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Fibonacci Heaps
( Fredman & Tarjan, 1984 )

A Fibonacci heap can be viewed as an extension of Binomial heaps

which supports DECREASE-KEY and DELETE operations efficiently.

. Binary Heap Binomial Heap
H L3
eap Operation ( worst-case ) ( amortized )

MAKE-HEAP O(1) O(1)
INSERT O(logn) O(1)
MINIMUM 0(1) 0(1)
EXTRACT-MIN O(logn) O(logn)
UNION ®(n) 0(1)
DECREASE-KEY O(logn) —

DELETE O(logn) —



Fibonacci Heaps
( Fredman & Tarjan, 1984 )

A Fibonacci heap can be viewed as an extension of Binomial heaps

which supports DECREASE-KEY and DELETE operations efficiently.

. Binary Heap Binomial Heap
H L3
eap Operation ( worst-case ) ( amortized )

MAKE-HEAP O(1) O(1)
INSERT O(logn) O(1)
MINIMUM O(1) O(1)
EXTRACT-MIN O(logn) O(logn)
UNION ®(n) 0(1)
DECREASE-KEY O(logn) ( M?O(:igcil )
DELETE O(logn) O(logn)

( worst case )



Fibonacci Heaps
( Fredman & Tarjan, 1984 )

A Fibonacci heap can be viewed as an extension of Binomial heaps

which supports DECREASE-KEY and DELETE operations efficiently.

Heap Operation Binary Heap Binomial Heap Fibonacci Heap
A ( worst-case ) ( amortized ) ( amortized )

MAKE-HEAP O(1) O(1) O(1)
INSERT O(logn) O(1) O(1)
MINIMUM O(1) O(1) O(1)
EXTRACT-MIN O(logn) O(logn) O(logn)
UNION O(n) O(1) O(1)
DECREASE-KEY O(logn) ( V(V)O(:i%;)e ) O(1)
DELETE O(logn) O(logn) O(logn)

( amortized )



Dijkstra’s SSSP Algorithm with a Min-Heap
( SSSP: Single-Source Shortest Paths )

Input: Weighted graph G = (V, E) with vertex set V and edge set E, a
weight function w, and a source vertex s € G|[V].

Output: For all v € G[V], v.d is set to the shortest distance from s to v.

Dijkstra-SSSP (G = (V,E), w, s )

for each v € G[V] do v.d « o
s.d <0
H« ¢ { empty min-heap }
for each v € G[V] do INSERT( H, v )
while H # @ do
u < EXTRACT-MIN( H )
for each v € Adj[u] do

if v.d >u.d + wy, then

A T L o R

DECREASE-KEY( H, v, u.d + wy,, )

—
o

v.d < u.d+wy,




Dijkstra’s SSSP Algorithm with a Min-Heap
( SSSP: Single-Source Shortest Paths )

Input: Weighted graph G = (V, E) with vertex set V and edge set E, a
weight function w, and a source vertex s € G|[V].

Output: For all v € G[V], v.d is set to the shortest distance from s to v.

Dijkstra-SSSP (G = (V,E), w, s ) Letn = |G[V]| and m = |G[E]|
1. for each v € G[V] do v.d « o
2. s5de0 H# INSERTS=n
3 Hed { empty min-heap } # EXTRACT-MINS = n
4, for each v € G[V] do INSERT( H, v )
- <
S while H =0 do H# DECREASE-KEYS< m
6. u < EXTRACT-MIN( H )
7. for each v € Adj[u] do Total cost
5 v d>.d+wyy then < n(COStlnsert + COStExtract—Min)
9. DECREASE-KEY( H, v, u.d +wy,, )
+m(costpecrease-rey)




Dijkstra’s SSSP Algorithm with a Min-Heap
( SSSP: Single-Source Shortest Paths )

Input: Weighted graph G = (V, E) with vertex set V and edge set E, a
weight function w, and a source vertex s € G|[V].

Output: For all v € G[V], v.d is set to the shortest distance from s to v.

