
CSE 548: Analysis of Algorithms

Lecture 4

(Divide-and-Conquer Algorithms:

Polynomial Multiplication)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Fall 2019

Coefficient Representation of Polynomials

𝐴 𝑥 = ෍

𝑗=0

𝑛−1

𝑎𝑗𝑥
𝑗

= 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯+ 𝑎𝑛−1𝑥

𝑛−1

𝐴 𝑥 is a polynomial of degree bound 𝑛 represented as a vector

𝑎 = 𝑎0, 𝑎1, ⋯ , 𝑎𝑛−1 of coefficients.

The degree of 𝐴 𝑥 is 𝑘 provided it is the largest integer such that

𝑎𝑘 is nonzero. Clearly, 0 ≤ 𝑘 ≤ 𝑛 − 1.

Evaluating 𝑨 𝒙 at a given point:

Takes  𝑛 time using Horner’s rule:

𝐴 𝑥0 = 𝑎0 + 𝑎1𝑥0 + 𝑎2 𝑥0
2 +⋯+ 𝑎𝑛−1 𝑥0

𝑛−1

= 𝑎0 + 𝑥0 𝑎1 + 𝑥0 𝑎2 +⋯+ 𝑥0 𝑎𝑛−2 + 𝑥0 𝑎𝑛−1 ⋯

Then , where, for .

Coefficient Representation of Polynomials

𝐶 𝑥 = ෍

𝑗=0

𝑛−1

𝑐𝑗𝑥
𝑗

Adding Two Polynomials:

Adding two polynomials of degree bound 𝑛 takes  𝑛 time.

𝑐𝑗 = 𝑎𝑗 + 𝑏𝑗

𝐶 𝑥 = 𝐴 𝑥 + 𝐵 𝑥

𝐴 𝑥 = ෍

𝑗=0

𝑛−1

𝑎𝑗𝑥
𝑗 𝐵 𝑥 = ෍

𝑗=0

𝑛−1

𝑏𝑗𝑥
𝑗where, and .

0 ≤ 𝑗 ≤ 𝑛 − 1

Then , where, for .

Coefficient Representation of Polynomials

𝐶 𝑥 = ෍

𝑗=0

2𝑛−2

𝑐𝑗𝑥
𝑗

Multiplying Two Polynomials:

The product of two polynomials of degree bound 𝑛 is another

polynomial of degree bound 2𝑛 − 1.

𝑐𝑗 = ෍

𝑘=0

𝑗

𝑎𝑘𝑏𝑗−𝑘

𝐶 𝑥 = 𝐴 𝑥 𝐵 𝑥

𝐴 𝑥 = ෍

𝑗=0

𝑛−1

𝑎𝑗𝑥
𝑗 𝐵 𝑥 = ෍

𝑗=0

𝑛−1

𝑏𝑗𝑥
𝑗where, and .

0 ≤ 𝑗 ≤ 2𝑛 − 2

The coefficient vector 𝑐 = 𝑐0, 𝑐1, ⋯ , 𝑐2𝑛−2 , denoted by 𝑐 = 𝑎  𝑏,

is also called the convolution of vectors 𝑎 = 𝑎0, 𝑎1, ⋯ , 𝑎𝑛−1 and

𝑏 = 𝑏0, 𝑏1, ⋯ , 𝑏𝑛−1 .

Clearly, straightforward evaluation of 𝑐 takes  𝑛2 time.

Convolution

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3

𝑏3𝑥
3 + 𝑏2𝑥

2 + 𝑏1𝑥 + 𝑏0

𝑎0𝑏0

Convolution

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3

𝑏3𝑥
3 + 𝑏2𝑥

2 + 𝑏1𝑥 + 𝑏0

𝑎0𝑏1𝑥 + 𝑎1𝑏0𝑥

Convolution

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3

𝑏3𝑥
3 + 𝑏2𝑥

2 + 𝑏1𝑥 + 𝑏0

𝑎0𝑏2𝑥
2 + 𝑎1𝑏1𝑥

2 + 𝑎2𝑏0𝑥
2

Convolution

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3

𝑏3𝑥
3 + 𝑏2𝑥

2 + 𝑏1𝑥 + 𝑏0

𝑎0𝑏3𝑥
3 + 𝑎1𝑏2𝑥

3 + 𝑎2𝑏1𝑥
3 + 𝑎3𝑏0𝑥

3

Convolution

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3

𝑏3𝑥
3 + 𝑏2𝑥

2 + 𝑏1𝑥 + 𝑏0

𝑎1𝑏3𝑥
4 + 𝑎2𝑏2𝑥

4 + 𝑎3𝑏1𝑥
4

Convolution

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3

𝑏3𝑥
3 + 𝑏2𝑥

2 + 𝑏1𝑥 + 𝑏0

𝑎2𝑏3𝑥
5 + 𝑎3𝑏2𝑥

5

Convolution

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3

𝑏3𝑥
3 + 𝑏2𝑥

2 + 𝑏1𝑥 + 𝑏0

𝑎3𝑏3𝑥
6

Then

Coefficient Representation of Polynomials

Multiplying Two Polynomials:

We can use Karatsuba’s algorithm (assume 𝑛 to be a power of 2):

𝐶 𝑥 = 𝐴 𝑥 𝐵 𝑥

= 𝐴1 𝑥 𝐵1 𝑥 + 𝑥
𝑛

2 𝐴1 𝑥 𝐵2 𝑥 + 𝐴2 𝑥 𝐵1 𝑥 + 𝑥𝑛 𝐴2 𝑥 𝐵2 𝑥

𝐴 𝑥 = ෍

𝑗=0

𝑛−1

𝑎𝑗𝑥
𝑗 = ෍

𝑗=0

𝑛
2−1

𝑎𝑗𝑥
𝑗 + 𝑥

𝑛
2 ෍

𝑗=0

𝑛
2−1

𝑎𝑛
2+𝑗

𝑥𝑗 = 𝐴1 𝑥 + 𝑥
𝑛
2𝐴2 𝑥

𝐵 𝑥 = ෍

𝑗=0

𝑛−1

𝑏𝑗𝑥
𝑗 = ෍

𝑗=0

𝑛
2−1

𝑏𝑗𝑥
𝑗 + 𝑥

𝑛
2 ෍

𝑗=0

𝑛
2−1

𝑏𝑛
2+𝑗

𝑥𝑗 = 𝐵1 𝑥 + 𝑥
𝑛
2𝐵2 𝑥

But 𝐴1 𝑥 𝐵2 𝑥 + 𝐴2 𝑥 𝐵1 𝑥

= 𝐴1 𝑥 +𝐴2 𝑥 𝐵1 𝑥 +𝐵2 𝑥 − 𝐴1 𝑥 𝐵1 𝑥 − 𝐴2 𝑥 𝐵2 𝑥

3 recursive multiplications of polynomials of degree bound
𝑛

2
.

