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Fibonacci Heaps
( Fredman & Tarjan, 1984 )

Heap Operation
Binary Heap

( worst-case )
Binomial Heap
( amortized )

MAKE-HEAP  1  1

INSERT  log 𝑛  1

MINIMUM  1  1

EXTRACT-MIN  log 𝑛  log 𝑛

UNION  𝑛  1

DECREASE-KEY  log 𝑛 −

DELETE  log 𝑛 −

A Fibonacci heap can be viewed as an extension of Binomial heaps 

which supports DECREASE-KEY and DELETE operations efficiently.
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Fibonacci Heaps
( Fredman & Tarjan, 1984 )

Heap Operation
Binary Heap

( worst-case )
Binomial Heap
( amortized )

MAKE-HEAP  1  1

INSERT  log 𝑛  1

MINIMUM  1  1

EXTRACT-MIN  log 𝑛  log 𝑛

UNION  𝑛  1

DECREASE-KEY  log 𝑛
 log 𝑛

( worst case )

DELETE  log 𝑛
 log 𝑛

( worst case )

A Fibonacci heap can be viewed as an extension of Binomial heaps 

which supports DECREASE-KEY and DELETE operations efficiently.
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Fibonacci Heaps
( Fredman & Tarjan, 1984 )

Heap Operation
Binary Heap

( worst-case )
Binomial Heap
( amortized )

Fibonacci Heap
( amortized )

MAKE-HEAP  1  1  1

INSERT  log 𝑛  1  1

MINIMUM  1  1  1

EXTRACT-MIN  log 𝑛  log 𝑛  log 𝑛

UNION  𝑛  1  1

DECREASE-KEY  log 𝑛
 log 𝑛

( worst case )
 1

DELETE  log 𝑛
 log 𝑛

( amortized )
 log 𝑛

A Fibonacci heap can be viewed as an extension of Binomial heaps 

which supports DECREASE-KEY and DELETE operations efficiently.
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Dijkstra’s SSSP Algorithm with a Min-Heap
( SSSP: Single-Source Shortest Paths )

Dijkstra-SSSP ( 𝐺 = 𝑉, 𝐸 , 𝑤, 𝑠 )

1. for each 𝑣 ∈ 𝐺 𝑉 do 𝑣. 𝑑 ← ∞

2. 𝑠. 𝑑 ← 0

3. 𝐻 ← 𝜙 { empty min-heap }

4. for each 𝑣 ∈ 𝐺 𝑉 do INSERT( 𝐻, 𝑣 )

5. while 𝐻 ≠ ∅ do

6. 𝑢 ← EXTRACT-MIN( 𝐻 )

7. for each 𝑣 ∈ 𝐴𝑑𝑗 𝑢 do

8. if 𝑣. 𝑑 > 𝑢. 𝑑 + 𝑤𝑢,𝑣 then

9. DECREASE-KEY( 𝐻, 𝑣, 𝑢. 𝑑 + 𝑤𝑢,𝑣 )

10. 𝑣. 𝑑 ← 𝑢. 𝑑 + 𝑤𝑢,𝑣

Input: Weighted graph 𝐺 = 𝑉, 𝐸 with vertex set 𝑉 and edge set 𝐸, a 
weight function 𝑤, and a source vertex 𝑠 ∈ 𝐺 𝑉 . 

Output: For all 𝑣 ∈ 𝐺 𝑉 , 𝑣. 𝑑 is set to the shortest distance from 𝑠 to 𝑣.

6



Dijkstra’s SSSP Algorithm with a Min-Heap
( SSSP: Single-Source Shortest Paths )

Dijkstra-SSSP ( 𝐺 = 𝑉, 𝐸 , 𝑤, 𝑠 )

1. for each 𝑣 ∈ 𝐺 𝑉 do 𝑣. 𝑑 ← ∞

2. 𝑠. 𝑑 ← 0

3. 𝐻 ← 𝜙 { empty min-heap }

4. for each 𝑣 ∈ 𝐺 𝑉 do INSERT( 𝐻, 𝑣 )

5. while 𝐻 ≠ ∅ do

6. 𝑢 ← EXTRACT-MIN( 𝐻 )