Dijkstra-SSSP (G = (V,E), w, s ) Letn = |G[V]| and m = |G[E]|
1. for each v € G[V] do v.d « o
2. sde0 For Binary Heap ( worst-case costs ):
3. H <« ¢ { empty min-heap }
4, for each v € G[V] do INSERT( H, v ) COStInsert — O(log n)
6. u « EXTRACT-MIN( H ) COS tDecrease—Key — O(lOg Tl)
7. for each v € Adj[u] do
8. if v.d >u.d + wy, then
9. DECREASE-KEY( H, v, u.d + wy, ) ~ Total cost ( worst-case )
10. v.d e ud+wy, = O((m + n) logn)




Dijkstra’s SSSP Algorithm with a Min-Heap
( SSSP: Single-Source Shortest Paths )

Input: Weighted graph G = (V, E) with vertex set V and edge set E, a
weight function w, and a source vertex s € G|[V].

Output: For all v € G[V], v.d is set to the shortest distance from s to v.

Dijkstra-SSSP (G = (V,E), w, s ) Letn = |G[V]| and m = |G[E]|

1. for each v € G[V] do v.d « o

2. sde0 For Binomial Heap ( amortized costs ):
3. H <« ¢ { empty min-heap }

4, for each v € G[V] do INSERT( H, v ) COStInsert — O(l)

6. u « EXTRACT-MIN( H ) cCOS tDecrease—Key — O(lOg Tl)

7. for each v € Adj[u] do ( worst-case )
8. if v.d >u.d + wy, then

9. DECREASE-KEY( H, v, u.d +wy,, )

10. v.d — w.d + Wy - Total cost ( worst-case )

= O((m + n) log n)



Dijkstra’s SSSP Algorithm with a Min-Heap
( SSSP: Single-Source Shortest Paths )

Input: Weighted graph G = (V, E) with vertex set V and edge set E, a
weight function w, and a source vertex s € G|[V].

Output: For all v € G[V], v.d is set to the shortest distance from s to v.

Dijkstra-SSSP (G = (V,E), w, s ) Letn = |G[V]| and m = |G[E]|

1. for each v € G[V] do v.d « o Total cost

2. s.d <0

3. Hed { empty min-heap } < n(COStInsert + COStExtract—Min)
4, fOf eachv € G[V] do INSERT( H, v ) + m(COStDeC'rease_Key)

5. while H + @ do

6. u < EXTRACT-MIN( H ) Observatlon:

7. for each v € Adj[u] do Obtaining a worst-case bound for a

8. fv.-d>ud+wy, then sequence of n INSERTS, n EXTRACT-MINS
: D KEY(H, v, u.d + wy ;

’ FCREASE-KEVUH, 0, .t Wy ) and m DECREASE-KEYS is enough.

10. v.d «u.d+wy,

- Amortized bound per operation is
sufficient.



Dijkstra’s SSSP Algorithm with a Min-Heap

( SSSP: Single-Source Shortest Paths )

Input: Weighted graph G = (V, E) with vertex set V and edge set E, a
weight function w, and a source vertex s € G|[V].

Output: For all v € G[V], v.d is set to the shortest distance from s to v.

W © N> Uk wDd R

—
©

Dijkstra-SSSP (G = (V,E), w, s )

for each v € G[V] do v.d « o
s.d <0
H e« ¢ { empty min-heap }
for each v € G[V] do INSERT( H, v )
while H # @ do

u < EXTRACT-MIN( H )

for each v € Adj[u] do

if v.d >u.d + wy, then
DECREASE-KEY( H, v, u.d + wy,, )

v.d < u.d+wy,

Letn = |G[V]| and m = |G[E]|

Total cost
< n(COStInsert + COStExtract—Min)
+ m(COStDecrease—Key)

Observation:

For n(costisert + COStgxtract—min)
the best possible bound is ®(n logn).

( else violates sorting lower bound )

Perhaps m(costDecrease_Key) can be
improved to o(m logn).