Similar recurrence as in Karatsuba’s integer multiplication

algorithm leading to a complexity of  𝑛log2 3 =  𝑛1.59 .

Point-Value Representation of Polynomials

If then

Adding Two Polynomials:

Suppose we have point-value representations of two polynomials

of degree bound 𝑛 using the same set of 𝑛 points.

𝐶 𝑥 = 𝐴 𝑥 + 𝐵 𝑥

𝐴: 𝑥0, 𝑦0
𝑎 , 𝑥1, 𝑦1

𝑎 , … , 𝑥𝑛−1, 𝑦𝑛−1
𝑎

𝐵: 𝑥0, 𝑦0
𝑏 , 𝑥1, 𝑦1

𝑏 , … , 𝑥𝑛−1, 𝑦𝑛−1
𝑏

𝐶: 𝑥0, 𝑦0
𝑎 + 𝑦0

𝑏 , 𝑥1, 𝑦1
𝑎 + 𝑦1

𝑏 , … , 𝑥𝑛−1, 𝑦𝑛−1
𝑎 + 𝑦𝑛−1

𝑏

Thus polynomial addition takes  𝑛 time.

A point-value representation of a polynomial 𝐴 𝑥 is a set of 𝑛 point-

value pairs 𝑥0, 𝑦0 , 𝑥1, 𝑦1 , … , 𝑥𝑛−1, 𝑦𝑛−1 such that all 𝑥𝑘 are

distinct and 𝑦𝑘 = 𝐴 𝑥𝑘 for 0 ≤ 𝑘 ≤ 𝑛 − 1.

A polynomial has many point-value representations.

Point-Value Representation of Polynomials

If then

Multiplying Two Polynomials:

Suppose we have extended (why?) point-value representations of

two polynomials of degree bound 𝑛 using the same set of 2𝑛 points.

𝐶 𝑥 = 𝐴 𝑥 𝐵 𝑥

𝐴: 𝑥0, 𝑦0
𝑎 , 𝑥1, 𝑦1

𝑎 , … , 𝑥2𝑛−1, 𝑦2𝑛−1
𝑎

𝐵: 𝑥0, 𝑦0
𝑏 , 𝑥1, 𝑦1

𝑏 , … , 𝑥2𝑛−1, 𝑦2𝑛−1
𝑏

𝐶: 𝑥0, 𝑦0
𝑎𝑦0

𝑏 , 𝑥1, 𝑦1
𝑎𝑦1

𝑏 , … , 𝑥2𝑛−1, 𝑦2𝑛−1
𝑎 𝑦2𝑛−1

𝑏

Thus polynomial multiplication also takes only  𝑛 time!

(compare this with the  𝑛2 time needed in the coefficient form)

Faster Polynomial Multiplication?
(in Coefficient Form)

𝐴 𝑥 = 𝑎0 + 𝑎1𝑥 + ⋯+ 𝑎𝑛−1𝑥
𝑛−1

𝐵 𝑥 = 𝑏0 + 𝑏1𝑥 + ⋯+ 𝑏𝑛−1𝑥
𝑛−1 𝐶 𝑥 = 𝑐0 + 𝑐1𝑥 + ⋯+ 𝑐2𝑛−1𝑥

2𝑛−1

𝐴 𝑥0 , 𝐵 𝑥0
𝐴 𝑥1 , 𝐵 𝑥1

⋮
𝐴 𝑥2𝑛−1 , 𝐵 𝑥2𝑛−1

𝐶 𝑥0
𝐶 𝑥1
⋮

𝐶 𝑥2𝑛−1

ordinary
multiplication

Time  𝑛2

pointwise
multiplication

Time  𝑛

ev
al

u
at

io
n

Ti
m

e?

in
te

rp
o

la
ti

o
n

Ti
m

e?

Using Horner’s rule this approach takes  𝑛2 time.

Coefficient Representation  Point-Value Representation:

We select any set of 𝑛 distinct points 𝑥0, 𝑥1, … , 𝑥𝑛−1 , and

evaluate 𝐴 𝑥𝑘 for 0 ≤ 𝑘 ≤ 𝑛 − 1.

This again takes  𝑛2 time.

Point-Value Representation  Coefficient Representation:

We can interpolate using Lagrange’s formula:

𝐴 𝑥 = ෍

𝑘=0

𝑛−1
ς𝑗≠𝑘 𝑥 − 𝑥𝑗

ς𝑗≠𝑘 𝑥𝑘 − 𝑥𝑗
𝑦𝑘

In both cases we need to do much better!

Faster Polynomial Multiplication?
(in Coefficient Form)

Coefficient Form  Point-Value Form

𝐴 𝑥0
𝐴 𝑥1
∙
∙
∙

𝐴 𝑥𝑛−1

=

1 𝑥0 𝑥0
2 ⋯ 𝑥0

𝑛−1

1 𝑥1 𝑥1
2 ⋯ 𝑥1

𝑛−1

∙ ∙ ∙ ⋯ ∙
∙ ∙ ∙ ⋯ ∙
∙ ∙ ∙ ⋯ ∙
1 𝑥𝑛−1 𝑥𝑛−1

2 ⋯ 𝑥𝑛−1
𝑛−1

𝑎0
𝑎1
∙
∙
∙

𝑎𝑛−1

𝐴 𝑥 = 𝑎0 + 𝑎1𝑥 + ⋯+ 𝑎𝑛−1𝑥
𝑛−1A polynomial of degree bound 𝑛:

A set of 𝑛 distinct points: 𝑥0, 𝑥1, … , 𝑥𝑛−1

Compute point-value form: 𝑥0, 𝐴 𝑥0 , 𝑥1, 𝐴 𝑥1 , … , 𝑥𝑛−1, 𝐴 𝑥𝑛−1

Using matrix notation:

We want to choose the set of points in a way that simplifies the

multiplication.