7. for each 𝑣 ∈ 𝐴𝑑𝑗 𝑢 do

8. if 𝑣. 𝑑 > 𝑢. 𝑑 + 𝑤𝑢,𝑣 then

9. DECREASE-KEY( 𝐻, 𝑣, 𝑢. 𝑑 + 𝑤𝑢,𝑣 )

10. 𝑣. 𝑑 ← 𝑢. 𝑑 + 𝑤𝑢,𝑣

Input: Weighted graph 𝐺 = 𝑉, 𝐸 with vertex set 𝑉 and edge set 𝐸, a 
weight function 𝑤, and a source vertex 𝑠 ∈ 𝐺 𝑉 . 

Output: For all 𝑣 ∈ 𝐺 𝑉 , 𝑣. 𝑑 is set to the shortest distance from 𝑠 to 𝑣.

Let 𝑛 = 𝐺 𝑉 and 𝑚 = 𝐺 𝐸

# INSERTS = 𝑛
# EXTRACT-MINS = 𝑛
# DECREASE-KEYS ≤ 𝑚

Total cost
≤ 𝑛 𝑐𝑜𝑠𝑡𝐼𝑛𝑠𝑒𝑟𝑡 + 𝑐𝑜𝑠𝑡𝐸𝑥𝑡𝑟𝑎𝑐𝑡−𝑀𝑖𝑛
+𝑚 𝑐𝑜𝑠𝑡𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒−𝐾𝑒𝑦

7



Dijkstra’s SSSP Algorithm with a Min-Heap
( SSSP: Single-Source Shortest Paths )

Dijkstra-SSSP ( 𝐺 = 𝑉, 𝐸 , 𝑤, 𝑠 )

1. for each 𝑣 ∈ 𝐺 𝑉 do 𝑣. 𝑑 ← ∞

2. 𝑠. 𝑑 ← 0

3. 𝐻 ← 𝜙 { empty min-heap }

4. for each 𝑣 ∈ 𝐺 𝑉 do INSERT( 𝐻, 𝑣 )

5. while 𝐻 ≠ ∅ do

6. 𝑢 ← EXTRACT-MIN( 𝐻 )

7. for each 𝑣 ∈ 𝐴𝑑𝑗 𝑢 do

8. if 𝑣. 𝑑 > 𝑢. 𝑑 + 𝑤𝑢,𝑣 then

9. DECREASE-KEY( 𝐻, 𝑣, 𝑢. 𝑑 + 𝑤𝑢,𝑣 )

10. 𝑣. 𝑑 ← 𝑢. 𝑑 + 𝑤𝑢,𝑣

Input: Weighted graph 𝐺 = 𝑉, 𝐸 with vertex set 𝑉 and edge set 𝐸, a 
weight function 𝑤, and a source vertex 𝑠 ∈ 𝐺 𝑉 . 

Output: For all 𝑣 ∈ 𝐺 𝑉 , 𝑣. 𝑑 is set to the shortest distance from 𝑠 to 𝑣.

Let 𝑛 = 𝐺 𝑉 and 𝑚 = 𝐺 𝐸

For Binary Heap ( worst-case costs ):

𝑐𝑜𝑠𝑡𝐼𝑛𝑠𝑒𝑟𝑡 =  log 𝑛
𝑐𝑜𝑠𝑡𝐸𝑥𝑡𝑟𝑎𝑐𝑡−𝑀𝑖𝑛 =  log 𝑛
𝑐𝑜𝑠𝑡𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒−𝐾𝑒𝑦 =  log 𝑛

∴ Total cost ( worst-case ) 

=  𝑚 + 𝑛 log 𝑛
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Dijkstra’s SSSP Algorithm with a Min-Heap
( SSSP: Single-Source Shortest Paths )

Dijkstra-SSSP ( 𝐺 = 𝑉, 𝐸 , 𝑤, 𝑠 )

1. for each 𝑣 ∈ 𝐺 𝑉 do 𝑣. 𝑑 ← ∞

2. 𝑠. 𝑑 ← 0

3. 𝐻 ← 𝜙 { empty min-heap }

4. for each 𝑣 ∈ 𝐺 𝑉 do INSERT( 𝐻, 𝑣 )