Fibonacci Heaps from Binomial Heaps

A Fibonacci heap can be viewed as an extension of Binomial heaps
which supports DECREASE-KEY and DELETE operations efficiently.

But the trees in a Fibonacci heap are no longer binomial trees as we
will be cutting subtrees out of them.

However, all operations ( except DECREASE-KEY and DELETE ) are still
performed in the same way as in binomial heaps.

The rank of a tree is still defined as the number of children of the root,
and we still link two trees if they have the same rank.



Implementing DECREASE-KEY( H, x, k)

DecreASE-KEY( H, x, k ): One possible approach is to cut out the
subtree rooted at x from H, reduce the value of x to k, and insert that

subtree into the root list of H.

Problem: If we cut out a lot of subtrees from a tree its size will no

longer be exponential in its rank. Since our analysis of EXTRACT-MIN in
binomial heaps was highly dependent on this exponential relationship,

that analysis will no longer hold.

Solution: Limit #cuts among the children of any node to 2. We will

show that the size of each tree will still remain exponential in its rank.

When a 2nd child is cut from a node x, we also cut x from its parent
leading to a possible sequence of cuts moving up towards the root.



Analysis of Fibonacci Heap Operations

( 0 if n=0,
Recurrence for Fibonacci numbers: f, = < 1 ifn=1,
fn-1+ fa—2 otherwise.

We showed in a pervious lecture: f,, = \/—15 (ql)" — QB")

1+v5 ~ 15
where¢=+T\/_andqb :T\/_ are theroots z> —z—1 = 0.



Analysis of Fibonacci Heap Operations

fo 0
f 1
f2 1
f3 2
fa 3
fs 5
f6 8
f; 13
e 21
fo 34
f1o 55

AN N NN NN AN NN NN

1 1+ f,

2 1+ 1+ f1

3 1+fo+fitfe

5 1+fot+fitfatf3

8 1+fo+tfitfatfzt+/a

13 1+fo+thith+tfitfatfs

21 1+fot+tfitfatfztfatfs+fe

34 1+fotfithhtfitfatfstfetfy

55 1+fo+tfhithatfitfatfstfetfrt+fs

89 1+fot+tfitfatfztfatfs+fetfr+fetfo
144 |\1+fot+thtfatfst+tfatfstfeotfr+fs+ fot fio




Analysis of Fibonacci Heap Operations

fo 0
f 1
f2 1
f3 2
fa 3
fs 5
f6 8
f; 13
e 21
fo 34
f1o 55
fi1 89

N N N AN N AN NN NN

1 1+ f,

2 1+ 1o+ f1

3 1+fo+f1+ /2

5 1+fot+fitfatf

8 1+fo+fith+tf:z+1

13 1+fo+hiththt+tfatfs

21 1+fo+fithhtfztfatfs+tfe

34 1+fo+tfithathitfatfstfetfs

55 1+fo+hithththtfstfetfr+fs

89 1+fo+fithththtfstfetfr+fstfo
144 |\1+fot+ththatfstfatfstfetfr+fs+ fot fio




Analysis of Fibonacci Heap Operations

fo 0
f 1
f2 1
f3 2
fa 3
fs 5
f6 8
f; 13
e 21
fo 34
f1o 55
fi1 89
s 144

1 1+ f,

2 1+ fo+ f

3 1+fo+fi+ /2

5 1+fot+tfitfitfz

8 1+fotfitfatfztfa

13 1+foththththtfs

21 1+foththtfhitfatfs+fe

34 1+foththhtfstfatfstfotfs

55 1+fot+tfitfatfztfatfs+fetfrtfs

89 1+fo+tfithatfitfatfstfetfr+fetfo
144 | 1+fo+tfithtfitfatfstfetfr+fstfot fio

Lemma 1: For all integersn > 0, .2 = 1+ X1, fi-




Analysis of Fibonacci Heap Operations

Lemma 1: For all integersn > 0, f,.o = 1+ X1, fi-

Proof: By induction on n.
Basecase: f, =1=14+0=1+f,=1+X",f:

Inductive hypothesis: f., =1+ Z?:ofi forO0<k<n-1.

