
CSE 548: Analysis of Algorithms

Lecture 10

(Dijkstra’s SSSP & Fibonacci Heaps)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Fall 2019

1

Fibonacci Heaps
(Fredman & Tarjan, 1984)

Heap Operation
Binary Heap

(worst-case)
Binomial Heap
(amortized)

MAKE-HEAP  1  1

INSERT  log 𝑛  1

MINIMUM  1  1

EXTRACT-MIN  log 𝑛  log 𝑛

UNION  𝑛  1

DECREASE-KEY  log 𝑛 −

DELETE  log 𝑛 −

A Fibonacci heap can be viewed as an extension of Binomial heaps

which supports DECREASE-KEY and DELETE operations efficiently.

2

Fibonacci Heaps
(Fredman & Tarjan, 1984)

Heap Operation
Binary Heap

(worst-case)
Binomial Heap
(amortized)

MAKE-HEAP  1  1

INSERT  log 𝑛  1

MINIMUM  1  1

EXTRACT-MIN  log 𝑛  log 𝑛

UNION  𝑛  1

DECREASE-KEY  log 𝑛
 log 𝑛

(worst case)

DELETE  log 𝑛
 log 𝑛

(worst case)

A Fibonacci heap can be viewed as an extension of Binomial heaps

which supports DECREASE-KEY and DELETE operations efficiently.

3

Fibonacci Heaps
(Fredman & Tarjan, 1984)

Heap Operation
Binary Heap

(worst-case)
Binomial Heap
(amortized)

Fibonacci Heap
(amortized)

MAKE-HEAP  1  1  1

INSERT  log 𝑛  1  1

MINIMUM  1  1  1

EXTRACT-MIN  log 𝑛  log 𝑛  log 𝑛

UNION  𝑛  1  1

DECREASE-KEY  log 𝑛
 log 𝑛

(worst case)
 1

DELETE  log 𝑛
 log 𝑛

(amortized)
 log 𝑛

A Fibonacci heap can be viewed as an extension of Binomial heaps

which supports DECREASE-KEY and DELETE operations efficiently.

4

Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

Dijkstra-SSSP (𝐺 = 𝑉, 𝐸 , 𝑤, 𝑠)

1. for each 𝑣 ∈ 𝐺 𝑉 do 𝑣. 𝑑 ← ∞

2. 𝑠. 𝑑 ← 0

3. 𝐻 ← 𝜙 { empty min-heap }

4. for each 𝑣 ∈ 𝐺 𝑉 do INSERT(𝐻, 𝑣)

5. while 𝐻 ≠ ∅ do

6. 𝑢 ← EXTRACT-MIN(𝐻)

7. for each 𝑣 ∈ 𝐴𝑑𝑗 𝑢 do

8. if 𝑣. 𝑑 > 𝑢. 𝑑 + 𝑤𝑢,𝑣 then

9. DECREASE-KEY(𝐻, 𝑣, 𝑢. 𝑑 + 𝑤𝑢,𝑣)

10. 𝑣. 𝑑 ← 𝑢. 𝑑 + 𝑤𝑢,𝑣

Input: Weighted graph 𝐺 = 𝑉, 𝐸 with vertex set 𝑉 and edge set 𝐸, a
weight function 𝑤, and a source vertex 𝑠 ∈ 𝐺 𝑉 .

Output: For all 𝑣 ∈ 𝐺 𝑉 , 𝑣. 𝑑 is set to the shortest distance from 𝑠 to 𝑣.

6

Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

Dijkstra-SSSP (𝐺 = 𝑉, 𝐸 , 𝑤, 𝑠)

1. for each 𝑣 ∈ 𝐺 𝑉 do 𝑣. 𝑑 ← ∞

2. 𝑠. 𝑑 ← 0

3. 𝐻 ← 𝜙 { empty min-heap }

4. for each 𝑣 ∈ 𝐺 𝑉 do INSERT(𝐻, 𝑣)

5. while 𝐻 ≠ ∅ do

6. 𝑢 ← EXTRACT-MIN(𝐻)

7. for each 𝑣 ∈ 𝐴𝑑𝑗 𝑢 do

8. if 𝑣. 𝑑 > 𝑢. 𝑑 + 𝑤𝑢,𝑣 then

9. DECREASE-KEY(𝐻, 𝑣, 𝑢. 𝑑 + 𝑤𝑢,𝑣)

10. 𝑣. 𝑑 ← 𝑢. 𝑑 + 𝑤𝑢,𝑣

Input: Weighted graph 𝐺 = 𝑉, 𝐸 with vertex set 𝑉 and edge set 𝐸, a
weight function 𝑤, and a source vertex 𝑠 ∈ 𝐺 𝑉 .