5. while 𝐻 ≠ ∅ do

6. 𝑢 ← EXTRACT-MIN( 𝐻 )

7. for each 𝑣 ∈ 𝐴𝑑𝑗 𝑢 do

8. if 𝑣. 𝑑 > 𝑢. 𝑑 + 𝑤𝑢,𝑣 then

9. DECREASE-KEY( 𝐻, 𝑣, 𝑢. 𝑑 + 𝑤𝑢,𝑣 )

10. 𝑣. 𝑑 ← 𝑢. 𝑑 + 𝑤𝑢,𝑣

Input: Weighted graph 𝐺 = 𝑉, 𝐸 with vertex set 𝑉 and edge set 𝐸, a 
weight function 𝑤, and a source vertex 𝑠 ∈ 𝐺 𝑉 . 

Output: For all 𝑣 ∈ 𝐺 𝑉 , 𝑣. 𝑑 is set to the shortest distance from 𝑠 to 𝑣.

Let 𝑛 = 𝐺 𝑉 and 𝑚 = 𝐺 𝐸

For Binomial Heap ( amortized costs ):

𝑐𝑜𝑠𝑡𝐼𝑛𝑠𝑒𝑟𝑡 =  1
𝑐𝑜𝑠𝑡𝐸𝑥𝑡𝑟𝑎𝑐𝑡−𝑀𝑖𝑛 =  log 𝑛
𝑐𝑜𝑠𝑡𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒−𝐾𝑒𝑦 =  log 𝑛

( worst-case )

∴ Total cost ( worst-case ) 

=  𝑚 + 𝑛 log 𝑛
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Dijkstra’s SSSP Algorithm with a Min-Heap
( SSSP: Single-Source Shortest Paths )

Dijkstra-SSSP ( 𝐺 = 𝑉, 𝐸 , 𝑤, 𝑠 )

1. for each 𝑣 ∈ 𝐺 𝑉 do 𝑣. 𝑑 ← ∞

2. 𝑠. 𝑑 ← 0

3. 𝐻 ← 𝜙 { empty min-heap }

4. for each 𝑣 ∈ 𝐺 𝑉 do INSERT( 𝐻, 𝑣 )

5. while 𝐻 ≠ ∅ do

6. 𝑢 ← EXTRACT-MIN( 𝐻 )

7. for each 𝑣 ∈ 𝐴𝑑𝑗 𝑢 do

8. if 𝑣. 𝑑 > 𝑢. 𝑑 + 𝑤𝑢,𝑣 then

9. DECREASE-KEY( 𝐻, 𝑣, 𝑢. 𝑑 + 𝑤𝑢,𝑣 )

10. 𝑣. 𝑑 ← 𝑢. 𝑑 + 𝑤𝑢,𝑣

Input: Weighted graph 𝐺 = 𝑉, 𝐸 with vertex set 𝑉 and edge set 𝐸, a 
weight function 𝑤, and a source vertex 𝑠 ∈ 𝐺 𝑉 . 

Output: For all 𝑣 ∈ 𝐺 𝑉 , 𝑣. 𝑑 is set to the shortest distance from 𝑠 to 𝑣.

Let 𝑛 = 𝐺 𝑉 and 𝑚 = 𝐺 𝐸

Total cost
≤ 𝑛 𝑐𝑜𝑠𝑡𝐼𝑛𝑠𝑒𝑟𝑡 + 𝑐𝑜𝑠𝑡𝐸𝑥𝑡𝑟𝑎𝑐𝑡−𝑀𝑖𝑛
+𝑚 𝑐𝑜𝑠𝑡𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒−𝐾𝑒𝑦

Observation:
Obtaining a worst-case bound for a 
sequence of 𝑛 INSERTS, 𝑛 EXTRACT-MINS

and 𝑚 DECREASE-KEYS is enough.