Then fri2 = fpsr t o =fo t (1 + z:?=_01fl) =1+X0fi



Analysis of Fibonacci Heap Operations

fo 0 < 1.00 P°
fi 1 < 1.62 Pl
£, 1 < 2.62 P2
fs 2 < 4.24 P>
fa 3 < 6.85 P*
fe 5 < 11.09 | ¢°
fe 8 < 17.94 | ¢°
fy 13 < 29.03 | ¢
fo 21 < 4698 | ¢
fo 34 < 76.01 | ¢°
fio 55 < 12299 | @O




Analysis of Fibonacci Heap Operations

fo 0

fi 1 > 1.00 P°
£, 1 < 1.62 Pl
fs 2 < 2.62 b2
fa 3 < 4.24 P>
fs 5 < 6.85 P*
fs 8 < 11.09 | ¢°
f, 13 < 17.94 | ¢°
fo 21 < 29.03 | @7
fo 34 < 4698 | ¢®
fio 55 < 76.01 | ¢°
fi1 89 < 12299 | @10




Analysis of Fibonacci Heap Operations

fo 0

fi 1

f2 1 > 1.00 P°
fs 2 > 1.62 P
fa 3 > 2.62 g
fs 5 > 4.24 K
[ 8 > 6.85 P*
f5 13 > 11.09 | ¢5
fo 21 > 1794 | ¢°
fo 34 > 2903 | ¢7
fio 55 > 4698 | ¢°®
fi1 89 > 7601 | ¢°
fiz 144 > 12299 | @0

Lemma 2: For all integersn = 0, f,,., = ¢".



Analysis of Fibonacci Heap Operations

Lemma 2: For all integersn = 0, f,,,, = ¢".

Proof: By induction on n.
Basecase: L, =1=¢%and 5, =2 > ¢'.

Inductive hypothesis: fr4, = @* for0 <k <n —1.

Then fry2 = fas1 + /o
> ¢n—1 + ¢n—2
= (¢ + D" 7
— ¢2¢n—2



Analysis of Fibonacci Heap Operations

Lemma 3: Let x be any node in a Fibonacci heap, and suppose that
k = rank(x). Let y4, V>, ..., Vi be the children of x in the order in
which they were linked to x, from the earliest to the latest. Then

rank(y;) = max{0,i —2}for1 <i <k.

a2 M1

Proof: Obviously, rank(y;) = 0.

Fori > 1, when y; was linked to x, all of y4, y,, ..., y;—1 were children
of x. So, rank(x) > i — 1.

Because y; is linked to x only if rank(y;) = rank(x), we must have
had rank(y;) = i — 1 at that time.

Since then, y; has lost at most one child, and hence rank(y;) =i — 2.



Analysis of Fibonacci Heap Operations

Lemma 4: Let z be any node in a Fibonacci heap with n = size(z)

and r = rank(z). Then r < logy n.

Proof: Let s, be the minimum possible size of any node of rank k in

any Fibonacci heap.
Trivially, s, = 1 and s; = 2.

Since adding children to a node cannot decrease its size, s increases

monotonically with k.

Let x be a node in any Fibonacci heap with rank(x) = r and

size(x) = s,..



Analysis of Fibonacci Heap Operations

Lemma 4: Let z be any node in a Fibonacci heap with n = size(z)

and r = rank(z). Then r < logy n.

Proof ( continued ): Let y4, v-, ..., ¥- be the children of x in the order
in which they were linked to x, from the earliest to the latest.

Then s, = 1+ Xi1 Srank(y) = 1 + Xi=1 Smax{o,i-2} = 2 + 2i=2 Si—2
We now show by induction on r that s,. = f,-,, for all integer r = 0.
Basecase:sp =1=f,ands; =2 = f3.

Inductive hypothesis: s, = fri, forO <k <r —1.

Thens, =22+ Xi5Si 2 =22+ X fi =1+ 2i=1fi = friz.

