
CSE 548: Analysis of Algorithms

Lecture 5

(Divide-and-Conquer Algorithms:

The Master Theorem)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Fall 2019

1

A Useful Recurrence

Consider the following recurrence:

𝑇 𝑛 = ቐ
 1 , 𝑖𝑓 𝑛 ≤ 1,

𝑎𝑇
𝑛

𝑏
+ 𝑓 𝑛 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;

where, 𝑎 ≥ 1 and 𝑏 > 1.

Arises frequently in the analyses of divide-and-conquer algorithms.

Consider the following recurrences from previous lectures.

Karatsuba’s Algorithm: 𝑇 𝑛 = 3𝑇
𝑛

2
+ 𝑛

Strassen’s Algorithm: 𝑇 𝑛 = 7𝑇
𝑛

2
+ 𝑛2

Fast Fourier Transform: 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛

2

How the Recurrence Unfolds

𝑇 𝑛 = ቐ
 1 , 𝑖𝑓 𝑛 ≤ 1,

𝑎𝑇
𝑛

𝑏
+ 𝑓 𝑛 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

3

How the Recurrence Unfolds

𝑻 𝒏

𝒇 𝒏 + 𝒂𝑻
𝒏

𝒃

𝑇 𝑛 = ቐ
 1 , 𝑖𝑓 𝑛 ≤ 1,

𝑎𝑇
𝑛

𝑏
+ 𝑓 𝑛 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

4

How the Recurrence Unfolds

𝑻 𝒏

𝒇 𝒏 + 𝒂𝑻
𝒏

𝒃

𝒂

𝑇 𝑛 = ቐ
 1 , 𝑖𝑓 𝑛 ≤ 1,

𝑎𝑇
𝑛

𝑏
+ 𝑓 𝑛 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

5

How the Recurrence Unfolds

𝑻 𝒏

𝒇 𝒏 + 𝒂𝑻
𝒏

𝒃

𝒇
𝒏

𝒃
+ 𝒂𝑻

𝒏

𝒃𝟐
𝒇

𝒏

𝒃
+ 𝒂𝑻

𝒏

𝒃𝟐
𝒇

𝒏

𝒃
+ 𝒂𝑻

𝒏

𝒃𝟐

𝒂

𝑇 𝑛 = ቐ
 1 , 𝑖𝑓 𝑛 ≤ 1,

𝑎𝑇
𝑛

𝑏
+ 𝑓 𝑛 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

…

6

How the Recurrence Unfolds

𝑻 𝒏

…

𝒇 𝒏 + 𝒂𝑻
𝒏

𝒃

𝒇
𝒏

𝒃