Output: For all 𝑣 ∈ 𝐺 𝑉 , 𝑣. 𝑑 is set to the shortest distance from 𝑠 to 𝑣.

Let 𝑛 = 𝐺 𝑉 and 𝑚 = 𝐺 𝐸

INSERTS = 𝑛
EXTRACT-MINS = 𝑛
DECREASE-KEYS ≤ 𝑚

Total cost
≤ 𝑛 𝑐𝑜𝑠𝑡𝐼𝑛𝑠𝑒𝑟𝑡 + 𝑐𝑜𝑠𝑡𝐸𝑥𝑡𝑟𝑎𝑐𝑡−𝑀𝑖𝑛
+𝑚 𝑐𝑜𝑠𝑡𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒−𝐾𝑒𝑦

7

Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

Dijkstra-SSSP (𝐺 = 𝑉, 𝐸 , 𝑤, 𝑠)

1. for each 𝑣 ∈ 𝐺 𝑉 do 𝑣. 𝑑 ← ∞

2. 𝑠. 𝑑 ← 0

3. 𝐻 ← 𝜙 { empty min-heap }

4. for each 𝑣 ∈ 𝐺 𝑉 do INSERT(𝐻, 𝑣)

5. while 𝐻 ≠ ∅ do

6. 𝑢 ← EXTRACT-MIN(𝐻)

7. for each 𝑣 ∈ 𝐴𝑑𝑗 𝑢 do

8. if 𝑣. 𝑑 > 𝑢. 𝑑 + 𝑤𝑢,𝑣 then

9. DECREASE-KEY(𝐻, 𝑣, 𝑢. 𝑑 + 𝑤𝑢,𝑣)

10. 𝑣. 𝑑 ← 𝑢. 𝑑 + 𝑤𝑢,𝑣

Input: Weighted graph 𝐺 = 𝑉, 𝐸 with vertex set 𝑉 and edge set 𝐸, a
weight function 𝑤, and a source vertex 𝑠 ∈ 𝐺 𝑉 .

Output: For all 𝑣 ∈ 𝐺 𝑉 , 𝑣. 𝑑 is set to the shortest distance from 𝑠 to 𝑣.

Let 𝑛 = 𝐺 𝑉 and 𝑚 = 𝐺 𝐸

For Binary Heap (worst-case costs):

𝑐𝑜𝑠𝑡𝐼𝑛𝑠𝑒𝑟𝑡 =  log 𝑛
𝑐𝑜𝑠𝑡𝐸𝑥𝑡𝑟𝑎𝑐𝑡−𝑀𝑖𝑛 =  log 𝑛
𝑐𝑜𝑠𝑡𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒−𝐾𝑒𝑦 =  log 𝑛

∴ Total cost (worst-case)

=  𝑚 + 𝑛 log 𝑛

8

Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

Dijkstra-SSSP (𝐺 = 𝑉, 𝐸 , 𝑤, 𝑠)

1. for each 𝑣 ∈ 𝐺 𝑉 do 𝑣. 𝑑 ← ∞

2. 𝑠. 𝑑 ← 0

3. 𝐻 ← 𝜙 { empty min-heap }

4. for each 𝑣 ∈ 𝐺 𝑉 do INSERT(𝐻, 𝑣)

5. while 𝐻 ≠ ∅ do

6. 𝑢 ← EXTRACT-MIN(𝐻)

7. for each 𝑣 ∈ 𝐴𝑑𝑗 𝑢 do

8. if 𝑣. 𝑑 > 𝑢. 𝑑 + 𝑤𝑢,𝑣 then

9. DECREASE-KEY(𝐻, 𝑣, 𝑢. 𝑑 + 𝑤𝑢,𝑣)

10. 𝑣. 𝑑 ← 𝑢. 𝑑 + 𝑤𝑢,𝑣

Input: Weighted graph 𝐺 = 𝑉, 𝐸 with vertex set 𝑉 and edge set 𝐸, a
weight function 𝑤, and a source vertex 𝑠 ∈ 𝐺 𝑉 .