Hencen = s, = fri, 2 ¢" = r <logysn.



Analysis of Fibonacci Heap Operations

Corollary: The maximum degree of any node in an n node Fibonacci
heap is O(logn).

Proof: Let z be any node in the heap.

Then from Lemma 4,

degree(z) = rank(z) < log¢(size(z)) < logy n = O(logn).



Analysis of Fibonacci Heap Operations

All nodes are initially unmarked.

We mark a node when
— it loses its first child

We unmark a node when
— it loses its second child, or
—  becomes the child of another node ( e.g., Linked )

We extend the potential function used for binomial heaps:
®(D;) = 2t(D;) + 3m(Dy),

where D; is the state of the data structure after the i*" operation,
t(D;) is the number of trees in the root list, and
m(D;) is the number of marked nodes.



Analysis of Fibonacci Heap Operations

We extend the potential function used for binomial heaps:
®(D;) = 2t(D;) + 3m(D,),

where D; is the state of the data structure after the i*" operation,
t(D;) is the number of trees in the root list, and
m(D;) is the number of marked nodes.

DecrReASE-KEY( H, x, k., ): Let k = #cascading cuts performed.

Then the actual cost of cutting the tree rooted at x is 1, and
the actual cost of each of the cascading cuts is also 1.

- overall actual cost,c; =1+ k



Fibonacci Heaps from Binomial Heaps
Potential function: ®(D;) = 2t(D;) + 3m(D;)
DecReASE-KEY( H, x, k., ):

New trees: 1 tree rooted at x, and

1 tree produced by each of the k cascading cuts.
~t(D) —tDi_1) =1+k
Marked nodes: 1 node unmarked by each cascading cut, and
at most 1 node marked by the last cut/cascading cut.
~m(D;)) —m(D;_1) < —-k+1
Potential drop, A; = ®(D;) — ®(D;_4)

= 2(t(Dy) — t(D;-1)) + 3(m(Dy) — m(D;—1))
<2(1+k)+3(-k+1)
=—-k+5



Fibonacci Heaps from Binomial Heaps
Potential function: ®(D;) = 2t(D;) + 3m(D;)

DecReASE-KEY( H, x, k., ):

Amortized cost, ¢; = ¢; + A;
<(1+k)+(—k+5)
=6
= 0(1)



Fibonacci Heaps from Binomial Heaps
Potential function: ®(D;) = 2t(D;) + 3m(D;)
EXTRACT-MIN( H ):

Let d,, be the max degree of any node in an n-node Fibonacci heap.

Cost of creating the array of pointersis < d,, +1.

Suppose we start with k trees in the doubly linked list, and perform [
link operations during the conversion from linked list to array version.
So we perform k + [ work, and end up with k — [ trees.

Cost of converting to the linked list version is k — L.
actualcost,c; <d,+1+k+D)+(k—-0)=2k+d,+1

Since no node is marked, and each link reduces the #trees by 1,

potential change, A; = ®(D;) — ®(D;_,) = —21



Fibonacci Heaps from Binomial Heaps
Potential function: ®(D;) = 2t(D;) + 3m(D;)
EXTRACT-MIN( H ):

actualcost,c; <d,+1+k+D)+(k—-0)=2k+d,+1
potential change, A; = ®(D;) — ®(D;_,) = —21

amortized cost, ¢; = ¢; + A; < 2(k—-1)+d,, +1

But k— [ <d,,+1 (aswe have at most one tree of each rank)

So, ¢; < 3d,, + 3 = O(logn).



Fibonacci Heaps from Binomial Heaps
Potential function: ®(D;) = 2t(D;) + 3m(D;)
DeLeTe( H, x ):

STEP 1: DECREASE-KEY( H, x, —00)
STEP 2: EXTRACT-MIN( H )

amortized cost, ¢; = amortized cost of DECREASE-KEY
+ amortized cost of EXTRACT-MIN
= 0(1) + O(logn)
= O(logn)