+ 𝒂𝑻

𝒏

𝒃𝟐
𝒇

𝒏

𝒃
+ 𝒂𝑻

𝒏

𝒃𝟐
𝒇

𝒏

𝒃
+ 𝒂𝑻

𝒏

𝒃𝟐

𝒂

𝒂𝒂 𝒂

𝑇 𝑛 = ቐ
 1 , 𝑖𝑓 𝑛 ≤ 1,

𝑎𝑇
𝑛

𝑏
+ 𝑓 𝑛 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

7

How the Recurrence Unfolds

𝑻 𝒏

…

𝒇 𝒏 + 𝒂𝑻
𝒏

𝒃

𝒇
𝒏

𝒃
+ 𝒂𝑻

𝒏

𝒃𝟐
𝒇

𝒏

𝒃
+ 𝒂𝑻

𝒏

𝒃𝟐
𝒇

𝒏

𝒃
+ 𝒂𝑻

𝒏

𝒃𝟐

𝒇
𝒏

𝒃𝟐
+ 𝒂𝑻

𝒏

𝒃𝟑
𝒇

𝒏

𝒃𝟐
+ 𝒂𝑻

𝒏

𝒃𝟑
…

𝒂

𝒂𝒂 𝒂

𝑇 𝑛 = ቐ
 1 , 𝑖𝑓 𝑛 ≤ 1,

𝑎𝑇
𝑛

𝑏
+ 𝑓 𝑛 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

8

How the Recurrence Unfolds

𝑻 𝒏

…

𝒇 𝒏 + 𝒂𝑻
𝒏

𝒃

𝒇
𝒏

𝒃
+ 𝒂𝑻

𝒏

𝒃𝟐
𝒇

𝒏

𝒃
+ 𝒂𝑻

𝒏

𝒃𝟐
𝒇

𝒏

𝒃
+ 𝒂𝑻

𝒏

𝒃𝟐

𝒇
𝒏

𝒃𝟐
+ 𝒂𝑻

𝒏

𝒃𝟑
𝒇

𝒏

𝒃𝟐
+ 𝒂𝑻

𝒏

𝒃𝟑
…

𝒂

𝒂𝒂 𝒂

𝒂 𝒂

𝑇 𝑛 = ቐ
 1 , 𝑖𝑓 𝑛 ≤ 1,

𝑎𝑇
𝑛

𝑏
+ 𝑓 𝑛 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

9

How the Recurrence Unfolds

𝑻 𝒏

…

𝒇 𝒏 + 𝒂𝑻
𝒏

𝒃

𝒇
𝒏

𝒃
+ 𝒂𝑻

𝒏

𝒃𝟐
𝒇

𝒏

𝒃
+ 𝒂𝑻

𝒏

𝒃𝟐
𝒇

𝒏

𝒃
+ 𝒂𝑻

𝒏

𝒃𝟐

𝒇
𝒏

𝒃𝟐
+ 𝒂𝑻

𝒏

𝒃𝟑
𝒇

𝒏

𝒃𝟐
+ 𝒂𝑻

𝒏

𝒃𝟑
…

𝒂

𝒂𝒂 𝒂

𝒂 𝒂

𝑻 𝟏𝑻 𝟏 …

…

𝑇 𝑛 = ቐ
 1 , 𝑖𝑓 𝑛 ≤ 1,

𝑎𝑇
𝑛

𝑏
+ 𝑓 𝑛 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

10

𝒇 𝒏

𝒂𝒇
𝒏

𝒃

𝒂𝟐𝒇
𝒏

𝒃𝟐

𝒂
𝐥𝐨𝐠𝒃𝒏𝑻 𝟏

=  𝒏
𝐥𝐨𝐠𝒃𝒂

…

How the Recurrence Unfolds

𝑻 𝒏

…

𝒇 𝒏 + 𝒂𝑻
𝒏

𝒃

𝒇
𝒏

𝒃
+ 𝒂𝑻

𝒏

𝒃𝟐
𝒇

𝒏

𝒃
+ 𝒂𝑻

𝒏

𝒃𝟐
𝒇

𝒏

𝒃
+ 𝒂𝑻

𝒏

𝒃𝟐

𝒇
𝒏

𝒃𝟐
+ 𝒂𝑻

𝒏

𝒃𝟑
𝒇

𝒏

𝒃𝟐
+ 𝒂𝑻

𝒏

𝒃𝟑
…

𝒂

𝒂𝒂 𝒂

𝒂 𝒂

𝑻 𝟏𝑻 𝟏 …

…

𝑇 𝑛 = ቐ
 1 , 𝑖𝑓 𝑛 ≤ 1,

𝑎𝑇
𝑛

𝑏
+ 𝑓 𝑛 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

𝐥𝐨𝐠𝒃𝒏

11

𝒇 𝒏

𝒂𝒇
𝒏

𝒃

𝒂𝟐𝒇
𝒏

𝒃𝟐