Output: For all 𝑣 ∈ 𝐺 𝑉 , 𝑣. 𝑑 is set to the shortest distance from 𝑠 to 𝑣.

Let 𝑛 = 𝐺 𝑉 and 𝑚 = 𝐺 𝐸

For Binomial Heap (amortized costs):

𝑐𝑜𝑠𝑡𝐼𝑛𝑠𝑒𝑟𝑡 =  1
𝑐𝑜𝑠𝑡𝐸𝑥𝑡𝑟𝑎𝑐𝑡−𝑀𝑖𝑛 =  log 𝑛
𝑐𝑜𝑠𝑡𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒−𝐾𝑒𝑦 =  log 𝑛

(worst-case)

∴ Total cost (worst-case)

=  𝑚 + 𝑛 log 𝑛

9

Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

Dijkstra-SSSP (𝐺 = 𝑉, 𝐸 , 𝑤, 𝑠)

1. for each 𝑣 ∈ 𝐺 𝑉 do 𝑣. 𝑑 ← ∞

2. 𝑠. 𝑑 ← 0

3. 𝐻 ← 𝜙 { empty min-heap }

4. for each 𝑣 ∈ 𝐺 𝑉 do INSERT(𝐻, 𝑣)

5. while 𝐻 ≠ ∅ do

6. 𝑢 ← EXTRACT-MIN(𝐻)

7. for each 𝑣 ∈ 𝐴𝑑𝑗 𝑢 do

8. if 𝑣. 𝑑 > 𝑢. 𝑑 + 𝑤𝑢,𝑣 then

9. DECREASE-KEY(𝐻, 𝑣, 𝑢. 𝑑 + 𝑤𝑢,𝑣)

10. 𝑣. 𝑑 ← 𝑢. 𝑑 + 𝑤𝑢,𝑣

Input: Weighted graph 𝐺 = 𝑉, 𝐸 with vertex set 𝑉 and edge set 𝐸, a
weight function 𝑤, and a source vertex 𝑠 ∈ 𝐺 𝑉 .

Output: For all 𝑣 ∈ 𝐺 𝑉 , 𝑣. 𝑑 is set to the shortest distance from 𝑠 to 𝑣.

Let 𝑛 = 𝐺 𝑉 and 𝑚 = 𝐺 𝐸

Total cost
≤ 𝑛 𝑐𝑜𝑠𝑡𝐼𝑛𝑠𝑒𝑟𝑡 + 𝑐𝑜𝑠𝑡𝐸𝑥𝑡𝑟𝑎𝑐𝑡−𝑀𝑖𝑛
+𝑚 𝑐𝑜𝑠𝑡𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒−𝐾𝑒𝑦

Observation:
Obtaining a worst-case bound for a
sequence of 𝑛 INSERTS, 𝑛 EXTRACT-MINS

and 𝑚 DECREASE-KEYS is enough.

∴ Amortized bound per operation is
sufficient.

10

Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

Dijkstra-SSSP (𝐺 = 𝑉, 𝐸 , 𝑤, 𝑠)

1. for each 𝑣 ∈ 𝐺 𝑉 do 𝑣. 𝑑 ← ∞

2. 𝑠. 𝑑 ← 0

3. 𝐻 ← 𝜙 { empty min-heap }

4. for each 𝑣 ∈ 𝐺 𝑉 do INSERT(𝐻, 𝑣)

5. while 𝐻 ≠ ∅ do

6. 𝑢 ← EXTRACT-MIN(𝐻)

7. for each 𝑣 ∈ 𝐴𝑑𝑗 𝑢 do

8. if 𝑣. 𝑑 > 𝑢. 𝑑 + 𝑤𝑢,𝑣 then

9. DECREASE-KEY(𝐻, 𝑣, 𝑢. 𝑑 + 𝑤𝑢,𝑣)

10. 𝑣. 𝑑 ← 𝑢. 𝑑 + 𝑤𝑢,𝑣

Input: Weighted graph 𝐺 = 𝑉, 𝐸 with vertex set 𝑉 and edge set 𝐸, a
weight function 𝑤, and a source vertex 𝑠 ∈ 𝐺 𝑉 .