∴ Amortized bound per operation is 
sufficient.
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Dijkstra’s SSSP Algorithm with a Min-Heap
( SSSP: Single-Source Shortest Paths )

Dijkstra-SSSP ( 𝐺 = 𝑉, 𝐸 , 𝑤, 𝑠 )

1. for each 𝑣 ∈ 𝐺 𝑉 do 𝑣. 𝑑 ← ∞

2. 𝑠. 𝑑 ← 0

3. 𝐻 ← 𝜙 { empty min-heap }

4. for each 𝑣 ∈ 𝐺 𝑉 do INSERT( 𝐻, 𝑣 )

5. while 𝐻 ≠ ∅ do

6. 𝑢 ← EXTRACT-MIN( 𝐻 )

7. for each 𝑣 ∈ 𝐴𝑑𝑗 𝑢 do

8. if 𝑣. 𝑑 > 𝑢. 𝑑 + 𝑤𝑢,𝑣 then

9. DECREASE-KEY( 𝐻, 𝑣, 𝑢. 𝑑 + 𝑤𝑢,𝑣 )

10. 𝑣. 𝑑 ← 𝑢. 𝑑 + 𝑤𝑢,𝑣

Input: Weighted graph 𝐺 = 𝑉, 𝐸 with vertex set 𝑉 and edge set 𝐸, a 
weight function 𝑤, and a source vertex 𝑠 ∈ 𝐺 𝑉 . 

Output: For all 𝑣 ∈ 𝐺 𝑉 , 𝑣. 𝑑 is set to the shortest distance from 𝑠 to 𝑣.

Let 𝑛 = 𝐺 𝑉 and 𝑚 = 𝐺 𝐸

Total cost
≤ 𝑛 𝑐𝑜𝑠𝑡𝐼𝑛𝑠𝑒𝑟𝑡 + 𝑐𝑜𝑠𝑡𝐸𝑥𝑡𝑟𝑎𝑐𝑡−𝑀𝑖𝑛
+𝑚 𝑐𝑜𝑠𝑡𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒−𝐾𝑒𝑦

Observation:
For 𝑛 𝑐𝑜𝑠𝑡𝐼𝑛𝑠𝑒𝑟𝑡 + 𝑐𝑜𝑠𝑡𝐸𝑥𝑡𝑟𝑎𝑐𝑡−𝑀𝑖𝑛
the best possible bound is  𝑛 log 𝑛 . 
( else violates sorting lower bound ) 

Perhaps 𝑚 𝑐𝑜𝑠𝑡𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒−𝐾𝑒𝑦 can be 

improved to o 𝑚 log 𝑛 .
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Fibonacci Heaps from Binomial Heaps

A Fibonacci heap can be viewed as an extension of Binomial heaps 

which supports DECREASE-KEY and DELETE operations efficiently.

But the trees in a Fibonacci heap are no longer binomial trees as we 

will be cutting subtrees out of them.

However, all operations ( except DECREASE-KEY and DELETE ) are still 

performed in the same way as in binomial heaps. 

The rank of a tree is still defined as the number of children of the root, 

and we still link two trees if they have the same rank.
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Implementing DECREASE-KEY( 𝑯, 𝒙, 𝒌 )

DECREASE-KEY( 𝑯,𝒙, 𝒌 ): One possible approach is to cut out the 

subtree rooted at 𝑥 from 𝐻, reduce the value of 𝑥 to 𝑘, and insert that 

subtree into the root list of 𝐻. 

Problem: If we cut out a lot of subtrees from a tree its size will no 

longer be exponential in its rank. Since our analysis of EXTRACT-MIN in 

binomial heaps was highly dependent on this exponential relationship, 

that analysis will no longer hold.

Solution: Limit #cuts among the children of any node to 2. We will 

show that the size of each tree will still remain exponential in its rank. 

When a 2nd child is cut from a node 𝑥, we also cut 𝑥 from its parent 

leading to a possible sequence of cuts moving up towards the root.
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Analysis of Fibonacci Heap Operations

𝑓𝑛 = ቐ

0 𝑖𝑓 𝑛 = 0,
1 𝑖𝑓 𝑛 = 1,

𝑓𝑛−1 + 𝑓𝑛−2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
Recurrence for Fibonacci numbers:

We showed in a pervious lecture:  𝑓𝑛 =
1

5
𝜙𝑛 − ෠𝜙𝑛 ,

where 𝜙 =
1+ 5

2
and ෠𝜙 =

1− 5

2
are the roots 𝑧2 − 𝑧 − 1 = 0.
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Analysis of Fibonacci Heap Operations