𝒂
𝐥𝐨𝐠𝒃𝒏𝑻 𝟏

=  𝒏
𝐥𝐨𝐠𝒃𝒂

…

How the Recurrence Unfolds: Case 1

𝑻 𝒏

…

𝒇 𝒏 + 𝒂𝑻
𝒏

𝒃

𝒇
𝒏

𝒃
+ 𝒂𝑻

𝒏

𝒃𝟐
𝒇

𝒏

𝒃
+ 𝒂𝑻

𝒏

𝒃𝟐
𝒇

𝒏

𝒃
+ 𝒂𝑻

𝒏

𝒃𝟐

𝒇
𝒏

𝒃𝟐
+ 𝒂𝑻

𝒏

𝒃𝟑
𝒇

𝒏

𝒃𝟐
+ 𝒂𝑻

𝒏

𝒃𝟑
…

𝒂

𝒂𝒂 𝒂

𝒂 𝒂

𝑻 𝟏𝑻 𝟏 …

…

𝑇 𝑛 = ቐ
 1 , 𝑖𝑓 𝑛 ≤ 1,

𝑎𝑇
𝑛

𝑏
+ 𝑓 𝑛 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

𝐥𝐨𝐠𝒃𝒏

Sums Geometrically Increase
Level by Level.

𝑓 𝑛 =  𝑛
log𝑏𝑎

_ 𝜖

for some constant 𝜖 > 0.

𝑻 𝒏 =  𝒏
𝐥𝐨𝐠𝒃𝒂

Last Level Dominates.

12

𝒇 𝒏

𝒂𝒇
𝒏

𝒃

𝒂𝟐𝒇
𝒏

𝒃𝟐

𝒂
𝐥𝐨𝐠𝒃𝒏𝑻 𝟏

=  𝒏
𝐥𝐨𝐠𝒃𝒂

…

How the Recurrence Unfolds: Case 2

𝑻 𝒏

…

𝒇 𝒏 + 𝒂𝑻
𝒏

𝒃

𝒇
𝒏

𝒃
+ 𝒂𝑻

𝒏

𝒃𝟐
𝒇

𝒏

𝒃
+ 𝒂𝑻

𝒏

𝒃𝟐
𝒇

𝒏

𝒃
+ 𝒂𝑻

𝒏

𝒃𝟐

𝒇
𝒏

𝒃𝟐
+ 𝒂𝑻

𝒏

𝒃𝟑
𝒇

𝒏

𝒃𝟐
+ 𝒂𝑻

𝒏

𝒃𝟑
…

𝒂

𝒂𝒂 𝒂

𝒂 𝒂

𝑻 𝟏𝑻 𝟏 …

…

𝑇 𝑛 = ቐ
 1 , 𝑖𝑓 𝑛 ≤ 1,

𝑎𝑇
𝑛

𝑏
+ 𝑓 𝑛 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

𝐥𝐨𝐠𝒃𝒏 Sums Arithmetically Increase
Level by Level.

𝑓 𝑛 =  𝑛
log𝑏𝑎 lg𝑘𝑛

for some constant 𝑘 ≥ 0.

𝑻 𝒏 =  𝒏
𝐥𝐨𝐠𝒃𝒂 𝐥𝐠𝒌+𝟏𝒏

No Level Dominates.

13

𝒇 𝒏

𝒂𝒇
𝒏

𝒃

𝒂𝟐𝒇
𝒏

𝒃𝟐

𝒂
𝐥𝐨𝐠𝒃𝒏𝑻 𝟏

=  𝒏
𝐥𝐨𝐠𝒃𝒂

…

How the Recurrence Unfolds: Case 3

𝑻 𝒏

…

𝒇 𝒏 + 𝒂𝑻
𝒏

𝒃

𝒇
𝒏

𝒃
+ 𝒂𝑻

𝒏

𝒃𝟐
𝒇

𝒏

𝒃
+ 𝒂𝑻

𝒏

𝒃𝟐
𝒇

𝒏

𝒃
+ 𝒂𝑻

𝒏

𝒃𝟐

𝒇
𝒏

𝒃𝟐
+ 𝒂𝑻

𝒏

𝒃𝟑
𝒇

𝒏

𝒃𝟐
+ 𝒂𝑻

𝒏

𝒃𝟑
…

𝒂

𝒂𝒂 𝒂

𝒂 𝒂

𝑻 𝟏𝑻 𝟏 …

…

𝑇 𝑛 = ቐ
 1 , 𝑖𝑓 𝑛 ≤ 1,

𝑎𝑇
𝑛

𝑏
+ 𝑓 𝑛 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

𝐥𝐨𝐠𝒃𝒏
Sums Geometrically decrease

Level by Level.

