“Theory is when you know everything but nothing works. Practice is when everything works but no one knows why. In our lab, theory and practice are combined: nothing works and no one knows why.”

— A practical theoretician
Basic Logistics: Who/Where/When

– Lecture Time: MW 7:00 pm - 8:20 pm
– Location: Harriman Hall 137, West Campus
– Instructor: Rezaul A. Chowdhury
– Office Hours: M 4:00 pm - 5:00 pm
 F 6:00 pm - 8:00 pm
 239 Computer Science
– Email: rezaul@cs.stonybrook.edu
– TA: TBA
– Class Webpage:
Prerequisites

- **Required**: Some background (undergrad level) in the design and analysis of algorithms and data structures
 - fundamental data structures (e.g., lists, stacks, queues and arrays)
 - discrete mathematical structures (e.g., graphs, trees, and their adjacency lists & adjacency matrix representations)
 - fundamental programming techniques (e.g., recursion, divide-and-conquer, and dynamic programming)
 - basic sorting and searching algorithms
 - fundamentals of asymptotic analysis (e.g., $O(\cdot)$, $\Omega(\cdot)$ and $\Theta(\cdot)$ notations)

- **Required**: Some background in programming languages (C / C++)
Topics to be Covered

The following topics will be covered (hopefully)

– recurrence relations and divide-and-conquer algorithms
– dynamic programming
– graph algorithms (e.g., network flow)
– amortized analysis
– advanced data structures (e.g., Fibonacci heaps)
– cache-efficient and external-memory algorithms
– high probability bounds and randomized algorithms
– parallel algorithms and multithreaded computations
– NP-completeness and approximation algorithms
– the alpha technique (e.g., disjoint sets, partial sums)
– FFT (Fast Fourier Transforms)
Grading Policy

– Four Homework Problem Sets
 (highest score 15%, lowest score 5%, and others 10% each): 40%

– Two Exams (higher one 30%, lower one 15%): 45%
 – Midterm (in-class): Oct 16
 – Final (in-class): Dec 2

– Scribe note (one lecture): 10%

– Class participation & attendance: 5%
Textbooks

Required
- Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein.

Recommended
- Sanjoy Dasgupta, Christos Papadimitriou, and Umesh Vazirani.
- Jon Kleinberg and Éva Tardos.
- Rajeev Motwani and Prabhakar Raghavan.
- Vijay Vazirani.
- Joseph JáJá.
What is an Algorithm?

An algorithm is a *well-defined computational procedure* that solves a well-specified computational problem. It accepts a value or set of values as *input*, and produces a value or set of values as *output*.

Example: *mergesort* solves the *sorting problem* specified as a relationship between the input and the output as follows.

Input: A sequence of n numbers $\langle a_1, a_2, \ldots, a_n \rangle$.

Output: A permutation $\langle a'_1, a'_2, \ldots, a'_n \rangle$ of the input sequence such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n$.
Desirable Properties of an Algorithm

√ Correctness
 – Designing an incorrect algorithm is straightforward

√ Efficiency
 – Efficiency is easily achievable if we give up on correctness

Surprisingly, sometimes incorrect algorithms can also be useful!
 – If you can control the error rate
 – Tradeoff between correctness and efficiency:
 Randomized algorithms
 (Monte Carlo: always efficient but sometimes incorrect,
 Las Vegas: always correct but sometimes inefficient)
 Approximation algorithms
 (always incorrect!)
How Do You Measure Efficiency?

We often want algorithms that can use the available resources efficiently.

Some measures of efficiency

– time complexity
– space complexity
– cache complexity
– I/O complexity
– energy usage
– number of processors/cores used
– network bandwidth
Goal of Algorithm Analysis

Goal is to predict the behavior of an algorithm without implementing it on a real machine.

But predicting the exact behavior is not always possible as there are too many influencing factors.

Runtime on a serial machine is the most commonly used measure.

We need to model the machine first in order to analyze runtimes.

But an exact model will make the analysis too complicated!
So we use an approximate model (e.g., assume unit-cost Random Access Machine model or RAM model).