𝑓0 0

𝑓1 1

𝑓2 1

𝑓3 2

𝑓4 3

𝑓5 5

𝑓6 8

𝑓7 13

𝑓8 21

𝑓9 34

𝑓10 55

< 1 1 + 𝑓0

< 2 1 + 𝑓0 + 𝑓1

< 3 1 + 𝑓0 + 𝑓1 + 𝑓2

< 5 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3

< 8 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4

< 13 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5

< 21 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 + 𝑓6

< 34 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 + 𝑓6 + 𝑓7

< 55 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 + 𝑓6 + 𝑓7 + 𝑓8

< 89 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 + 𝑓6 + 𝑓7 + 𝑓8 + 𝑓9

< 144 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 + 𝑓6 + 𝑓7 + 𝑓8 + 𝑓9 + 𝑓10
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Analysis of Fibonacci Heap Operations

𝑓0 0

𝑓1 1

𝑓2 1

𝑓3 2

𝑓4 3

𝑓5 5

𝑓6 8

𝑓7 13

𝑓8 21

𝑓9 34

𝑓10 55

𝑓11 89

= 1 1 + 𝑓0

< 2 1 + 𝑓0 + 𝑓1

< 3 1 + 𝑓0 + 𝑓1 + 𝑓2

< 5 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3

< 8 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4

< 13 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5

< 21 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 + 𝑓6

< 34 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 + 𝑓6 + 𝑓7

< 55 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 + 𝑓6 + 𝑓7 + 𝑓8

< 89 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 + 𝑓6 + 𝑓7 + 𝑓8 + 𝑓9

< 144 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 + 𝑓6 + 𝑓7 + 𝑓8 + 𝑓9 + 𝑓10
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Analysis of Fibonacci Heap Operations

𝑓0 0

𝑓1 1

𝑓2 1

𝑓3 2

𝑓4 3

𝑓5 5

𝑓6 8

𝑓7 13

𝑓8 21

𝑓9 34

𝑓10 55

𝑓11 89

𝑓12 144

= 1 1 + 𝑓0

= 2 1 + 𝑓0 + 𝑓1

= 3 1 + 𝑓0 + 𝑓1 + 𝑓2

= 5 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3

= 8 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4

= 13 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5

= 21 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 + 𝑓6

= 34 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 + 𝑓6 + 𝑓7

= 55 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 + 𝑓6 + 𝑓7 + 𝑓8

= 89 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 + 𝑓6 + 𝑓7 + 𝑓8 + 𝑓9

= 144 1 + 𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 + 𝑓6 + 𝑓7 + 𝑓8 + 𝑓9 + 𝑓10

Lemma 1: For all integers 𝑛 ≥ 0, 𝑓𝑛+2 = 1 + σ𝑖=0
𝑛 𝑓𝑖.
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Lemma 1: For all integers 𝑛 ≥ 0, 𝑓𝑛+2 = 1 + σ𝑖=0
𝑛 𝑓𝑖.

Inductive hypothesis:  𝑓𝑘+2 = 1 + σ𝑖=0
𝑘 𝑓𝑖 for 0 ≤ 𝑘 ≤ 𝑛 − 1.

Then 𝑓𝑛+2 = 𝑓𝑛+1 + 𝑓𝑛 = 𝑓𝑛 + 1 + σ𝑖=0
𝑛−1 𝑓𝑖 = 1 + σ𝑖=0

𝑛 𝑓𝑖.

Proof: By induction on 𝑛. 

Base case: 𝑓2 = 1 = 1 + 0 = 1 + 𝑓0 = 1 + σ𝑖=0
𝑛 𝑓𝑖.