𝑓 𝑛 =  𝑛
log𝑏𝑎 + 𝜖 & 𝑎𝑓

𝑛

𝑏
≤ 𝑐𝑓 𝑛

for constants 𝜖 > 0 & 𝑐 < 1.

First Level
Dominates.

𝑻 𝒏 =  𝒇 𝒏 14

𝑇 𝑛 = ቐ
 1 , 𝑖𝑓 𝑛 ≤ 1,

𝑎𝑇
𝑛

𝑏
+ 𝑓 𝑛 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑎 ≥ 1, 𝑏 > 1 .

Case 1: 𝑓 𝑛 =  𝑛
log𝑏𝑎

_ 𝜖
for some constant 𝜖 > 0

𝑇 𝑛 =  𝑛
log𝑏𝑎

Case 2: 𝑓 𝑛 =  𝑛
log𝑏𝑎 lg𝑘𝑛 for some constant 𝑘 ≥ 0.

𝑇 𝑛 =  𝑛
log𝑏𝑎 lg𝑘+1𝑛

Case 3: 𝑓 𝑛 =  𝑛
log𝑏𝑎 + 𝜖 and 𝑎𝑓

𝑛

𝑏
≤ 𝑐𝑓 𝑛

for constants 𝜖 > 0 and 𝑐 < 1.

𝑇 𝑛 =  𝑓 𝑛

The Master Theorem

15

LEMMA 1: Let 𝑎 ≥ 1 and 𝑏 > 1 be constants, and let 𝑓 𝑛 be a
nonnegative function defined on exact powers of 𝑏. Define 𝑇 𝑛
on exact powers of 𝑏 by the recurrence

𝑇 𝑛 = ቐ
 1 , 𝑖𝑓 𝑛 = 1,

𝑎𝑇
𝑛

𝑏
+ 𝑓 𝑛 , 𝑖𝑓 𝑛 = 𝑏𝑖 ,

where 𝑖 is a positive integer. Then

𝑇 𝑛 = Θ 𝑛log𝑏𝑎 + ෍

𝑗=0

log𝑏𝑛−1

𝑎𝑗𝑓
𝑛

𝑏𝑗
.

Proof of the Master Theorem for Exact Powers of 𝒃

16

Proof of the Master Theorem for Exact Powers of 𝒃

17

LEMMA 2: Let 𝑎 ≥ 1 and 𝑏 > 1 be constants, and let 𝑓 𝑛 be a
nonnegative function defined on exact powers of 𝑏. A function
𝑔 𝑛 defined over exact powers of 𝑏 by

𝑔 𝑛 = ෍

𝑗=0

log𝑏𝑛−1

𝑎𝑗𝑓
𝑛

𝑏𝑗

has the following asymptotic bounds for exact powers of 𝑏:

1. If 𝑓 𝑛 = 𝑂 𝑛log𝑏 𝑎−𝜖 for some constant 𝜖 > 0, then

𝑔 𝑛 = 𝑂 𝑛log𝑏 𝑎 .

2. If 𝑓 𝑛 = Θ 𝑛log𝑏 𝑎 , then

𝑔 𝑛 = Θ 𝑛log𝑏 𝑎 log 𝑛 .

3. If 𝑎𝑓 𝑛/𝑏 ≤ 𝑐𝑓 𝑛 for some constant 𝑐 < 1 and all sufficiently
large 𝑛, then

𝑔 𝑛 = Θ 𝑓 𝑛 .