In the rest of the lecture on this topic we will assume:

𝒏 is a power of 2.

Coefficient Form  Point-Value Form

𝐴 𝑥0
𝐴 𝑥1
∙

𝐴 𝑥 Τ𝑛 2−1

𝐴 𝑥 Τ𝑛 2+0

𝐴 𝑥 Τ𝑛 2+1

∙
𝐴 𝑥 Τ𝑛 2+ Τ𝑛 2−1

=

1 𝑥0 𝑥0
2 ⋯ 𝑥0

𝑛−1

1 𝑥1 𝑥1
2 ⋯ 𝑥1

𝑛−1

∙ ∙ ∙ ⋯ ∙

1 𝑥 Τ𝑛 2−1 𝑥 Τ𝑛 2−1
2

⋯ 𝑥 Τ𝑛 2−1
𝑛−1

1 −𝑥0 −𝑥0
2 ⋯ −𝑥0

𝑛−1

1 −𝑥1 −𝑥1
2 ⋯ −𝑥1

𝑛−1

∙ ∙ ∙ ⋯ ∙

1 −𝑥 Τ𝑛 2−1 −𝑥 Τ𝑛 2−1
2

⋯ −𝑥 Τ𝑛 2−1
𝑛−1

𝑎0
𝑎1
∙
∙
∙
∙
∙

𝑎𝑛−1

Let’s choose 𝑥 Τ𝑛 2+𝑗 = −𝑥𝑗 for 0 ≤ 𝑗 ≤ Τ𝑛 2 − 1. Then

𝑥 Τ𝑛 2+𝑗
𝑘
= ቐ

𝑥𝑗
𝑘
, 𝑖𝑓 𝑘 = 𝑒𝑣𝑒𝑛,

− 𝑥𝑗
𝑘
, 𝑖𝑓 𝑘 = 𝑜𝑑𝑑.

Observe that for 0 ≤ 𝑗 ≤ Τ𝑛 2 − 1:

Thus we have just split the original 𝑛 × 𝑛 matrix into two almost

similar
𝑛

2
× 𝑛 matrices!

Coefficient Form  Point-Value Form

How and how much do we save?

where, and .

𝐴 𝑥 = ෍

𝑙=0

𝑛−1

𝑎𝑙𝑥
𝑙 = ෍

𝑙=0

Τ𝑛 2−1

𝑎2𝑙𝑥
2𝑙 + ෍

𝑙=0

Τ𝑛 2−1

𝑎2𝑙+1𝑥
2𝑙+1

= ෍

𝑙=0

Τ𝑛 2−1

𝑎2𝑙 𝑥
2 𝑙

+ 𝑥 ෍

𝑙=0

Τ𝑛 2−1

𝑎2𝑙+1 𝑥2
𝑙
= 𝐴𝑒𝑣𝑒𝑛 𝑥2 + 𝑥𝐴𝑜𝑑𝑑 𝑥2 ,

𝐴𝑒𝑣𝑒𝑛 𝑥 = ෍

𝑙=0

Τ𝑛 2−1

𝑎2𝑙𝑥
𝑙 𝐴𝑜𝑑𝑑 𝑥 = ෍

𝑙=0

Τ𝑛 2−1

𝑎2𝑙+1𝑥
𝑙

Observe that for 0 ≤ 𝑗 ≤ Τ𝑛 2 − 1: 𝐴 𝑥𝑗 = 𝐴𝑒𝑣𝑒𝑛 𝑥𝑗
2 + 𝑥𝑗𝐴𝑜𝑑𝑑 𝑥𝑗

2

𝐴 𝑥 Τ𝑛 2+𝑗 = 𝐴 −𝑥𝑗 = 𝐴𝑒𝑣𝑒𝑛 𝑥𝑗
2 − 𝑥𝑗𝐴𝑜𝑑𝑑 𝑥𝑗

2

So in order to evaluate 𝐴 𝑥𝑗 for all 0 ≤ 𝑗 ≤ 𝑛 − 1, we need:

Τ𝑛 2 evaluations of 𝐴𝑒𝑣𝑒𝑛 and Τ𝑛 2 evaluations of 𝐴𝑜𝑑𝑑
𝑛 multiplications
Τ𝑛 2 additions and Τ𝑛 2 subtractions

Thus we save about half the computation!

Coefficient Form  Point-Value Form

If we can recursively evaluate 𝐴𝑒𝑣𝑒𝑛 and 𝐴𝑜𝑑𝑑 using the same

approach, we get the following recurrence relation for the running

time of the algorithm:

𝑇 𝑛 = ቐ
 1 , 𝑖𝑓 𝑛 = 1,

2𝑇
𝑛

2
+  𝑛 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

=  𝑛 log 𝑛

Our trick was to evaluate 𝐴 at 𝑥 (positive) and −𝑥 (negative).

But inputs to 𝐴𝑒𝑣𝑒𝑛 and 𝐴𝑜𝑑𝑑 are always of the form 𝑥2 (positive)!

How can we apply the same trick?

