CSE 548: Analysis of Algorithms

Lecture 2
(Divide-and-Conquer Algorithms:
Integer Multiplication)

Rezaul A. Chowdhury

Department of Computer Science
SUNY Stony Brook
Fall 2019

Tromino Cover

A right tromino is an L-shaped tile

formed by three adjacent squares.

Puzzle: You are given a 2™ X 2™ board

with one missing square.

— you must cover all squares except

the missing one exactly using right

trominoes

— the trominoes must not overlap F

23 x 23 board

2

Steps

Tromino Cover

H:

23 x 23 board

Tromino Cover

Steps

— Divide the 2™ x 2™ board into 4 disjoint 2"~ ! x 2™"~1 subboards.

H:

23 x 23 board

Tromino Cover

Steps

— Divide the 2™ x 2™ board into 4 disjoint 2"~ ! x 2™"~1 subboards.

— Place a tromino at the center so

that it fully covers one square from
each of the three (3) subboards
with no missing square, and misses
the fourth subboard completely.

H:

23 x 23 board

Tromino Cover

Steps

— Divide the 2™ x 2™ board into 4 disjoint 2"~ ! x 2™"~1 subboards.

— Place a tromino at the center so

that it fully covers one square from
each of the three (3) subboards
with no missing square, and misses

the fourth subboard completely.

This reduces the original problem

into 4 smaller instances of the
same problem!

23 x 23 board

Tromino Cover

Steps

— Divide the 2™ x 2™ board into 4 disjoint 2"~ ! x 2™"~1 subboards.

— Place a tromino at the center so
that it fully covers one square from
each of the three (3) subboards
with no missing square, and misses
the fourth subboard completely.

This reduces the original problem
into 4 smaller instances of the
same problem!

— Solve each smaller subproblem

23 x 23 board

recursively using the same technique.

Tromino Cover

Steps
— Divide the 2™ X 2" board into 4 disjoint 2"~ 1 x 2"~ subboards.

— Place a tromino at the center so
that it fully covers one square from
each of the three (3) subboards
with no missing square, and misses

the fourth subboard completely.

This reduces the original problem
into 4 smaller instances of the

same problem!

— Solve each smaller subproblem 23 % 23 board

recursively using the same technique.

— This algorithm design technique is called recursive divide & conquer.

An Old Homework Problem

CSE548, AMS542: Analysis of Algorithms, Spring 2015 Date: Feb 16

Homework #1

(Due: Mar 5)

Zk
. =T =T =7 A
A B C D K 2k ;
(a) Four types of tiles (b) A right triangular grid to tile (k = 3)

Figure 1: Tiling a right triangular grid.

Task 1. [70 Points | Tiling a Triangular Grid

Given an isosceles right triangular grid for some k > 2 as shown in Figure 1(b), this problem asks
you to completely cover it using the tiles given in Figure 1(a). The bottom-left corner of the grid
must not be covered. No two tiles can overlap and all tiles must remain completely inside the given
triangular grid. You must use all four types of tiles shown in Figure 1(a), and no tile type can be
used to cover more than 40% of the total grid area. You are allowed to rotate the tiles, as needed,
before putting them on the grid.

(a) [25 Points | Design and explain a recursive divide-and-conquer algorithm for tiling the grid
under the constraints given above. Include pseudocode.

(b) [25 Points] Write down recurrences describing the running time of your algorithm from
part (a), and solve them.

(c) [20 Points | Write down recurrences for counting the number of tiles of each type used by
your algorithm, and solve them to show that no tile type covers more than 40% of the total
erid area.

A Latin Phrase

“Divide et impera”

(meaning: “divide and rule” or “divide and conquer”)

— Philip 11, king of Macedon (382-336 BC),
describing his policy toward the Greek city-states
(some say the Roman emperor Julius Caesar,

100-44 BC, is the source of this phrase)

The strategy is to break large power alliances into smaller ones that
are easier to manage (or subdue).

This is a combination of political, military and economic strategy of
gaining and maintaining power.

Unsurprisingly, this is also a very powerful problem solving strategy in
computer science.

Divide-and-Conquer

1. Divide: divide the original problem into smaller
subproblems that are easier are to solve

2. Conquer: solve the smaller subproblems
(perhaps recursively)

3. Merge: combine the solutions to the smaller subproblems
to obtain a solution for the original problem

Integer
Multiplication

Multiplying Two n-bit Numbers

n.. n. .
ib‘ltS fbfts
X = XL XR = 2"2x, + xp
y= w YR | =22y, +yp
n bits

Xy = (Zn/zxL + XR)(Zn/ZYL + }’R) = 2"x,y; + 2™2(x yg + XgYL) + XRYR

So # ~-bit products: 4
bit shifts (by n org bits): 2
additions (at most 2n bits long) : 3

We can compute the g-bit products recursively.

Let T(n) be the overall running time for n-bit inputs. Then

(e ifn=1,

T(n) =5 AT (E) + ®(n) otherwise.
L 2

= ©(n?) (how? derive)

Multiplying Two n-bit Numbers Faster
(Karatsuba's Algorithm)

%bAits %bAits
X = 9) XR = 2"2x, + xp
y = VL VR =22y, 4y,

n bits
xy = (2™2x; + xz)(2™2y, + yg)
= 2"xy;, + 2% (xR + XRYL) + XRYR
= 2"x y, + 2n/2((xL + xg) (L + Yr) — XLy — nyR) + XrYr
So #Z- or (g + 1) -bit products: 3

Then the overall running time for n-bit inputs:

[e1) ifn=1,
T'(n) = 3T (g) + ®(n) otherwise.
\

= @(n!°823) = O(n'5%)(how? derive)

Algorithms for Multiplying Two n-bit Numbers

Classical — @(nZ)
Anatolii Karatsuba 1960 @(nlogz 3)

Andrei Toom & Stephen Cook

— J2logan
(generalization of Karatsuba’s algorithm) 1963 — 66 € (nZ log n)

Arnold Schonhage & Volker Strassen

(Fast Fourier Transform) 1971 ©(nlognloglogn)

Martin Furer

O(log*n)
(Fast Fourier Transform) 2005 nlogn 2

Lower bound: Q(n) (why?)

15

