φ 𝐷𝑖 = 𝑐 × ( #trees in the data structure after the 𝑖-th operation ),

where 𝑐 is a constant.

Amortized Analysis ( Potential Method )

Clearly, Φ 𝐷0 = 0 ( no trees in the data structure initially )

and for all 𝑖 > 0, Φ 𝐷𝑖 ≥ 0 ( #trees cannot be negative )

MAKE-HEAP( 𝒙 ):

actual cost, 𝑐𝑖 = 1 ( for creating the singleton heap )

potential change, Δ𝑖 = Φ 𝐷𝑖 −Φ 𝐷𝑖−1 = 𝑐

( as #trees increases by 1 )

amortized cost, Ƹ𝑐𝑖 = 𝑐𝑖 + Δ𝑖 = 1 + 𝑐 =  1
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Amortized Analysis ( Potential Method )

INSERT( 𝑯,𝒙 ): 

The number of trees increases by 1 initially. 

Then the operation scans 𝑘 > 0 ( say ) locations of the array 

of tree pointers. Observe that we use tree linking (𝑘 − 1) times each 

of which reduces the number of trees by 1.

actual cost, 𝑐𝑖 = 1 + 𝑘

potential change, Δ𝑖 = Φ 𝐷𝑖 −Φ 𝐷𝑖−1 = 𝑐(1 − 𝑘 − 1 )

= 𝑐 − 𝑐 𝑘 − 1

amortized cost, Ƹ𝑐𝑖 = 𝑐𝑖 + Δ𝑖 = 2 + 𝑐 − (𝑐 − 1)(𝑘 − 1)

For 𝑐 ≥ 1, we have, Ƹ𝑐𝑖 ≤ 2 + 𝑐 =  1

Potential Function, 

Φ 𝐷𝑖 = 𝑐 × ( #trees in the data structure after the 𝑖-th operation ),

where 𝑐 is a constant.
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Amortized Analysis ( Potential Method )

UNION( 𝑯𝟏, 𝑯𝟐 ): 

Suppose the operation scans 𝑘 > 0 locations of the array of 

tree pointers, and uses the link operation 𝑙 times. Observe that 𝑘 >

𝑙 ≥ 0. Each link reduces the number of trees by 1.

actual cost, 𝑐𝑖 = 𝑘

potential change, Δ𝑖 = Φ 𝐷𝑖 −Φ 𝐷𝑖−1 = −𝑐 × 𝑙

amortized cost, Ƹ𝑐𝑖 = 𝑐𝑖 + Δ𝑖 = 𝑘 − 𝑐 × 𝑙

Since 𝑘 =  log 𝑛 and 𝑙 =  log 𝑛 , we have,

Ƹ𝑐𝑖 =  log 𝑛 for any 𝑐.

Potential Function, 

Φ 𝐷𝑖 = 𝑐 × ( #trees in the data structure after the 𝑖-th operation ),

where 𝑐 is a constant.
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Amortized Analysis ( Potential Method )

EXTRACT-MIN( 𝑯 ): 

Let   in Step 1: 𝑟 = rank of the tree with the smallest key 

and  in Step 4: 𝑘 = #locations of pointer array scanned during UNION

𝑙 = #link operations during UNION

𝑡 = #trees in the heap after the UNION

Then actual cost, 𝑐𝑖 = 1 step 1 + 1 step 2 + 𝑟 step 3

+ 𝑘 step 4: union + 𝑡 ( step 4: update𝑚𝑖𝑛 ptr )

= 2 + 𝑘 + 𝑡 + 𝑟

Potential Function, 

Φ 𝐷𝑖 = 𝑐 × ( #trees in the data structure after the 𝑖-th operation ),

where 𝑐 is a constant.
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Amortized Analysis ( Potential Method )

EXTRACT-MIN( 𝑯 ): 

Let   in Step 1: 𝑟 = rank of the tree with the smallest key 

and  in Step 4: 𝑘 = #locations of pointer array scanned during UNION

𝑙 = #link operations during UNION

𝑡 = #trees in the heap after the UNION

potential change, Δ𝑖 = Φ 𝐷𝑖 −Φ 𝐷𝑖−1
= 𝑐 × 𝑟 − 1 ( removing𝑚𝑖𝑛 element in step 1

removes 1 tree but creates 𝑟 new ones )

−𝑐 × 𝑙 ( linkings in step 4

reduces #trees by 𝑙 )

Potential Function, 

Φ 𝐷𝑖 = 𝑐 × ( #trees in the data structure after the 𝑖-th operation ),

where 𝑐 is a constant.
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Amortized Analysis ( Potential Method )

EXTRACT-MIN( 𝑯 ): 