Coefficient Form  Point-Value Form

𝐴𝑒𝑣𝑒𝑛 𝑥0
𝐴𝑒𝑣𝑒𝑛 𝑥1

∙
∙
∙

𝐴𝑒𝑣𝑒𝑛 𝑥 Τ𝑛 2−1

=

1 𝑥0
2 𝑥0

4 ⋯ 𝑥0
𝑛−2

1 𝑥1
2 𝑥1

4 ⋯ 𝑥1
𝑛−2

∙ ∙ ∙ ⋯ ∙
∙ ∙ ∙ ⋯ ∙
∙ ∙ ∙ ⋯ ∙

1 𝑥 Τ𝑛 2−1
2

𝑥 Τ𝑛 2−1
4

⋯ 𝑥 Τ𝑛 2−1
𝑛−2

𝑎0
𝑎2
𝑎4
∙
∙

𝑎𝑛−2

Let us consider the evaluation of 𝐴𝑒𝑣𝑒𝑛 𝑥𝑗 for 0 ≤ 𝑗 ≤ Τ𝑛 2 − 1:

In order to apply the same trick on 𝐴𝑒𝑣𝑒𝑛 we must set:

𝑥 Τ𝑛 4+𝑗
2
= − 𝑥𝑗

2
for 0 ≤ 𝑗 ≤ Τ𝑛 4 − 1

Coefficient Form  Point-Value Form

In 𝐴𝑒𝑣𝑒𝑛 we set: 𝑥 Τ𝑛 4+𝑗
2 = −𝑥𝑗

2 for 0 ≤ 𝑗 ≤ Τ𝑛 4 − 1. Then

This means setting 𝑥 Τ𝑛 4+𝑗 = 𝑖𝑥𝑗, where 𝑖 = −1 (imaginary)!

This also allows us to apply the same trick on 𝐴𝑜𝑑𝑑.

𝐴𝑒𝑣𝑒𝑛 𝑥0
𝐴𝑒𝑣𝑒𝑛 𝑥1

∙
𝐴𝑒𝑣𝑒𝑛 𝑥 Τ𝑛 4−1

𝐴𝑒𝑣𝑒𝑛 𝑥 Τ𝑛 4+0

𝐴𝑒𝑣𝑒𝑛 𝑥 Τ𝑛 4+1

∙
𝐴𝑒𝑣𝑒𝑛 𝑥 Τ𝑛 4+ Τ𝑛 4−1

=

1 𝑥0
2 𝑥0

2 2
⋯ 𝑥0

2
𝑛
2
−1

1 𝑥1
2 𝑥1

2 2
⋯ 𝑥1

2
𝑛
2−1

∙ ∙ ∙ ⋯ ∙

1 𝑥 Τ𝑛 4−1
2 𝑥 Τ𝑛 4−1

2
2

⋯ 𝑥 Τ𝑛 4−1
2

𝑛
2−1

1 −𝑥0
2 −𝑥0

2 2
⋯ −𝑥0

2
𝑛
2−1

1 −𝑥1
2 −𝑥1

2 2
⋯ −𝑥1

2
𝑛
2−1

∙ ∙ ∙ ⋯ ∙

1 −𝑥 Τ𝑛 4−1
2 −𝑥 Τ𝑛 2−1

2
2

⋯ −𝑥 Τ𝑛 4−1
2

𝑛
2
−1

𝑎0
𝑎2
𝑎4
∙
∙
∙
∙

𝑎𝑛−2

Coefficient Form  Point-Value Form

We can apply the trick once if we set:

𝑥 Τ𝑛 2+𝑗 = −𝑥𝑗 for 0 ≤ 𝑗 ≤ Τ𝑛 2 − 1

We can apply the trick (recursively) 2 times if we also set:

𝑥 Τ𝑛 22+𝑗

2
= − 𝑥𝑗

2
for 0 ≤ 𝑗 ≤ Τ𝑛 22 − 1

We can apply the trick (recursively) 3 times if we also set:

𝑥 Τ𝑛 23+𝑗

22

= − 𝑥𝑗
22

for 0 ≤ 𝑗 ≤ Τ𝑛 23 − 1

We can apply the trick (recursively) 𝑘 times if we also set:

𝑥 Τ𝑛 2𝑘+𝑗

2𝑘−1

= − 𝑥𝑗
2𝑘−1

for 0 ≤ 𝑗 ≤ Τ𝑛 2𝑘 − 1

Coefficient Form  Point-Value Form

Consider the 𝑡𝑡ℎ primitive root of unity:

𝜔𝑡 = 𝑒
2𝜋𝑖

𝑡 = cos
2𝜋

𝑡
+ 𝑖 ∙ sin

2𝜋

𝑡
𝑖 = −1

𝑥 Τ𝑛 2+𝑗 = −𝑥𝑗  𝑥 Τ𝑛 21+𝑗 = 𝜔21 ∙ 𝑥𝑗

Then

𝑥 Τ𝑛 22+𝑗

2
= − 𝑥𝑗

2
 𝑥 Τ𝑛 22+𝑗 = 𝜔22 ∙ 𝑥𝑗

𝑥 Τ𝑛 23+𝑗

22

= − 𝑥𝑗
22

 𝑥 Τ𝑛 23+𝑗 = 𝜔23 ∙ 𝑥𝑗

𝑥 Τ𝑛 2𝑘+𝑗

2𝑘−1

= − 𝑥𝑗
2𝑘−1

 𝑥 Τ𝑛 2𝑘+𝑗 = 𝜔2𝑘 ∙ 𝑥𝑗

Coefficient Form  Point-Value Form

If 𝑛 = 2𝑘 we would like to apply the trick 𝑘 times recursively.

What values should we choose for 𝑥0, 𝑥1, … , 𝑥𝑛−1 ?

Example: For 𝑛 = 23 we need to choose 𝑥0, 𝑥1, … , 𝑥7 .

Choose: 𝑥0 = 1

𝑘 = 3: 𝑥1 = 𝜔23 ∙ 𝑥0

𝑘 = 2: 𝑥2 = 𝜔22 ∙ 𝑥0
𝑥3 = 𝜔22 ∙ 𝑥1

𝑘 = 1: 𝑥4 = 𝜔21 ∙ 𝑥0
𝑥5 = 𝜔21 ∙ 𝑥1
𝑥6 = 𝜔21 ∙ 𝑥2
𝑥7 = 𝜔21 ∙ 𝑥3

= 𝜔8
1

= 𝜔8
2

= 𝜔8
3

= 𝜔8
4

= 𝜔8
5

= 𝜔8
6

= 𝜔8
7

= 𝜔8
0

1
−1

𝑖

−𝑖

𝜔8
0 = 𝜔8

8

𝜔8
1

𝜔8
2

𝜔8
3

𝜔8
4

𝜔8
5

𝜔8
6

𝜔8
7

complex 𝟖𝒕𝒉 roots of unity

Coefficient Form  Point-Value Form

For a polynomial of degree bound 𝑛 = 2𝑘, we need to apply the

trick recursively at most log 𝑛 = 𝑘 times.