Proof of the Master Theorem for Exact Powers of 𝒃

18

PROOF OF LEMMA 2:

Case 1: We have:

𝑓 𝑛 = 𝑂 𝑛log𝑏 𝑎−𝜖 ⇒ 𝑓 𝑛/𝑏𝑗 = 𝑂 𝑛/𝑏𝑗
log𝑏 𝑎−𝜖

.

Substituting: 𝑔 𝑛 = 𝑂 σ
𝑗=0
log𝑏𝑛−1 𝑎𝑗

𝑛

𝑏𝑗

log𝑏 𝑎−𝜖
.

Now, σ𝑗=0
log𝑏𝑛−1𝑎𝑗

𝑛

𝑏𝑗

log𝑏 𝑎−𝜖
= 𝑛log𝑏 𝑎−𝜖 σ𝑗=0

log𝑏𝑛−1 𝑎𝑏𝜖

𝑏log𝑏 𝑎

𝑗

= 𝑛log𝑏 𝑎−𝜖 σ𝑗=0
log𝑏𝑛−1 𝑏𝜖 𝑗

= 𝑛log𝑏 𝑎−𝜖
𝑏𝜖 log𝑏 𝑛−1

𝑏𝜖−1

= 𝑛log𝑏 𝑎−𝜖
𝑛𝜖−1

𝑏𝜖−1

= 𝑛log𝑏 𝑎−𝜖𝑂 𝑛𝜖 = 𝑂 𝑛log𝑏 𝑎

Hence, 𝑔 𝑛 = 𝑂 𝑛log𝑏 𝑎 .

Proof of the Master Theorem for Exact Powers of 𝒃

19

PROOF OF LEMMA 2:

Case 2: We have:

𝑓 𝑛 = Θ 𝑛log𝑏 𝑎 ⇒ 𝑓 𝑛/𝑏𝑗 = Θ 𝑛/𝑏𝑗
log𝑏 𝑎

.

Substituting: 𝑔 𝑛 = Θ σ
𝑗=0
log𝑏𝑛−1 𝑎𝑗

𝑛

𝑏𝑗

log𝑏 𝑎
.

Now, σ𝑗=0
log𝑏𝑛−1𝑎𝑗

𝑛

𝑏𝑗

log𝑏 𝑎
= 𝑛log𝑏 𝑎 σ𝑗=0

log𝑏𝑛−1 𝑎

𝑏log𝑏 𝑎

𝑗

= 𝑛log𝑏 𝑎 σ𝑗=0
log𝑏𝑛−11

= 𝑛log𝑏 𝑎 log𝑏 𝑛

Hence, 𝑔 𝑛 = Θ 𝑛log𝑏 𝑎 log𝑏 𝑛 = Θ 𝑛log𝑏 𝑎 log 𝑛 .

Proof of the Master Theorem for Exact Powers of 𝒃

20

PROOF OF LEMMA 2:

Case 3: Since 𝑓 𝑛 appears in the definition of 𝑔 𝑛 and all terms
of 𝑔 𝑛 are nonnegative, we conclude that for exact powers of 𝑏:

𝑔 𝑛 = Ω 𝑓 𝑛 .

Given that for some constant 𝑐 < 1 and all sufficiently large 𝑛:

𝑎𝑓
𝑛

𝑏
≤ 𝑐𝑓 𝑛

⇒ 𝑓
𝑛

𝑏
≤

𝑐

𝑎
𝑓 𝑛

⇒ 𝑓
𝑛

𝑏𝑗
≤

𝑐

𝑎

𝑗
𝑓 𝑛

⇒ 𝑎𝑗𝑓
𝑛

𝑏𝑗
≤ 𝑐𝑗𝑓 𝑛 ,

where we assume that the values we iterate on are sufficiently large.

Since the last, and smallest such value is
𝑛

𝑏𝑗−1
, it is enough to assume

that
𝑛

𝑏𝑗−1
is sufficiently large.