We may need to approximate even further: e.g., for a sorting algorithm we may count the comparison operations only.
So the predicted running time will only be an approximation!
Performance Bounds

- **worst-case complexity**: maximum complexity over all inputs of a given size
- **average complexity**: average complexity over all inputs of a given size
- **amortized complexity**: worst-case bound on a sequence of operations
- **expected complexity**: for algorithms that make random choices during execution (randomized algorithms)
- **high-probability bound**: when the probability that the complexity holds is \(\geq 1 - \frac{c}{n^\alpha} \) for input size \(n \), positive constant \(c \) and some constant \(\alpha \geq 1 \)
Searching in a Sorted Grid

You are given an $n \times n$ grid $A[1: n, 1: n]$, where $n = 2^m - 1$ for some integer $m > 0$.

Each grid cell contains a number.

The numbers in each row are sorted in non-decreasing order from left to right.

The numbers in each column are sorted in non-decreasing order from top to bottom.
Searching in a Sorted Grid (Algorithm 1)

Algorithm 1 (Search for x):

Scan the entire grid row by row until either x is found, or you are done scanning the entire grid.

Let $Q_1(n) = \text{number of comparisons performed on an } n \times n \text{ grid.}$

Then $Q_1(n) \leq n^2$
Searching in a Sorted Grid (Algorithm 2)

\[n = 2^m - 1 \]

Algorithm 2 (search for x):

Let \(y \) be the number at the center of the grid (i.e., at the intersection of the mid row and mid column).

- \(y = x \): you found the item
Searching in a Sorted Grid (Algorithm 2):

Algorithm 2 (Search for x):
Let y be the number at the center of the grid (i.e., at the intersection of the mid row and mid column).
- $y = x$: you found the item
Searching in a Sorted Grid (Algorithm 2):

Algorithm 2 (search for x):

Let y be the number at the center of the grid (i.e., at the intersection of the mid row and mid column).

- $y = x$: you found the item
- $y > x$: the item cannot be in A_{22}, R_2 and C_2.

Search for x in R_1 and C_1, and recursively in A_{11}, A_{12} & A_{21}.
Algorithm 2 (search for x):

Let \(y \) be the number at the center of the grid (i.e., at the intersection of the mid row and mid column).

- \(y = x \): you found the item
- \(y > x \): the item cannot be in \(A_{22}, R_2 \) and \(C_2 \).
 Search for \(x \) in \(R_1 \) and \(C_1 \), and recursively in \(A_{11}, A_{12} \) & \(A_{21} \).
- \(y < x \): the item cannot be in \(A_{11}, R_1 \) and \(C_1 \).
 Search for \(x \) in \(R_2 \) and \(C_2 \), and recursively in \(A_{12}, A_{21} \) & \(A_{22} \).
Searching in a Sorted Grid (Algorithm 2)

Let $Q_2(n) = \text{number of comparisons performed on an } n \times n \text{ grid.}$

Then $Q_2(n) \leq 1 + 2 \left(\frac{n+1}{2} - 1 \right) + 3Q_2 \left(\frac{n+1}{2} - 1 \right)$

$\Rightarrow Q_2(n) \leq 3Q_2 \left(\frac{n+1}{2} - 1 \right) + n$

Solving: $Q_2(n) \leq 2(n+1)^{\log_2 3}$

$\leq 2(n+1)^{1.6}$
Searching in a Sorted Grid (Algorithm 3):

Algorithm 3 (search for \(x \)):

Starting from the top row, perform a binary search for \(x \) in each row until \(x \) is found.

Binary search in row \(i \) of \(A \):

\[
\begin{align*}
\text{left} & \leftarrow 1 \\
\text{right} & \leftarrow n \\
\text{while left} \leq \text{right} \text{ do} \\
& \quad \text{mid} \leftarrow \frac{\text{left} + \text{right}}{2} \\
& \quad \text{if} \ A[i, \text{mid}] = x \text{ then} \\
& \quad \quad \text{return "item found"} \\
& \quad \quad \text{else if} \ A[i, \text{mid}] < x \text{ then} \\
& \quad \quad \quad \text{left} \leftarrow \text{mid} + 1 \\
& \quad \quad \text{else right} \leftarrow \text{mid} - 1 \\
& \quad \text{end while} \\
& \quad \text{return "item not found"}
\end{align*}
\]
Searching in a Sorted Grid (Algorithm 3)

Algorithm 3 (search for x):

Starting from the top row, perform a binary search for x in each row until x is found.