We choose 𝑥0 = 1 = 𝜔𝑛
0 and set 𝑥𝑗 = 𝜔𝑛

𝑗
for 1 ≤ 𝑗 ≤ 𝑛 − 1.

Then we compute the following product:

𝑦0
𝑦1
𝑦2
∙
∙

𝑦𝑛−1

=

𝐴 1
𝐴 𝜔𝑛

𝐴 𝜔𝑛
2

∙
∙

𝐴 𝜔𝑛
𝑛−1

=

1 1 1 ⋯ 1
1 𝜔𝑛 𝜔𝑛

2 ⋯ 𝜔𝑛
𝑛−1

1 𝜔𝑛
2 𝜔𝑛

2 2
⋯ 𝜔𝑛

2 𝑛−1

∙ ∙ ∙ ⋯ ∙
∙ ∙ ∙ ⋯ ∙

1 𝜔𝑛
𝑛−1 𝜔𝑛

𝑛−1 2
⋯ 𝜔𝑛

𝑛−1 𝑛−1

𝑎0
𝑎1
𝑎2
∙
∙

𝑎𝑛−1

The vector 𝑦 = 𝑦0, 𝑦1, ⋯ , 𝑦𝑛−1 is called the discrete Fourier

transform (DFT) of 𝑎0, 𝑎1, ⋯ , 𝑎𝑛−1 .

This method of computing DFT is called the fast Fourier transform

(FFT) method.

Coefficient Form  Point-Value Form

Example: For 𝑛 = 23 = 8:

𝐴 𝑥 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3 + 𝑎4𝑥
4 + 𝑎5𝑥

5 + 𝑎6𝑥
6 + 𝑎7𝑥

7

We need to evaluate 𝐴(𝑥) at 𝑥 = 𝜔8
𝑖 for 0 ≤ 𝑖 < 8.

Now 𝐴 𝑥 = 𝐴𝑒𝑣𝑒𝑛 𝑥2 + 𝑥 ∙ 𝐴𝑜𝑑𝑑(𝑥
2),

where 𝐴𝑒𝑣𝑒𝑛 𝑦 = 𝑎0 + 𝑎2𝑦 + 𝑎4𝑦
2 + 𝑎6𝑦

3

and 𝐴𝑜𝑑𝑑 𝑦 = 𝑎1 + 𝑎3𝑦 + 𝑎5𝑦
2 + 𝑎7𝑦

3

Coefficient Form  Point-Value Form

Observe that:

𝜔8
0 = 𝜔8

8 = 𝜔4
0

𝜔8
2 = 𝜔8

10 = 𝜔4
1

𝜔8
4 = 𝜔8

12 = 𝜔4
2

𝜔8
6 = 𝜔8

14 = 𝜔4
3

𝐴 𝜔8
0 = 𝐴𝑒𝑣𝑒𝑛 𝜔8

0 + 𝜔8
0 ∙ 𝐴𝑜𝑑𝑑 𝜔8

0 = 𝐴𝑒𝑣𝑒𝑛 𝜔4
0 + 𝜔8

0 ∙ 𝐴𝑜𝑑𝑑(𝜔4
0),

𝐴 𝜔8
1 = 𝐴𝑒𝑣𝑒𝑛 𝜔8

2 + 𝜔8
1 ∙ 𝐴𝑜𝑑𝑑 𝜔8

2 = 𝐴𝑒𝑣𝑒𝑛 𝜔4
1 + 𝜔8

1 ∙ 𝐴𝑜𝑑𝑑(𝜔4
1),

𝐴 𝜔8
2 = 𝐴𝑒𝑣𝑒𝑛 𝜔8

4 + 𝜔8
2 ∙ 𝐴𝑜𝑑𝑑 𝜔8

4 = 𝐴𝑒𝑣𝑒𝑛 𝜔4
2 + 𝜔8

2 ∙ 𝐴𝑜𝑑𝑑(𝜔4
2),

𝐴 𝜔8
3 = 𝐴𝑒𝑣𝑒𝑛 𝜔8

6 + 𝜔8
3 ∙ 𝐴𝑜𝑑𝑑 𝜔8

6 = 𝐴𝑒𝑣𝑒𝑛 𝜔4
3 + 𝜔8

3 ∙ 𝐴𝑜𝑑𝑑(𝜔4
3),

𝐴 𝜔8
4 = 𝐴𝑒𝑣𝑒𝑛 𝜔8

8 + 𝜔8
4 ∙ 𝐴𝑜𝑑𝑑 𝜔8

8 = 𝐴𝑒𝑣𝑒𝑛 𝜔4
0 − 𝜔8

0 ∙ 𝐴𝑜𝑑𝑑(𝜔4
0),

𝐴 𝜔8
5 = 𝐴𝑒𝑣𝑒𝑛 𝜔8

10 + 𝜔8
5 ∙ 𝐴𝑜𝑑𝑑 𝜔8

10 = 𝐴𝑒𝑣𝑒𝑛 𝜔4
1 − 𝜔8

1 ∙ 𝐴𝑜𝑑𝑑(𝜔4
1),

𝐴 𝜔8
6 = 𝐴𝑒𝑣𝑒𝑛 𝜔8

12 + 𝜔8
6 ∙ 𝐴𝑜𝑑𝑑 𝜔8

12 = 𝐴𝑒𝑣𝑒𝑛 𝜔4
2 − 𝜔8

2 ∙ 𝐴𝑜𝑑𝑑(𝜔4
2),

𝐴 𝜔8
7 = 𝐴𝑒𝑣𝑒𝑛 𝜔8

14 + 𝜔8
7 ∙ 𝐴𝑜𝑑𝑑 𝜔8

14 = 𝐴𝑒𝑣𝑒𝑛 𝜔4
3 − 𝜔8

3 ∙ 𝐴𝑜𝑑𝑑(𝜔4
3),

Also:

𝜔8
4 = −𝜔8

0

𝜔8
5 = −𝜔8

1

𝜔8
6 = −𝜔8

2

𝜔8
7 = −𝜔8

3

Coefficient Form  Point-Value Form

Rec-FFT ((a0, a1, …, an - 1)) { n = 2k for integer k  0 }

1. if n = 1 then

3. n  e2i/n

5. yeven  Rec-FFT ((a0, a2, …, an - 2))

2. return (a0)

7. for j  0 to n/2 − 1 do

8. yj  yj
even +  yj

odd

11. return y

4.   1

6. yodd  Rec-FFT ((a1, a3, …, an - 1))

9. yn/2+j  yj
even−  yj

odd

10.    n

𝑇 𝑛 = ቐ
 1 , 𝑖𝑓 𝑛 = 1,

2𝑇
𝑛

2
+  𝑛 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

=  𝑛 log𝑛

Running time:

Faster Polynomial Multiplication?
(in Coefficient Form)

𝐴 𝑥 = 𝑎0 + 𝑎1𝑥 + ⋯+ 𝑎𝑛−1𝑥
𝑛−1

𝐵 𝑥 = 𝑏0 + 𝑏1𝑥 + ⋯+ 𝑏𝑛−1𝑥
𝑛−1 𝐶 𝑥 = 𝑐0 + 𝑐1𝑥 + ⋯+ 𝑐2𝑛−1𝑥

2𝑛−1

𝐴 𝜔2𝑛
0 , 𝐵 𝜔2𝑛

0

𝐴 𝜔2𝑛
1 , 𝐵 𝜔2𝑛

1

⋮

𝐴 𝜔2𝑛
2𝑛−1 , 𝐵 𝜔2𝑛

2𝑛−1

𝐶 𝜔2𝑛
0

𝐶 𝜔2𝑛
1

⋮

𝐶 𝜔2𝑛
2𝑛−1

ordinary
multiplication

Time  𝑛2

pointwise
multiplication

Time  𝑛

fo
rw

ar
d

 F
FT

Ti
m

e


𝑛
lo
g
𝑛

in
te

rp
o

la
ti

o
n

Ti
m

e?

Point-Value Form  Coefficient Form

Given: 1 1 1 ⋯ 1
1 𝜔𝑛 𝜔𝑛

2 ⋯ 𝜔𝑛
𝑛−1

1 𝜔𝑛
2 𝜔𝑛

2 2
⋯ 𝜔𝑛

2 𝑛−1

∙ ∙ ∙ ⋯ ∙
∙ ∙ ∙ ⋯ ∙

1 𝜔𝑛
𝑛−1 𝜔𝑛

𝑛−1 2
⋯ 𝜔𝑛

𝑛−1 𝑛−1

𝑉 𝜔𝑛
𝑉𝑎𝑛𝑑𝑒𝑟𝑚𝑜𝑛𝑑𝑒 𝑀𝑎𝑡𝑟𝑖𝑥

𝑎0
𝑎1
𝑎2
∙
∙

𝑎𝑛−1
ത𝑎

=

𝑦0
𝑦1
𝑦2
∙
∙

𝑦𝑛−1
ത𝑦

 𝑉 𝜔𝑛 ∙ ത𝑎 = ത𝑦

We want to solve: ത𝑎 = 𝑉 𝜔𝑛
−1 ∙ ത𝑦

It turns out that: 𝑉 𝜔𝑛
−1 =

1

𝑛
𝑉

1

𝜔𝑛

That means 𝑉 𝜔𝑛
−1 looks almost similar to 𝑉 𝜔𝑛 !

We want to show that ,

where 𝐼𝑛 is the 𝑛 × 𝑛 identity matrix.

Point-Value Form  Coefficient Form

Show that: 𝑉 𝜔𝑛
−1 =

1

𝑛
𝑉

1

𝜔𝑛

Let 𝑈 𝜔𝑛 =
1

𝑛
𝑉

1

𝜔𝑛

𝑈 𝜔𝑛 𝑉 𝜔𝑛 = 𝐼𝑛

Observe that for 0 ≤ 𝑗, 𝑘 ≤ 𝑛 − 1, the 𝑗, 𝑘 𝑡ℎ entries are:

𝑈 𝜔𝑛 𝑗𝑘 =
1

𝑛
𝜔𝑛
−𝑗𝑘

𝑉 𝜔𝑛 𝑗𝑘 = 𝜔𝑛
𝑗𝑘

and

Then entry 𝑝, 𝑞 of 𝑈 𝜔𝑛 𝑉 𝜔𝑛 ,

𝑈 𝜔𝑛 𝑉 𝜔𝑛 𝑝𝑞 = ෍

𝑘=0

𝑛−1

𝑈 𝜔𝑛 𝑝𝑘 𝑉 𝜔𝑛 𝑘𝑞 =
1

𝑛
෍

𝑘=0

𝑛−1

𝜔𝑛
𝑘 𝑞−𝑝

Point-Value Form  Coefficient Form

𝑈 𝜔𝑛 𝑉 𝜔𝑛 𝑝𝑞 =
1

𝑛
෍

𝑘=0

𝑛−1

𝜔𝑛
𝑘 𝑞−𝑝

CASE 𝑝 = 𝑞:

𝑈 𝜔𝑛 𝑉 𝜔𝑛 𝑝𝑞 =
1

𝑛
෍

𝑘=0

𝑛−1

𝜔𝑛
0 =

1

𝑛
෍

𝑘=0

𝑛−1

1 =
1

𝑛
× 𝑛 = 1

CASE 𝑝 ≠ 𝑞:

𝑈 𝜔𝑛 𝑉 𝜔𝑛 𝑝𝑞 =
1

𝑛
෍

𝑘=0

𝑛−1

𝜔𝑛
𝑞−𝑝 𝑘

=
1

𝑛
×

𝜔𝑛
𝑞−𝑝 𝑛

− 1

𝜔𝑛
𝑞−𝑝

− 1

=
1

𝑛
×

𝜔𝑛
𝑛 𝑞−𝑝 − 1

𝜔𝑛
𝑞−𝑝

− 1
=
1

𝑛
×

1 𝑞−𝑝 − 1

𝜔𝑛
𝑞−𝑝

− 1
= 0

Hence 𝑈 𝜔𝑛 𝑉 𝜔𝑛 = 𝐼𝑛

Point-Value Form  Coefficient Form

We need to compute the following matrix-vector product:

𝑎0
𝑎1
𝑎2
∙
∙

𝑎𝑛−1
ത𝑎

=
1

𝑛
×

1 1 1 ⋯ 1

1
1

𝜔𝑛

1

𝜔𝑛

2

⋯
1

𝜔𝑛

𝑛−1

1
1

𝜔𝑛
2

1

𝜔𝑛
2

2

⋯
1

𝜔𝑛
2

𝑛−1

∙ ∙ ∙ ⋯ ∙
∙ ∙ ∙ ⋯ ∙

1
1

𝜔𝑛
𝑛−1

1

𝜔𝑛
𝑛−1

2

⋯
1

𝜔𝑛
𝑛−1

𝑛−1

𝑉 𝜔𝑛
−1

𝑦0
𝑦1
𝑦2
∙
∙

𝑦𝑛−1
ത𝑦

This inverse problem is almost similar to the forward problem,

and can be solved in  𝑛 log 𝑛 time using the same algorithm as

the forward FFT with only minor modifications!

Faster Polynomial Multiplication?
(in Coefficient Form)

𝐴 𝑥 = 𝑎0 + 𝑎1𝑥 + ⋯+ 𝑎𝑛−1𝑥
𝑛−1

𝐵 𝑥 = 𝑏0 + 𝑏1𝑥 + ⋯+ 𝑏𝑛−1𝑥
𝑛−1 𝐶 𝑥 = 𝑐0 + 𝑐1𝑥 + ⋯+ 𝑐2𝑛−1𝑥

2𝑛−1

𝐴 𝜔2𝑛
0 , 𝐵 𝜔2𝑛

0

𝐴 𝜔2𝑛
1 , 𝐵 𝜔2𝑛

1

⋮

𝐴 𝜔2𝑛
2𝑛−1 , 𝐵 𝜔2𝑛

2𝑛−1

𝐶 𝜔2𝑛
0

𝐶 𝜔2𝑛
1

⋮

𝐶 𝜔2𝑛
2𝑛−1

ordinary
multiplication

Time  𝑛2

pointwise
multiplication

Time  𝑛

fo
rw

ar
d

 F
FT

Ti
m

e


𝑛
lo
g
𝑛

in
ve

rs
e

FF
T

Ti
m

e


𝑛
lo
g
𝑛

Two polynomials of degree bound 𝑛 given in the coefficient form

can be multiplied in  𝑛 log 𝑛 time!

Some Applications of Fourier Transform and FFT

• Signal processing

• Image processing

• Noise reduction

• Data compression

• Solving partial differential equation

• Multiplication of large integers

• Polynomial multiplication

• Molecular docking

Some Applications of Fourier Transform and FFT

Jean Baptiste Joseph Fourier

Any periodic signal can be represented as a sum of a series of

sinusoidal (sine & cosine) waves. [1807]

Spatial (Time) Domain  Frequency Domain

Spatial (Time) Domain

Frequency Domain

Source: The Scientist and Engineer’s Guide to Digital Signal Processing by Steven W. Smith

Spatial (Time) Domain  Frequency Domain

Source: http://en.wikipedia.org/wiki/Fourier_series#mediaviewer/File:Fourier_series_and_transform.gif (uploaded by Bob K.)

Function s(x) (in red) is a sum of six sine functions of different amplitudes and
harmonically related frequencies. The Fourier transform, S(f) (in blue), which
depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

http://en.wikipedia.org/wiki/Fourier_series#mediaviewer/File:Fourier_series_and_transform.gif

Spatial (Time) Domain  Frequency Domain

Source: http://en.wikipedia.org/wiki/Fourier_series#mediaviewer/File:Fourier_series_and_transform.gif (uploaded by Bob K.)

Function s(x) (in red) is a sum of six sine functions of different amplitudes and
harmonically related frequencies. The Fourier transform, S(f) (in blue), which
depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

http://en.wikipedia.org/wiki/Fourier_series#mediaviewer/File:Fourier_series_and_transform.gif

Spatial (Time) Domain  Frequency Domain

Source: http://en.wikipedia.org/wiki/Fourier_series#mediaviewer/File:Fourier_series_and_transform.gif (uploaded by Bob K.)

Function s(x) (in red) is a sum of six sine functions of different amplitudes and
harmonically related frequencies. The Fourier transform, S(f) (in blue), which
depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

http://en.wikipedia.org/wiki/Fourier_series#mediaviewer/File:Fourier_series_and_transform.gif

Spatial (Time) Domain  Frequency Domain

Source: http://en.wikipedia.org/wiki/Fourier_series#mediaviewer/File:Fourier_series_and_transform.gif (uploaded by Bob K.)

Function s(x) (in red) is a sum of six sine functions of different amplitudes and
harmonically related frequencies. The Fourier transform, S(f) (in blue), which
depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

http://en.wikipedia.org/wiki/Fourier_series#mediaviewer/File:Fourier_series_and_transform.gif

Spatial (Time) Domain  Frequency Domain

Source: http://en.wikipedia.org/wiki/Fourier_series#mediaviewer/File:Fourier_series_and_transform.gif (uploaded by Bob K.)

Function s(x) (in red) is a sum of six sine functions of different amplitudes and
harmonically related frequencies. The Fourier transform, S(f) (in blue), which
depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

http://en.wikipedia.org/wiki/Fourier_series#mediaviewer/File:Fourier_series_and_transform.gif

Spatial (Time) Domain  Frequency Domain

(Fourier Transforms)

𝑆 𝑓 = න
−∞

∞

𝑠 𝑡 ∙ 𝑒−2𝜋𝑖𝑓𝑡 𝑑𝑡

𝑠 𝑡 = න
−∞

∞

𝑆 𝑓 ∙ 𝑒2𝜋𝑖𝑓𝑡 𝑑𝑓

Let 𝑠 𝑡 be a signal specified in the time domain.