Analysis of Fibonacci Heap Operations
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𝑓0 0

𝑓1 1

𝑓2 1

𝑓3 2

𝑓4 3

𝑓5 5

𝑓6 8

𝑓7 13

𝑓8 21

𝑓9 34

𝑓10 55

< 1.00 𝜙0

< 1.62 𝜙1

< 2.62 𝜙2

< 4.24 𝜙3

< 6.85 𝜙4

< 11.09 𝜙5

< 17.94 𝜙6

< 29.03 𝜙7

< 46.98 𝜙8

< 76.01 𝜙9

< 122.99 𝜙10
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Analysis of Fibonacci Heap Operations

𝑓0 0

𝑓1 1

𝑓2 1

𝑓3 2

𝑓4 3

𝑓5 5

𝑓6 8

𝑓7 13

𝑓8 21

𝑓9 34

𝑓10 55

𝑓11 89

≥ 1.00 𝜙0

< 1.62 𝜙1

< 2.62 𝜙2

< 4.24 𝜙3

< 6.85 𝜙4

< 11.09 𝜙5

< 17.94 𝜙6

< 29.03 𝜙7

< 46.98 𝜙8

< 76.01 𝜙9

< 122.99 𝜙10
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Analysis of Fibonacci Heap Operations

𝑓0 0

𝑓1 1

𝑓2 1

𝑓3 2

𝑓4 3

𝑓5 5

𝑓6 8

𝑓7 13

𝑓8 21

𝑓9 34

𝑓10 55

𝑓11 89

𝑓12 144

≥ 1.00 𝜙0

≥ 1.62 𝜙1

≥ 2.62 𝜙2

≥ 4.24 𝜙3

≥ 6.85 𝜙4

≥ 11.09 𝜙5

≥ 17.94 𝜙6

≥ 29.03 𝜙7

≥ 46.98 𝜙8

≥ 76.01 𝜙9

≥ 122.99 𝜙10

Lemma 2: For all integers 𝑛 ≥ 0, 𝑓𝑛+2 ≥ 𝜙𝑛.
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Lemma 2: For all integers 𝑛 ≥ 0, 𝑓𝑛+2 ≥ 𝜙𝑛.

Inductive hypothesis:  𝑓𝑘+2 ≥ 𝜙𝑘 for 0 ≤ 𝑘 ≤ 𝑛 − 1.

Then 𝑓𝑛+2 = 𝑓𝑛+1 + 𝑓𝑛
≥ 𝜙𝑛−1 + 𝜙𝑛−2

= 𝜙 + 1 𝜙𝑛−2

= 𝜙2𝜙𝑛−2

= 𝜙𝑛

Proof: By induction on 𝑛. 

Base case: 𝑓2 = 1 = 𝜙0 and 𝑓3 = 2 > 𝜙1.

Analysis of Fibonacci Heap Operations
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Lemma 3: Let 𝑥 be any node in a Fibonacci heap, and suppose that 

𝑘 = 𝑟𝑎𝑛𝑘 𝑥 .  Let 𝑦1, 𝑦2, … , 𝑦𝑘 be the children of 𝑥 in the order in 

which they were linked to 𝑥, from the earliest to the latest. Then 

𝑟𝑎𝑛𝑘 𝑦𝑖 ≥ max 0, 𝑖 − 2 for 1 ≤ 𝑖 ≤ 𝑘.

Proof: Obviously, 𝑟𝑎𝑛𝑘 𝑦1 ≥ 0. 

For 𝑖 > 1, when 𝑦𝑖 was linked to 𝑥, all of 𝑦1, 𝑦2, … , 𝑦𝑖−1 were children 

of 𝑥. So, 𝑟𝑎𝑛𝑘 𝑥 ≥ 𝑖 − 1. 

Because 𝑦𝑖 is linked to 𝑥 only if 𝑟𝑎𝑛𝑘 𝑦𝑖 = 𝑟𝑎𝑛𝑘 𝑥 , we must have 

had 𝑟𝑎𝑛𝑘 𝑦𝑖 ≥ 𝑖 − 1 at that time.

Since then, 𝑦𝑖 has lost at most one child, and hence 𝑟𝑎𝑛𝑘 𝑦𝑖 ≥ 𝑖 − 2.

𝑥

𝑦1𝑦2𝑦3𝑦𝑘−1𝑦𝑘

Analysis of Fibonacci Heap Operations
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Lemma 4: Let 𝑧 be any node in a Fibonacci heap with 𝑛 = 𝑠𝑖𝑧𝑒 𝑧

and 𝑟 = 𝑟𝑎𝑛𝑘 𝑧 . Then 𝑟 ≤ log𝜙 𝑛.

Proof: Let 𝑠𝑘 be the minimum possible size of any node of rank 𝑘 in 

any Fibonacci heap. 