Binary search in row i of A:

- \(\text{left} \leftarrow 1 \)
- \(\text{right} \leftarrow n \)
- while \(\text{left} \leq \text{right} \) do
 - \(\text{mid} \leftarrow \frac{\text{left} + \text{right}}{2} \)
 - if \(A[i, \text{mid}] = x \) then
 - return "item found"
 - else if \(A[i, \text{mid}] < x \) then
 - \(\text{left} \leftarrow \text{mid} + 1 \)
 - else \(\text{right} \leftarrow \text{mid} - 1 \)
- end while
- return "item not found"
Searching in a Sorted Grid (Algorithm 3)

Algorithm 3 (Search for x):
Starting from the top row perform a binary search for x in each row until x is found.

Binary search in row i of A:

$$\text{left} \leftarrow 1$$
$$\text{right} \leftarrow n$$
while $$\text{left} \leq \text{right}$$ do

$$\text{mid} \leftarrow \frac{\text{left} + \text{right}}{2}$$

if $$A[i, \text{mid}] = x$$ then

return "item found"

else if $$A[i, \text{mid}] < x$$ then

$$\text{left} \leftarrow \text{mid} + 1$$

else right $$\leftarrow \text{mid} - 1$$
end while

return "item not found"
Searching in a Sorted Grid (Algorithm 3)

Algorithm 3 (Search for x):

Starting from the top row, perform a binary search for x in each row until x is found.

Binary search in row i of A:

- $left \leftarrow 1$
- $right \leftarrow n$
- while $left \leq right$ do
 - $mid \leftarrow \frac{left+right}{2}$
 - if $A[i,mid] = x$ then
 - return "item found"
 - else if $A[i,mid] < x$ then
 - $left \leftarrow mid + 1$
 - else $right \leftarrow mid - 1$
- end while
- return "item not found"

Search for $x = 35$

<table>
<thead>
<tr>
<th>2</th>
<th>5</th>
<th>10</th>
<th>11</th>
<th>20</th>
<th>22</th>
<th>26</th>
<th>30</th>
<th>31</th>
<th>34</th>
<th>37</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6</td>
<td>15</td>
<td>18</td>
<td>27</td>
<td>30</td>
<td>31</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>42</td>
<td>44</td>
<td>48</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>16</td>
<td>21</td>
<td>27</td>
<td>31</td>
<td>39</td>
<td>41</td>
<td>41</td>
<td>48</td>
<td>50</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>22</td>
<td>22</td>
<td>27</td>
<td>34</td>
<td>40</td>
<td>45</td>
<td>48</td>
<td>50</td>
<td>50</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>29</td>
<td>31</td>
<td>35</td>
<td>36</td>
<td>41</td>
<td>49</td>
<td>55</td>
<td>55</td>
<td>58</td>
<td>59</td>
<td>61</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>30</td>
<td>32</td>
<td>39</td>
<td>42</td>
<td>42</td>
<td>50</td>
<td>59</td>
<td>61</td>
<td>61</td>
<td>65</td>
<td>68</td>
</tr>
<tr>
<td>16</td>
<td>21</td>
<td>35</td>
<td>41</td>
<td>41</td>
<td>43</td>
<td>44</td>
<td>58</td>
<td>62</td>
<td>69</td>
<td>70</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
<td>36</td>
<td>41</td>
<td>42</td>
<td>50</td>
<td>50</td>
<td>61</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>75</td>
<td>76</td>
</tr>
<tr>
<td>21</td>
<td>25</td>
<td>37</td>
<td>44</td>
<td>44</td>
<td>59</td>
<td>60</td>
<td>62</td>
<td>70</td>
<td>72</td>
<td>75</td>
<td>76</td>
<td>78</td>
</tr>
<tr>
<td>22</td>
<td>28</td>
<td>39</td>
<td>48</td>
<td>50</td>
<td>61</td>
<td>62</td>
<td>66</td>
<td>71</td>
<td>75</td>
<td>75</td>
<td>76</td>
<td>81</td>
</tr>
<tr>
<td>26</td>
<td>31</td>
<td>40</td>
<td>56</td>
<td>65</td>
<td>65</td>
<td>69</td>
<td>75</td>
<td>78</td>
<td>80</td>
<td>82</td>
<td>82</td>
<td>88</td>
</tr>
<tr>
<td>29</td>
<td>34</td>
<td>41</td>
<td>61</td>
<td>66</td>
<td>69</td>
<td>72</td>
<td>72</td>
<td>78</td>
<td>80</td>
<td>80</td>
<td>81</td>
<td>84</td>
</tr>
<tr>
<td>31</td>
<td>41</td>
<td>45</td>
<td>66</td>
<td>67</td>
<td>70</td>
<td>72</td>
<td>72</td>
<td>78</td>
<td>82</td>
<td>84</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>32</td>
<td>49</td>
<td>67</td>
<td>72</td>
<td>78</td>
<td>80</td>
<td>81</td>
<td>86</td>
<td>86</td>
<td>86</td>
<td>88</td>
<td>88</td>
<td>95</td>
</tr>
<tr>
<td>40</td>
<td>55</td>
<td>56</td>
<td>70</td>
<td>71</td>
<td>75</td>
<td>81</td>
<td>81</td>
<td>86</td>
<td>86</td>
<td>88</td>
<td>91</td>
<td>93</td>
</tr>
</tbody>
</table>