The strength of 𝑠 𝑡 at frequency 𝑓 is given by:

Now 𝑠 𝑡 can be retrieved by summing up the signal strengths

at all possible frequencies:

Evaluating this integral for all values of 𝑓 gives the frequency

domain function.

1

𝑇
𝑇−׬
𝑇
𝑠 𝑡 ∙ 𝑒−2𝜋𝑖𝑓𝑡 𝑑𝑡 =

1 +
sin 4𝜋𝑓𝑇

4𝜋𝑓𝑇
, if 𝑓 = ℎ,

sin 2𝜋 ℎ−𝑓 𝑇

2𝜋 ℎ−𝑓 𝑇
+

sin 2𝜋 ℎ+𝑓 𝑇

2𝜋 ℎ+𝑓 𝑇
, otherwise.

Let’s try to get a little intuition behind why the transforms work.

We will look at a very simple example.

Suppose: 𝑠 𝑡 = cos 2𝜋ℎ ⋅ 𝑡

Why do the Transforms Work?

 lim
𝑇→∞

1

𝑇
න
−𝑇

𝑇

𝑠 𝑡 ∙ 𝑒−2𝜋𝑖𝑓𝑡 𝑑𝑡 = ቐ
1, if 𝑓 = ℎ,

0, otherwise.

So, the transform can detect if 𝑓 = ℎ!

Noise Reduction

Source: http://www.mediacy.com/index.aspx?page=AH_FFTExample

FFT
inverse FFT

remove
noise

Data Compression

− Discrete Cosine Transforms (DCT) are used for lossy data
compression (e.g., MP3, JPEG, MPEG)

− DCT is a Fourier-related transform similar to DFT (Discrete
Fourier Transform) but uses only real data (uses cosine waves
only instead of both cosine and sine waves)

− Forward DCT transforms data from spatial to frequency domain

− Each frequency component is represented using a fewer
number of bits (i.e., truncated / quantized)

− Low amplitude high frequency components are also removed

− Inverse DCT then transforms the data back to spatial domain

− The resulting image compresses better

1

𝑇
න
−𝑇

𝑇

𝑠 𝑡 ∙ cos 2𝜋𝑓𝑡 𝑑𝑡 =

1 +
sin 4𝜋𝑓𝑇

4𝜋𝑓𝑇
, if 𝑓 = ℎ,

sin 2𝜋 ℎ − 𝑓 𝑇

2𝜋 ℎ − 𝑓 𝑇
+
sin 2𝜋 ℎ + 𝑓 𝑇

2𝜋 ℎ + 𝑓 𝑇
, otherwise.

Transformation to frequency domain using cosine transforms

work in the same way as the Fourier transform.

Suppose: 𝑠 𝑡 = cos 2𝜋ℎ ⋅ 𝑡

Data Compression

 lim
𝑇→∞

1

𝑇
න
−𝑇

𝑇

𝑠 𝑡 ∙ cos 2𝜋𝑓𝑡 𝑑𝑡 = ቐ
1, if 𝑓 = ℎ,

0, otherwise.

So, this transform can also detect if 𝑓 = ℎ.

Protein-Protein Docking

❑ Knowledge of complexes is used in

− Drug design

− Studying molecular assemblies

❑ Protein-Protein Docking: Given two proteins, find the best relative

transformation and conformations to obtain a stable complex.

❑ Docking is a hard problem

− Search space is huge (6D for rigid proteins)

− Protein flexibility adds to the difficulty

− Structure function analysis

− Protein interactions

Here 𝑔𝑘 𝑥 is a Gaussian representation of atom 𝑘, and 𝑤𝑘 its weight.

Shape Complementarity
[Wang’91, Katchalski-Katzir et al.’92, Chen et al.’03]

To maximize skin-skin overlaps and minimize core-core overlaps

− assign positive real weights to skin atoms

− assign positive imaginary weights to core atoms

For P  {A, B} with MP atoms, affinity function: 𝑓𝑃 𝑥 = σ𝑘=1
𝑀𝑃 𝑤𝑘 ⋅ 𝑔𝑘 𝑥

Let A denote molecule A with the pseudo skin atoms.

For rotation 𝑟 and translation 𝑡 of molecule 𝐵 (i.e., 𝐵𝑡,𝑟),

the interaction score, 𝐹𝐴,𝐵 𝑡, 𝑟 = 𝑥׬ 𝑓𝐴′ 𝑥 𝑓𝐵𝑡,𝑟 𝑥 𝑑𝑥

For P  {A, B} with MP atoms, affinity function:

Let A denote molecule A with the pseudo skin atoms.

𝑓𝑃 𝑥 = σ𝑘=1
𝑀𝑃 𝑤𝑘 ⋅ 𝑔𝑘 𝑥

Shape Complementarity
[Wang’91, Katchalski-Katzir et al.’92, Chen et al.’03]

For rotation 𝑟 and translation 𝑡 of molecule 𝐵 (i.e., 𝐵𝑡,𝑟),

the interaction score, 𝐹𝐴,𝐵 𝑡, 𝑟 = 𝑥׬ 𝑓𝐴′ 𝑥 𝑓𝐵𝑡,𝑟 𝑥 𝑑𝑥

𝑅𝑒 𝐹𝐴,𝐵 𝑡, 𝑟 = skin-skin overlap score – core-core overlap score

𝐼𝑚 𝐹𝐴,𝐵 𝑡, 𝑟 = skin-core overlap score

Shape Complementarity
[Wang’91, Katchalski-Katzir et al.’92, Chen et al.’03]

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Forward

Translational Search using FFT

rotate

discretize

discretize

FFT

multiply frequency maps

MA’ atoms

MB atoms

()  z , zhForward

FFT

Inverse

FFT

co
m

p
le

x

co
n

ju
ga

te

∀𝑧 ∈  = −𝑛, 𝑛 3, ℎ 𝑧 = න
𝑥∈

𝑓𝐴′ 𝑥 𝑓𝐵𝑟 𝑧 − 𝑥 𝑑𝑥