Let   in Step 1: 𝑟 = rank of the tree with the smallest key 

and  in Step 4: 𝑘 = #locations of pointer array scanned during UNION

𝑙 = #link operations during UNION

𝑡 = #trees in the heap after the UNION

actual cost, 𝑐𝑖 = 2 + 𝑘 + 𝑡 + 𝑟

potential change, Δ𝑖 = Φ 𝐷𝑖 −Φ 𝐷𝑖−1 = 𝑐 × 𝑟 − 𝑙 − 1

Then amortized cost, Ƹ𝑐𝑖 = 𝑐𝑖 + Δ𝑖 = 2 + 𝑘 + 𝑡 + 𝑟 + 𝑐 × 𝑟 − 𝑙 − 1

Since 𝑘 =  log 𝑛 , 𝑙 =  log 𝑛 , 𝑡 =  log 𝑛 & 𝑟 =  log 𝑛 ,

we have,  Ƹ𝑐𝑖 =  log 𝑛 for any 𝑐.

Potential Function, 

Φ 𝐷𝑖 = 𝑐 × ( #trees in the data structure after the 𝑖-th operation ),

where 𝑐 is a constant.
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Binomial Heap Operations

Heap 
Operation

Worst-case Amortized

MAKE-HEAP  1  1

INSERT  log 𝑛  1

MINIMUM  1  1

EXTRACT-MIN  log 𝑛  log 𝑛

UNION  log 𝑛  log 𝑛
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Binomial Heaps with Lazy Union 

We maintain pointers to the trees in a doubly linked circular list 

( instead of an array ), but do not maintain a 𝑚𝑖𝑛 pointer. 
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Binomial Heap Operations with Lazy Union 

MAKE-HEAP( 𝒙 ): Create a singleton heap as before. Hence,              

amortized cost =  1 .

UNION( 𝑯𝟏, 𝑯𝟐 ): Simply concatenate the two root lists into one, 

and update the min pointer. Clearly, amortized cost =  1 .

We maintain the following invariant: ሥ

𝐵𝑗∈𝐻

𝑐𝑟𝑒𝑑𝑖𝑡 𝐵𝑗 = 2

INSERT( 𝑯,𝒙 ): This is MAKE-HEAP followed by a UNION. Hence, 

amortized cost =  1 .

LINK( 𝑩𝒌
(𝟏)
, 𝑩𝒌

(𝟐)
): The two input trees have 4 units of saved credits 

of which 1 unit will be used to pay for the actual cost of linking, and 

2 units will be saved as credit for the newly created tree. So, linking 

is still free,  and it has 1 unused credit that can be used to pay for 

additional work if necessary.
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Binomial Heap Operations with Lazy Union 

EXTRACT-MIN( 𝑯 ): Unlike in the array version, in this case we may 

have several trees of the same rank.

We create an array of length log2 𝑛 + 1 with each location 

containing a 𝑛𝑖𝑙 pointer. We use this array to transform the linked list 

version to array version. 

We go through the list of trees of 𝐻, inserting them one by one into 

the array, and linking and carrying if necessary so that finally we 

have at most one tree of each rank. We also create a min pointer.

We now perform EXTRACT-MIN as in the array case. 

Finally, we collect the nonempty trees from the array into a doubly 

linked list, and return.

We maintain the following invariant: ሥ

𝐵𝑗∈𝐻

𝑐𝑟𝑒𝑑𝑖𝑡 𝐵𝑗 = 2
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Binomial Heap Operations with Lazy Union 

EXTRACT-MIN( 𝑯 ): We only need to show that converting from linked 

list version to array version takes  log 𝑛 amortized time.

Suppose we start with 𝑡 trees, and perform 𝑙 links. So, we spend 

 𝑡 + 𝑙 time overall.

As each link decreases the number of trees by 1, after 𝑙 links we end 

up with 𝑡 − 𝑙 trees. Since at that point we have at most one tree of 

each rank, we have 𝑡 − 𝑙 ≤ log2 𝑛 + 1.

Thus 𝑡 + 𝑙 = 2𝑙 + 𝑡 − 𝑙 =  𝑙 + log 𝑛 .

The  𝑙 part can be paid for by the 𝑙 extra credits from 𝑙 links.

We only charge the  log 𝑛 part to EXTRACT-MIN.

We maintain the following invariant: ሥ

𝐵𝑗∈𝐻

𝑐𝑟𝑒𝑑𝑖𝑡 𝐵𝑗 = 2
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As before,   clearly, Φ 𝐷0 = 0

and for all 𝑖 > 0, Φ 𝐷𝑖 ≥ 0

Binomial Heap Operations with Lazy Union 

We use exactly the same potential function as in the previous version, 

Φ 𝐷𝑖 = 𝑐 × ( #trees in the data structure after the 𝑖-th operation ),

where 𝑐 is a constant.