Output: For all 𝑣 ∈ 𝐺 𝑉 , 𝑣. 𝑑 is set to the shortest distance from 𝑠 to 𝑣.

Let 𝑛 = 𝐺 𝑉 and 𝑚 = 𝐺 𝐸

Total cost
≤ 𝑛 𝑐𝑜𝑠𝑡𝐼𝑛𝑠𝑒𝑟𝑡 + 𝑐𝑜𝑠𝑡𝐸𝑥𝑡𝑟𝑎𝑐𝑡−𝑀𝑖𝑛
+𝑚 𝑐𝑜𝑠𝑡𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒−𝐾𝑒𝑦

Observation:
For 𝑛 𝑐𝑜𝑠𝑡𝐼𝑛𝑠𝑒𝑟𝑡 + 𝑐𝑜𝑠𝑡𝐸𝑥𝑡𝑟𝑎𝑐𝑡−𝑀𝑖𝑛
the best possible bound is  𝑛 log 𝑛 .
(else violates sorting lower bound)

Perhaps 𝑚 𝑐𝑜𝑠𝑡𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒−𝐾𝑒𝑦 can be

improved to o 𝑚 log 𝑛 .

11

Fibonacci Heaps from Binomial Heaps

A Fibonacci heap can be viewed as an extension of Binomial heaps

which supports DECREASE-KEY and DELETE operations efficiently.

But the trees in a Fibonacci heap are no longer binomial trees as we

will be cutting subtrees out of them.

However, all operations (except DECREASE-KEY and DELETE) are still

performed in the same way as in binomial heaps.

The rank of a tree is still defined as the number of children of the root,

and we still link two trees if they have the same rank.

12

Implementing DECREASE-KEY(𝑯, 𝒙, 𝒌)

DECREASE-KEY(𝑯,𝒙, 𝒌): One possible approach is to cut out the

subtree rooted at 𝑥 from 𝐻, reduce the value of 𝑥 to 𝑘, and insert that

subtree into the root list of 𝐻.

Problem: If we cut out a lot of subtrees from a tree its size will no

longer be exponential in its rank. Since our analysis of EXTRACT-MIN in

binomial heaps was highly dependent on this exponential relationship,

that analysis will no longer hold.

Solution: Limit #cuts among the children of any node to 2. We will

show that the size of each tree will still remain exponential in its rank.

When a 2nd child is cut from a node 𝑥, we also cut 𝑥 from its parent

leading to a possible sequence of cuts moving up towards the root.

13

Analysis of Fibonacci Heap Operations

𝑓𝑛 = ቐ

0 𝑖𝑓 𝑛 = 0,
1 𝑖𝑓 𝑛 = 1,

𝑓𝑛−1 + 𝑓𝑛−2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
Recurrence for Fibonacci numbers:

We showed in a pervious lecture: 𝑓𝑛 =
1

5
𝜙𝑛 − ෠𝜙𝑛 ,

where 𝜙 =
1+ 5

2
and ෠𝜙 =

1− 5

2
are the roots 𝑧2 − 𝑧 − 1 = 0.