Trivially, 𝑠0 = 1 and 𝑠1 = 2.

Since adding children to a node cannot decrease its size, 𝑠𝑘 increases 

monotonically with 𝑘.

Let 𝑥 be a node in any Fibonacci heap with 𝑟𝑎𝑛𝑘 𝑥 = 𝑟 and 

𝑠𝑖𝑧𝑒 𝑥 = 𝑠𝑟.

Analysis of Fibonacci Heap Operations
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Proof ( continued ): Let 𝑦1, 𝑦2, … , 𝑦𝑟 be the children of 𝑥 in the order 

in which they were linked to 𝑥, from the earliest to the latest. 

Then 𝑠𝑟 ≥ 1 + σ𝑖=1
𝑟 𝑠𝑟𝑎𝑛𝑘 𝑦𝑖 ≥ 1 + σ𝑖=1

𝑟 𝑠max 0,𝑖−2 = 2 + σ𝑖=2
𝑟 𝑠𝑖−2

We now show by induction on 𝑟 that 𝑠𝑟 ≥ 𝑓𝑟+2 for all integer 𝑟 ≥ 0.

Base case: 𝑠0 = 1 = 𝑓2 and 𝑠1 = 2 = 𝑓3.

Inductive hypothesis:  𝑠𝑘 ≥ 𝑓𝑘+2 for 0 ≤ 𝑘 ≤ 𝑟 − 1.

Then 𝑠𝑟 ≥ 2 + σ𝑖=2
𝑟 𝑠𝑖−2 ≥ 2 + σ𝑖=2

𝑟 𝑓𝑖 = 1 + σ𝑖=1
𝑟 𝑓𝑖 = 𝑓𝑟+2.

Hence 𝑛 ≥ 𝑠𝑟 ≥ 𝑓𝑟+2 ≥ 𝜙𝑟 ⇒ 𝑟 ≤ log𝜙 𝑛 .

Lemma 4: Let 𝑧 be any node in a Fibonacci heap with 𝑛 = 𝑠𝑖𝑧𝑒 𝑧

and 𝑟 = 𝑟𝑎𝑛𝑘 𝑧 . Then 𝑟 ≤ log𝜙 𝑛.

Analysis of Fibonacci Heap Operations
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Proof: Let 𝑧 be any node in the heap. 

Then from Lemma 4, 

𝑑𝑒𝑔𝑟𝑒𝑒 𝑧 = 𝑟𝑎𝑛𝑘 𝑧 ≤ log𝜙 𝑠𝑖𝑧𝑒 𝑧 ≤ log𝜙 𝑛 =  log 𝑛 .

Corollary: The maximum degree of any node in an 𝑛 node Fibonacci 

heap is  log 𝑛 .

Analysis of Fibonacci Heap Operations
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We extend the potential function used for binomial heaps:

Φ 𝐷𝑖 = 2𝑡 𝐷𝑖 + 3𝑚 𝐷𝑖 ,

where 𝐷𝑖 is the state of the data structure after the 𝑖𝑡ℎ operation,

𝑡 𝐷𝑖 is the number of trees in the root list, and

𝑚 𝐷𝑖 is the number of marked nodes. 

Analysis of Fibonacci Heap Operations

We mark a node when

− it loses its first child

We unmark a node when

− it loses its second child, or

− becomes the child of another node ( e.g., LINKed )

All nodes are initially unmarked.
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∴ overall actual cost, 𝑐𝑖 = 1 + 𝑘

DECREASE-KEY( 𝑯,𝒙, 𝒌𝒙 ): Let 𝑘 = #cascading cuts performed. 

We extend the potential function used for binomial heaps:

Φ 𝐷𝑖 = 2𝑡 𝐷𝑖 + 3𝑚 𝐷𝑖 ,

where 𝐷𝑖 is the state of the data structure after the 𝑖𝑡ℎ operation,

𝑡 𝐷𝑖 is the number of trees in the root list, and

𝑚 𝐷𝑖 is the number of marked nodes. 

Then the actual cost of cutting the tree rooted at 𝑥 is 1, and

the actual cost of each of the cascading cuts is also 1.