Proof of the Master Theorem for Exact Powers of 𝒃

21

PROOF OF LEMMA 2:

Case 3 (continued): Substituting into the expression for 𝑔 𝑛 , and
adding an 𝑂 1 term to capture the terms that are not covered by
our assumption that 𝑛 is sufficiently large, we get:

𝑔 𝑛 = ෍

𝑗=0

log𝑏𝑛−1

𝑎𝑗𝑓
𝑛

𝑏𝑗

≤ σ𝑗=0
log𝑏𝑛−1 𝑐𝑗𝑓 𝑛 + 𝑂 1

≤ 𝑓 𝑛 σ𝑗=0
∞ 𝑐𝑗 + 𝑂 1

= 𝑓 𝑛
1

1−𝑐
+ 𝑂 1

= 𝑂 𝑓 𝑛

Hence, for exact powers of 𝑏: 𝑔 𝑛 = Θ 𝑓 𝑛 .

Proof of the Master Theorem for Exact Powers of 𝒃

22

LEMMA 3: Let 𝑎 ≥ 1 and 𝑏 > 1 be constants, and let 𝑓 𝑛 be a
nonnegative function defined on exact powers of 𝑏. Define 𝑇 𝑛
on exact powers of 𝑏 by the recurrence

𝑇 𝑛 = ቐ
 1 , 𝑖𝑓 𝑛 = 1,

𝑎𝑇
𝑛

𝑏
+ 𝑓 𝑛 , 𝑖𝑓 𝑛 = 𝑏𝑖 ,

where 𝑖 > 0 is an integer. Then 𝑇 𝑛 has the asymptotic follbounds
below for exact powers of 𝑏, and some constants 𝜖 > 0 and 𝑐 < 0:

1. If 𝑓 𝑛 = 𝑂 𝑛log𝑏 𝑎−𝜖 , then 𝑇 𝑛 = Θ 𝑛log𝑏 𝑎 .

2. If 𝑓 𝑛 = Θ 𝑛log𝑏 𝑎 , then 𝑇 𝑛 = Θ 𝑛log𝑏 𝑎 log 𝑛 .

3. If 𝑓 𝑛 = Ω 𝑛log𝑏 𝑎+𝜖 , and if 𝑎𝑓 𝑛/𝑏 ≤ 𝑐𝑓 𝑛 for all

sufficiently large 𝑛, then 𝑇 𝑛 = Θ 𝑓 𝑛 .

Proof of the Master Theorem for Exact Powers of 𝒃

PROOF OF LEMMA 3: Follows from Lemma 1 and Lemma 2.
23

We need to extend our analysis to allow situations in which floors
and ceilings appear in the Master recurrence:

𝑇 𝑛 = 𝑎𝑇
𝑛

𝑏
+ 𝑓 𝑛 ⋯⋯(1)

and 𝑇 𝑛 = 𝑎𝑇
𝑛

𝑏
+ 𝑓 𝑛 ⋯⋯(2)

Obtaining a lower bound on recurrence 1 and an upper bound on

recurrence 2 are not difficult because we can use
𝑛

𝑏
≥

𝑛

𝑏
in the

first case and
𝑛

𝑏
≤

𝑛

𝑏
in the second case.

Upper bounding recurrence 1 and lower bounding recurrence 2
require more effort, but they use similar techniques.

So, we will only try to prove an upper bound on recurrence 1 .

Extending the Master Theorem to All Integral 𝒏

24

Upper Bounding 𝑻 𝒏 = 𝒂𝑻 𝒏/𝒃 + 𝒇 𝒏

As we go down the recursion tree we encounter a sequence of
recursive invocations on the arguments:

𝑛, 𝑛/𝑏 , 𝑛/𝑏 /𝑏 , 𝑛/𝑏 /𝑏 /𝑏 , ………
25

Upper Bounding 𝑻 𝒏 = 𝒂𝑻 𝒏/𝒃 + 𝒇 𝒏

Let’s define the 𝑗𝑡ℎ element in the sequence by 𝑛𝑗, where

𝑛𝑗 = ൝
𝑛, 𝑖𝑓 𝑗 = 0,

𝑛𝑗−1/𝑏 , 𝑖𝑓 𝑗 > 0.
26

Upper Bounding 𝑻 𝒏 = 𝒂𝑻 𝒏/𝒃 + 𝒇 𝒏

Let’s first determine a depth ℎ such that 𝑛ℎ is a constant.