14

Analysis of Fibonacci Heap Operations

𝑓0 0

𝑓1 1

𝑓2 1

𝑓3 2

𝑓4 3

𝑓5 5

𝑓6 8

𝑓7 13

𝑓8 21

𝑓9 34

𝑓10 55

< 1 1 + 𝑓0

< 2 1 + 𝑓0 + 𝑓1

< 3 1 + 𝑓0 + 𝑓1 + 𝑓2

< 5 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3

< 8 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4

< 13 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5

< 21 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 + 𝑓6

< 34 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 + 𝑓6 + 𝑓7

< 55 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 + 𝑓6 + 𝑓7 + 𝑓8

< 89 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 + 𝑓6 + 𝑓7 + 𝑓8 + 𝑓9

< 144 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 + 𝑓6 + 𝑓7 + 𝑓8 + 𝑓9 + 𝑓10

15

Analysis of Fibonacci Heap Operations

𝑓0 0

𝑓1 1

𝑓2 1

𝑓3 2

𝑓4 3

𝑓5 5

𝑓6 8

𝑓7 13

𝑓8 21

𝑓9 34

𝑓10 55

𝑓11 89

= 1 1 + 𝑓0

< 2 1 + 𝑓0 + 𝑓1

< 3 1 + 𝑓0 + 𝑓1 + 𝑓2

< 5 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3

< 8 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4

< 13 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5

< 21 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 + 𝑓6

< 34 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 + 𝑓6 + 𝑓7

< 55 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 + 𝑓6 + 𝑓7 + 𝑓8

< 89 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 + 𝑓6 + 𝑓7 + 𝑓8 + 𝑓9

< 144 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 + 𝑓6 + 𝑓7 + 𝑓8 + 𝑓9 + 𝑓10

16

Analysis of Fibonacci Heap Operations

𝑓0 0

𝑓1 1

𝑓2 1

𝑓3 2

𝑓4 3

𝑓5 5

𝑓6 8

𝑓7 13

𝑓8 21

𝑓9 34

𝑓10 55

𝑓11 89

𝑓12 144

= 1 1 + 𝑓0

= 2 1 + 𝑓0 + 𝑓1

= 3 1 + 𝑓0 + 𝑓1 + 𝑓2

= 5 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3

= 8 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4

= 13 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5

= 21 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 + 𝑓6

= 34 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 + 𝑓6 + 𝑓7

= 55 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 + 𝑓6 + 𝑓7 + 𝑓8

= 89 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 + 𝑓6 + 𝑓7 + 𝑓8 + 𝑓9

= 144 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 + 𝑓6 + 𝑓7 + 𝑓8 + 𝑓9 + 𝑓10

Lemma 1: For all integers 𝑛 ≥ 0, 𝑓𝑛+2 = 1 + σ𝑖=0
𝑛 𝑓𝑖.

17

Lemma 1: For all integers 𝑛 ≥ 0, 𝑓𝑛+2 = 1 + σ𝑖=0
𝑛 𝑓𝑖.

Inductive hypothesis: 𝑓𝑘+2 = 1 + σ𝑖=0
𝑘 𝑓𝑖 for 0 ≤ 𝑘 ≤ 𝑛 − 1.

Then 𝑓𝑛+2 = 𝑓𝑛+1 + 𝑓𝑛 = 𝑓𝑛 + 1 + σ𝑖=0
𝑛−1 𝑓𝑖 = 1 + σ𝑖=0

𝑛 𝑓𝑖.

Proof: By induction on 𝑛.

Base case: 𝑓2 = 1 = 1 + 0 = 1 + 𝑓0 = 1 + σ𝑖=0
𝑛 𝑓𝑖.