MAKE-HEAP( 𝒙 ):

actual cost, 𝑐𝑖 = 1 ( for creating the singleton heap )

potential change, Δ𝑖 = Φ 𝐷𝑖 −Φ 𝐷𝑖−1 = 𝑐

( as #trees increases by 1 )

amortized cost, Ƹ𝑐𝑖 = 𝑐𝑖 + Δ𝑖 = 1 + 𝑐 =  1
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Binomial Heap Operations with Lazy Union 

We use exactly the same potential function as in the previous version, 

Φ 𝐷𝑖 = 𝑐 × ( #trees in the data structure after the 𝑖-th operation ),

where 𝑐 is a constant.

UNION( 𝑯𝟏, 𝑯𝟐 ): 

actual cost, 𝑐𝑖 = 1 ( for merging the two doubly linked lists )

potential change, Δ𝑖 = Φ 𝐷𝑖 −Φ 𝐷𝑖−1 = 0

( no new tree is created or destroyed )

amortized cost, Ƹ𝑐𝑖 = 𝑐𝑖 + Δ𝑖 = 1 =  1
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Binomial Heap Operations with Lazy Union 

We use exactly the same potential function as in the previous version, 

Φ 𝐷𝑖 = 𝑐 × ( #trees in the data structure after the 𝑖-th operation ),

where 𝑐 is a constant.

INSERT( 𝑯,𝒙 ): 

Constant amount of work is done by MAKE-HEAP and UNION, 

and MAKE-HEAP creates a new tree.

actual cost, 𝑐𝑖 = 1 + 1 = 2

potential change, Δ𝑖 = Φ 𝐷𝑖 −Φ 𝐷𝑖−1 = 𝑐

amortized cost, Ƹ𝑐𝑖 = 𝑐𝑖 + Δ𝑖 = 2 + 𝑐 =  1
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Binomial Heap Operations with Lazy Union 

We use exactly the same potential function as in the previous version, 

Φ 𝐷𝑖 = 𝑐 × ( #trees in the data structure after the 𝑖-th operation ),

where 𝑐 is a constant.

EXTRACT-MIN( 𝑯 ):

Cost of creating the array of pointers is log2 𝑛 + 1.

Suppose we start with 𝑡 trees in the doubly linked list, and perform 𝑙

link operations during the conversion from linked list to array version.  

So we perform 𝑡 + 𝑙 work, and end up with 𝑡 − 𝑙 trees.

Cost of converting to the linked list version is 𝑡 − 𝑙.

actual cost, 𝑐𝑖 = log2 𝑛 + 1 + 𝑡 + 𝑙 + 𝑡 − 𝑙 = 2𝑡 + log2 𝑛 + 1

potential change, Δ𝑖 = Φ 𝐷𝑖 −Φ 𝐷𝑖−1 = −𝑐 × 𝑙
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Binomial Heap Operations with Lazy Union 

We use exactly the same potential function as in the previous version, 

Φ 𝐷𝑖 = 𝑐 × ( #trees in the data structure after the 𝑖-th operation ),

where 𝑐 is a constant.

EXTRACT-MIN( 𝑯 ):

actual cost, 𝑐𝑖 = log2 𝑛 + 1 + 𝑡 + 𝑙 + 𝑡 − 𝑙 = 2𝑡 + log2 𝑛 + 1

potential change, Δ𝑖 = Φ 𝐷𝑖 −Φ 𝐷𝑖−1 = −𝑐 × 𝑙

amortized cost, Ƹ𝑐𝑖 = 𝑐𝑖 + Δ𝑖 = 2 𝑡 − 𝑙 + log2 𝑛 + 1 − 𝑐 − 2 × 𝑙

But  𝑡 − 𝑙 ≤ log2 𝑛 + 1 ( as we have at most one tree of each rank )

So, Ƹ𝑐𝑖 ≤ 3 log2 𝑛 + 3 − 𝑐 − 2 × 𝑙

≤ 3 log2 𝑛 + 3 ( assuming 𝑐 ≥ 2 )

=  log 𝑛
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Binomial Heap Operations

Heap 
Operation

Worst-case
Amortized

( Eager Union )
Amortized

( Lazy Union )

MAKE-
HEAP

 1  1  1

INSERT  log 𝑛  1  1

MINIMUM  1  1  1

EXTRACT-
MIN

 log 𝑛  log 𝑛  log 𝑛

UNION  log 𝑛  log 𝑛  1
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