Using the inequality 𝑥 ≤ 𝑥 + 1 , we obtain:

𝑛0 ≤ 𝑛,

𝑛1 ≤
𝑛

𝑏
+ 1,

𝑛2 ≤
𝑛

𝑏2
+

1

𝑏
+ 1,

𝑛3 ≤
𝑛

𝑏3
+

1

𝑏2
+

1

𝑏
+ 1,

and so on.

In general,

𝑛𝑗 ≤
𝑛

𝑏𝑗
+σ𝑖=0

𝑗−1 1

𝑏𝑖

<
𝑛

𝑏𝑗
+ σ𝑖=0

∞ 1

𝑏𝑖

=
𝑛

𝑏𝑗
+

𝑏

𝑏−1
.

27

Upper Bounding 𝑻 𝒏 = 𝒂𝑻 𝒏/𝒃 + 𝒇 𝒏

Letting ℎ = log𝑏 𝑛 we obtain:

𝑛 log𝑏 𝑛 <
𝑛

𝑏 log𝑏 𝑛
+

𝑏

𝑏−1

<
𝑛

𝑏log𝑏 𝑛−1 +
𝑏

𝑏−1

<
𝑛

𝑛/𝑏
+

𝑏

𝑏−1

= 𝑏 +
𝑏

𝑏−1

= 𝑂 1

Hence, at depth ℎ = log𝑏 𝑛 the problem size is at most a constant.

28

Upper Bounding 𝑻 𝒏 = 𝒂𝑻 𝒏/𝒃 + 𝒇 𝒏

From the figure above we get:

𝑇 𝑛 = Θ 𝑛log𝑏𝑎 + ෍

𝑗=0

log𝑏𝑛−1

𝑎𝑗𝑓 𝑛𝑗
29

Upper Bounding 𝑻 𝒏 = 𝒂𝑻 𝒏/𝒃 + 𝒇 𝒏

We have:

𝑇 𝑛 = Θ 𝑛log𝑏𝑎 + ෍

𝑗=0

log𝑏𝑛−1

𝑎𝑗𝑓 𝑛𝑗

We will have to evaluate the following sum:

𝑔 𝑛 = ෍

𝑗=0

log𝑏𝑛−1

𝑎𝑗𝑓 𝑛𝑗

30

Upper Bounding 𝑻 𝒏 = 𝒂𝑻 𝒏/𝒃 + 𝒇 𝒏

We will evaluate the following sum:

𝑔 𝑛 = ෍

𝑗=0

log𝑏𝑛−1

𝑎𝑗𝑓 𝑛𝑗

Case 2: We have: 𝑓 𝑛 = Θ 𝑛log𝑏 𝑎 .

If we can show that 𝑓 𝑛𝑗 = 𝑂
𝑛

𝑏𝑗

log𝑏 𝑎
, then case 2 of

Lemma 2 will go through.

Observe that 𝑗 ≤ log𝑏 𝑛 ⇒
𝑏𝑗

𝑛
≤ 1.

Also, 𝑓 𝑛 = 𝑂 𝑛log𝑏 𝑎 implies that there exists a constant

𝑐′ > 0 such that for all sufficiently large 𝑛𝑗 the following holds:

𝑓 𝑛𝑗 ≤ 𝑐′
𝑛

𝑏𝑗
+

𝑏

𝑏−1

log𝑏 𝑎
.

31

Upper Bounding 𝑻 𝒏 = 𝒂𝑻 𝒏/𝒃 + 𝒇 𝒏

Case 2 (continued): We have:

𝑓 𝑛𝑗 ≤ 𝑐′
𝑛

𝑏𝑗
+

𝑏

𝑏−1

log𝑏 𝑎

= 𝑐′
𝑛

𝑏𝑗
1 +

𝑏𝑗

𝑛

𝑏

𝑏−1

log𝑏 𝑎

.