Analysis of Fibonacci Heap Operations
18

Analysis of Fibonacci Heap Operations

𝑓0 0

𝑓1 1

𝑓2 1

𝑓3 2

𝑓4 3

𝑓5 5

𝑓6 8

𝑓7 13

𝑓8 21

𝑓9 34

𝑓10 55

< 1.00 𝜙0

< 1.62 𝜙1

< 2.62 𝜙2

< 4.24 𝜙3

< 6.85 𝜙4

< 11.09 𝜙5

< 17.94 𝜙6

< 29.03 𝜙7

< 46.98 𝜙8

< 76.01 𝜙9

< 122.99 𝜙10

19

Analysis of Fibonacci Heap Operations

𝑓0 0

𝑓1 1

𝑓2 1

𝑓3 2

𝑓4 3

𝑓5 5

𝑓6 8

𝑓7 13

𝑓8 21

𝑓9 34

𝑓10 55

𝑓11 89

≥ 1.00 𝜙0

< 1.62 𝜙1

< 2.62 𝜙2

< 4.24 𝜙3

< 6.85 𝜙4

< 11.09 𝜙5

< 17.94 𝜙6

< 29.03 𝜙7

< 46.98 𝜙8

< 76.01 𝜙9

< 122.99 𝜙10

20

Analysis of Fibonacci Heap Operations

𝑓0 0

𝑓1 1

𝑓2 1

𝑓3 2

𝑓4 3

𝑓5 5

𝑓6 8

𝑓7 13

𝑓8 21

𝑓9 34

𝑓10 55

𝑓11 89

𝑓12 144

≥ 1.00 𝜙0

≥ 1.62 𝜙1

≥ 2.62 𝜙2

≥ 4.24 𝜙3

≥ 6.85 𝜙4

≥ 11.09 𝜙5

≥ 17.94 𝜙6

≥ 29.03 𝜙7

≥ 46.98 𝜙8

≥ 76.01 𝜙9

≥ 122.99 𝜙10

Lemma 2: For all integers 𝑛 ≥ 0, 𝑓𝑛+2 ≥ 𝜙𝑛.

21

Lemma 2: For all integers 𝑛 ≥ 0, 𝑓𝑛+2 ≥ 𝜙𝑛.

Inductive hypothesis: 𝑓𝑘+2 ≥ 𝜙𝑘 for 0 ≤ 𝑘 ≤ 𝑛 − 1.

Then 𝑓𝑛+2 = 𝑓𝑛+1 + 𝑓𝑛
≥ 𝜙𝑛−1 + 𝜙𝑛−2

= 𝜙 + 1 𝜙𝑛−2

= 𝜙2𝜙𝑛−2

= 𝜙𝑛

Proof: By induction on 𝑛.

Base case: 𝑓2 = 1 = 𝜙0 and 𝑓3 = 2 > 𝜙1.

Analysis of Fibonacci Heap Operations
22

Lemma 3: Let 𝑥 be any node in a Fibonacci heap, and suppose that

𝑘 = 𝑟𝑎𝑛𝑘 𝑥 . Let 𝑦1, 𝑦2, … , 𝑦𝑘 be the children of 𝑥 in the order in

which they were linked to 𝑥, from the earliest to the latest. Then

𝑟𝑎𝑛𝑘 𝑦𝑖 ≥ max 0, 𝑖 − 2 for 1 ≤ 𝑖 ≤ 𝑘.

Proof: Obviously, 𝑟𝑎𝑛𝑘 𝑦1 ≥ 0.

For 𝑖 > 1, when 𝑦𝑖 was linked to 𝑥, all of 𝑦1, 𝑦2, … , 𝑦𝑖−1 were children

of 𝑥. So, 𝑟𝑎𝑛𝑘 𝑥 ≥ 𝑖 − 1.

Because 𝑦𝑖 is linked to 𝑥 only if 𝑟𝑎𝑛𝑘 𝑦𝑖 = 𝑟𝑎𝑛𝑘 𝑥 , we must have

had 𝑟𝑎𝑛𝑘 𝑦𝑖 ≥ 𝑖 − 1 at that time.

Since then, 𝑦𝑖 has lost at most one child, and hence 𝑟𝑎𝑛𝑘 𝑦𝑖 ≥ 𝑖 − 2.

𝑥

𝑦1𝑦2𝑦3𝑦𝑘−1𝑦𝑘

Analysis of Fibonacci Heap Operations
23

Lemma 4: Let 𝑧 be any node in a Fibonacci heap with 𝑛 = 𝑠𝑖𝑧𝑒 𝑧

and 𝑟 = 𝑟𝑎𝑛𝑘 𝑧 . Then 𝑟 ≤ log𝜙 𝑛.

Proof: Let 𝑠𝑘 be the minimum possible size of any node of rank 𝑘 in

any Fibonacci heap.

Trivially, 𝑠0 = 1 and 𝑠1 = 2.

Since adding children to a node cannot decrease its size, 𝑠𝑘 increases

monotonically with 𝑘.