Analysis of Fibonacci Heap Operations
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Fibonacci Heaps from Binomial Heaps

∴ 𝑡 𝐷𝑖 − 𝑡 𝐷𝑖−1 = 1 + 𝑘

DECREASE-KEY( 𝑯,𝒙, 𝒌𝒙 ):

Potential function: Φ 𝐷𝑖 = 2𝑡 𝐷𝑖 + 3𝑚 𝐷𝑖

New trees: 1 tree rooted at 𝑥, and

1 tree produced by each of the 𝑘 cascading cuts.

∴ 𝑚 𝐷𝑖 −𝑚 𝐷𝑖−1 ≤ −𝑘 + 1

Marked nodes: 1 node unmarked by each cascading cut, and

at most 1 node marked by the last cut/cascading cut.

Potential drop, Δ𝑖 = Φ 𝐷𝑖 −Φ 𝐷𝑖−1

= 2 𝑡 𝐷𝑖 − 𝑡 𝐷𝑖−1 + 3 𝑚 𝐷𝑖 −𝑚 𝐷𝑖−1

≤ 2 1 + 𝑘 + 3 −𝑘 + 1

= −𝑘 + 5
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Fibonacci Heaps from Binomial Heaps

Amortized cost, Ƹ𝑐𝑖 = 𝑐𝑖 + Δ𝑖
≤ 1 + 𝑘 + −𝑘 + 5

= 6

=  1

Potential function: Φ 𝐷𝑖 = 2𝑡 𝐷𝑖 + 3𝑚 𝐷𝑖

DECREASE-KEY( 𝑯,𝒙, 𝒌𝒙 ):
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Fibonacci Heaps from Binomial Heaps

Potential function: Φ 𝐷𝑖 = 2𝑡 𝐷𝑖 + 3𝑚 𝐷𝑖

EXTRACT-MIN( 𝑯 ):

Let 𝑑𝑛 be the max degree of any node in an 𝑛-node Fibonacci heap. 

Cost of creating the array of pointers is ≤ 𝑑𝑛 +1.

Suppose we start with 𝑘 trees in the doubly linked list, and perform 𝑙

link operations during the conversion from linked list to array version.  

So we perform 𝑘 + 𝑙 work, and end up with 𝑘 − 𝑙 trees.

Cost of converting to the linked list version is 𝑘 − 𝑙.

actual cost, 𝑐𝑖 ≤ 𝑑𝑛 + 1 + 𝑘 + 𝑙 + 𝑘 − 𝑙 = 2𝑘 + 𝑑𝑛 + 1

Since no node is marked, and each link reduces the #trees by 1,

potential change, Δ𝑖 = Φ 𝐷𝑖 −Φ 𝐷𝑖−1 = −2𝑙
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Fibonacci Heaps from Binomial Heaps

Potential function: Φ 𝐷𝑖 = 2𝑡 𝐷𝑖 + 3𝑚 𝐷𝑖

EXTRACT-MIN( 𝑯 ):

actual cost, 𝑐𝑖 ≤ 𝑑𝑛 + 1 + 𝑘 + 𝑙 + 𝑘 − 𝑙 = 2𝑘 + 𝑑𝑛 + 1

potential change, Δ𝑖 = Φ 𝐷𝑖 −Φ 𝐷𝑖−1 = −2𝑙

amortized cost, Ƹ𝑐𝑖 = 𝑐𝑖 + Δ𝑖 ≤ 2 𝑘 − 𝑙 + 𝑑𝑛 + 1

But  𝑘 − 𝑙 ≤ 𝑑𝑛 + 1 ( as we have at most one tree of each rank )

So, Ƹ𝑐𝑖 ≤ 3𝑑𝑛 + 3 =  log 𝑛 .
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Fibonacci Heaps from Binomial Heaps

Potential function: Φ 𝐷𝑖 = 2𝑡 𝐷𝑖 + 3𝑚 𝐷𝑖

DELETE( 𝑯,𝒙 ):

STEP 1: DECREASE-KEY( 𝐻, 𝑥,−∞)

STEP 2: EXTRACT-MIN( 𝐻 )

amortized cost, Ƹ𝑐𝑖 = amortized cost of DECREASE-KEY

+ amortized cost of EXTRACT-MIN

=  1 +  log 𝑛

=  log 𝑛
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