= 𝑐′
𝑛log𝑏 𝑎

𝑎𝑗
1 +

𝑏𝑗

𝑛

𝑏

𝑏−1

log𝑏 𝑎

.

≤ 𝑐′
𝑛log𝑏 𝑎

𝑎𝑗
1 +

𝑏

𝑏−1

log𝑏 𝑎

.

= 𝑂
𝑛log𝑏 𝑎

𝑎𝑗

= 𝑂
𝑛

𝑏𝑗

log𝑏 𝑎

32

Upper Bounding 𝑻 𝒏 = 𝒂𝑻 𝒏/𝒃 + 𝒇 𝒏

Case 1: The proof is similar to that of case 2. The key is to prove the

bound 𝑓 𝑛𝑗 = 𝑂
𝑛

𝑏𝑗

log𝑏 𝑎−𝜖
which is similar to what we did in

case 2 though the algebra is more intricate.

33

Upper Bounding 𝑻 𝒏 = 𝒂𝑻 𝒏/𝒃 + 𝒇 𝒏

Case 3: If 𝑎𝑓
𝑛

𝑏
≤ 𝑐𝑓 𝑛 for 𝑛 > 𝑏 +

𝑏

𝑏−1
, where 𝑐 < 1 is a

constant then it follows that 𝑎𝑗𝑓 𝑛𝑗 ≤ 𝑐𝑗𝑓 𝑛 .

Therefore, we can evaluate 𝑔 𝑛 as in the proof of Lemma 2.

34

Example Applications of Master Theorem

Example 1: 𝑇 𝑛 = 3𝑇
𝑛

2
+ 𝑛

Master Theorem Case 1: 𝑇 𝑛 =  𝑛log2 3

Example 2: 𝑇 𝑛 = 7𝑇
𝑛

2
+ 𝑛2

Master Theorem Case 1: 𝑇 𝑛 =  𝑛log2 7

Example 3: 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛

Master Theorem Case 2: 𝑇 𝑛 =  𝑛log 𝑛

Assuming that we have an infinite number of processors, and each

recursive call in example 2 above can be executed in parallel:

Example 4: 𝑇 𝑛 = 𝑇
𝑛

2
+ 𝑛2

Master Theorem Case 3: 𝑇 𝑛 =  𝑛2 35

Recurrences not Solvable using the Master Theorem

Example 1: 𝑇 𝑛 = 𝑛 𝑇
𝑛

2
+ 𝑛

𝑎 = 𝑛 is not a constant

Example 2: 𝑇 𝑛 = 2𝑇
𝑛

log 𝑛
+ 𝑛2

𝑏 = log 𝑛 is not a constant

Example 3: 𝑇 𝑛 =
1

2
𝑇

𝑛

2
+ 𝑛2

𝑎 =
1

2
is not ≥ 1

Example 4: 𝑇 𝑛 = 2𝑇
4𝑛

3
+ 𝑛

𝑏 =
3

4
is not > 1.

36

Recurrences not Solvable using the Master Theorem

Example 5: 𝑇 𝑛 = 3𝑇
𝑛

2
− 𝑛

𝑓 𝑛 = −𝑛 is not positive

Example 6: 𝑇 𝑛 = 2 𝑇
𝑛

2
+ 𝑛2 sin 𝑛

violates regularity condition of case 3

Example 7: 𝑇 𝑛 = 2𝑇
𝑛

2
+

𝑛

log 𝑛

𝑓 𝑛 = Ο 𝑛log𝑏 𝑎 , but ≠ Ο 𝑛log𝑏 𝑎−𝜖 for any constant 𝜖 > 0

Example 8: 𝑇 𝑛 = 𝑇
𝑛

2
+ 2𝑇

𝑛

4
+ 𝑛

𝑎 and 𝑏 are not fixed

37