Let 𝑥 be a node in any Fibonacci heap with 𝑟𝑎𝑛𝑘 𝑥 = 𝑟 and

𝑠𝑖𝑧𝑒 𝑥 = 𝑠𝑟.

Analysis of Fibonacci Heap Operations
24

Proof (continued): Let 𝑦1, 𝑦2, … , 𝑦𝑟 be the children of 𝑥 in the order

in which they were linked to 𝑥, from the earliest to the latest.

Then 𝑠𝑟 ≥ 1 + σ𝑖=1
𝑟 𝑠𝑟𝑎𝑛𝑘 𝑦𝑖 ≥ 1 + σ𝑖=1

𝑟 𝑠max 0,𝑖−2 = 2 + σ𝑖=2
𝑟 𝑠𝑖−2

We now show by induction on 𝑟 that 𝑠𝑟 ≥ 𝑓𝑟+2 for all integer 𝑟 ≥ 0.

Base case: 𝑠0 = 1 = 𝑓2 and 𝑠1 = 2 = 𝑓3.

Inductive hypothesis: 𝑠𝑘 ≥ 𝑓𝑘+2 for 0 ≤ 𝑘 ≤ 𝑟 − 1.

Then 𝑠𝑟 ≥ 2 + σ𝑖=2
𝑟 𝑠𝑖−2 ≥ 2 + σ𝑖=2

𝑟 𝑓𝑖 = 1 + σ𝑖=1
𝑟 𝑓𝑖 = 𝑓𝑟+2.

Hence 𝑛 ≥ 𝑠𝑟 ≥ 𝑓𝑟+2 ≥ 𝜙𝑟 ⇒ 𝑟 ≤ log𝜙 𝑛 .

Lemma 4: Let 𝑧 be any node in a Fibonacci heap with 𝑛 = 𝑠𝑖𝑧𝑒 𝑧

and 𝑟 = 𝑟𝑎𝑛𝑘 𝑧 . Then 𝑟 ≤ log𝜙 𝑛.

Analysis of Fibonacci Heap Operations
25

Proof: Let 𝑧 be any node in the heap.

Then from Lemma 4,

𝑑𝑒𝑔𝑟𝑒𝑒 𝑧 = 𝑟𝑎𝑛𝑘 𝑧 ≤ log𝜙 𝑠𝑖𝑧𝑒 𝑧 ≤ log𝜙 𝑛 =  log 𝑛 .

Corollary: The maximum degree of any node in an 𝑛 node Fibonacci

heap is  log 𝑛 .

Analysis of Fibonacci Heap Operations
26

We extend the potential function used for binomial heaps:

Φ 𝐷𝑖 = 2𝑡 𝐷𝑖 + 3𝑚 𝐷𝑖 ,

where 𝐷𝑖 is the state of the data structure after the 𝑖𝑡ℎ operation,

𝑡 𝐷𝑖 is the number of trees in the root list, and

𝑚 𝐷𝑖 is the number of marked nodes.

Analysis of Fibonacci Heap Operations

We mark a node when

− it loses its first child

We unmark a node when

− it loses its second child, or

− becomes the child of another node (e.g., LINKed)

All nodes are initially unmarked.

27

∴ overall actual cost, 𝑐𝑖 = 1 + 𝑘

DECREASE-KEY(𝑯,𝒙, 𝒌𝒙): Let 𝑘 = #cascading cuts performed.

We extend the potential function used for binomial heaps:

Φ 𝐷𝑖 = 2𝑡 𝐷𝑖 + 3𝑚 𝐷𝑖 ,

where 𝐷𝑖 is the state of the data structure after the 𝑖𝑡ℎ operation,

𝑡 𝐷𝑖 is the number of trees in the root list, and

𝑚 𝐷𝑖 is the number of marked nodes.

Then the actual cost of cutting the tree rooted at 𝑥 is 1, and

the actual cost of each of the cascading cuts is also 1.

Analysis of Fibonacci Heap Operations
28

Fibonacci Heaps from Binomial Heaps

∴ 𝑡 𝐷𝑖 − 𝑡 𝐷𝑖−1 = 1 + 𝑘

DECREASE-KEY(𝑯,𝒙, 𝒌𝒙):

Potential function: Φ 𝐷𝑖 = 2𝑡 𝐷𝑖 + 3𝑚 𝐷𝑖

New trees: 1 tree rooted at 𝑥, and

1 tree produced by each of the 𝑘 cascading cuts.

∴ 𝑚 𝐷𝑖 −𝑚 𝐷𝑖−1 ≤ −𝑘 + 1

Marked nodes: 1 node unmarked by each cascading cut, and

at most 1 node marked by the last cut/cascading cut.

Potential drop, Δ𝑖 = Φ 𝐷𝑖 −Φ 𝐷𝑖−1

= 2 𝑡 𝐷𝑖 − 𝑡 𝐷𝑖−1 + 3 𝑚 𝐷𝑖 −𝑚 𝐷𝑖−1

≤ 2 1 + 𝑘 + 3 −𝑘 + 1

= −𝑘 + 5

29

Fibonacci Heaps from Binomial Heaps

Amortized cost, Ƹ𝑐𝑖 = 𝑐𝑖 + Δ𝑖
≤ 1 + 𝑘 + −𝑘 + 5

= 6

=  1

Potential function: Φ 𝐷𝑖 = 2𝑡 𝐷𝑖 + 3𝑚 𝐷𝑖

DECREASE-KEY(𝑯,𝒙, 𝒌𝒙):

30

Fibonacci Heaps from Binomial Heaps

Potential function: Φ 𝐷𝑖 = 2𝑡 𝐷𝑖 + 3𝑚 𝐷𝑖

EXTRACT-MIN(𝑯):

Let 𝑑𝑛 be the max degree of any node in an 𝑛-node Fibonacci heap.

Cost of creating the array of pointers is ≤ 𝑑𝑛 +1.

Suppose we start with 𝑘 trees in the doubly linked list, and perform 𝑙

link operations during the conversion from linked list to array version.

So we perform 𝑘 + 𝑙 work, and end up with 𝑘 − 𝑙 trees.

Cost of converting to the linked list version is 𝑘 − 𝑙.

actual cost, 𝑐𝑖 ≤ 𝑑𝑛 + 1 + 𝑘 + 𝑙 + 𝑘 − 𝑙 = 2𝑘 + 𝑑𝑛 + 1

Since no node is marked, and each link reduces the #trees by 1,

potential change, Δ𝑖 = Φ 𝐷𝑖 −Φ 𝐷𝑖−1 = −2𝑙

31

Fibonacci Heaps from Binomial Heaps

Potential function: Φ 𝐷𝑖 = 2𝑡 𝐷𝑖 + 3𝑚 𝐷𝑖

EXTRACT-MIN(𝑯):

actual cost, 𝑐𝑖 ≤ 𝑑𝑛 + 1 + 𝑘 + 𝑙 + 𝑘 − 𝑙 = 2𝑘 + 𝑑𝑛 + 1

potential change, Δ𝑖 = Φ 𝐷𝑖 −Φ 𝐷𝑖−1 = −2𝑙

amortized cost, Ƹ𝑐𝑖 = 𝑐𝑖 + Δ𝑖 ≤ 2 𝑘 − 𝑙 + 𝑑𝑛 + 1

But 𝑘 − 𝑙 ≤ 𝑑𝑛 + 1 (as we have at most one tree of each rank)

So, Ƹ𝑐𝑖 ≤ 3𝑑𝑛 + 3 =  log 𝑛 .

32

Fibonacci Heaps from Binomial Heaps

Potential function: Φ 𝐷𝑖 = 2𝑡 𝐷𝑖 + 3𝑚 𝐷𝑖

DELETE(𝑯,𝒙):

STEP 1: DECREASE-KEY(𝐻, 𝑥,−∞)

STEP 2: EXTRACT-MIN(𝐻)

amortized cost, Ƹ𝑐𝑖 = amortized cost of DECREASE-KEY

+ amortized cost of EXTRACT-MIN

=  1 +  log 𝑛

=  log 𝑛

33