Grid:

- $n = 2^m - 1$
- $A[1:n, 1:n]$
Searching in a Sorted Grid (Algorithm 3)

ALGORITHM 3 (SEARCH FOR x):

Starting from the top row perform a *binary search* for x in each row until x is found.

Binary search in row i of A:

- $left \leftarrow 1$
- $right \leftarrow n$
- while $left \leq right$ do
 - $mid \leftarrow \frac{left + right}{2}$
 - if $A[i, mid] = x$ then
 - return "item found"
 - else if $A[i, mid] < x$ then
 - $left \leftarrow mid + 1$
 - else $right \leftarrow mid - 1$
- end while
- return "item not found"

$n = 2^m - 1$

![Grid with numbers and highlighted search paths](image-url)

Search for $x = 35$
Algorithm 3 (Search for x):

Starting from the top row, perform a binary search for \(x \) in each row until \(x \) is found.

Binary search in row \(i \) of \(A \):

\[
\text{left} \leftarrow 1 \\
\text{right} \leftarrow n \\
\text{while left} \leq \text{right} \text{ do} \\
\text{mid} \leftarrow \frac{\text{left} + \text{right}}{2} \\
\text{if } A[i, \text{mid}] = x \text{ then} \\
\text{return "item found"} \\
\text{else if } A[i, \text{mid}] < x \text{ then} \\
\text{left} \leftarrow \text{mid} + 1 \\
\text{else right} \leftarrow \text{mid} - 1 \\
\text{end while} \\
\text{return "item not found"}
\]

Search for \(x = 35 \)
Searching in a Sorted Grid (Algorithm 3)

Algorithm 3 (Search for x):

Starting from the top row, perform a *binary search* for x in each row until x is found.

Binary search in row i of A:

- $\text{left} \leftarrow 1$
- $\text{right} \leftarrow n$
- while $\text{left} \leq \text{right}$ do
 - $\text{mid} \leftarrow \frac{\text{left} + \text{right}}{2}$
 - if $A[i, \text{mid}] = x$ then
 - return "item found"
 - else if $A[i, \text{mid}] < x$ then
 - $\text{left} \leftarrow \text{mid} + 1$
 - else
 - $\text{right} \leftarrow \text{mid} - 1$
- end while
- return "item not found"

Example

Search for $x = 35$:

```
<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>10</td>
<td>11</td>
<td>20</td>
<td>22</td>
<td>26</td>
<td>30</td>
<td>31</td>
<td>31</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>15</td>
<td>18</td>
<td>27</td>
<td>30</td>
<td>31</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>16</td>
<td>21</td>
<td>27</td>
<td>31</td>
<td>39</td>
<td>41</td>
<td>41</td>
<td>48</td>
<td>50</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>22</td>
<td>22</td>
<td>27</td>
<td>34</td>
<td>40</td>
<td>45</td>
<td>48</td>
<td>50</td>
<td>58</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>29</td>
<td>31</td>
<td>35</td>
<td>36</td>
<td>41</td>
<td>49</td>
<td>55</td>
<td>58</td>
<td>65</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>30</td>
<td>32</td>
<td>39</td>
<td>42</td>
<td>50</td>
<td>59</td>
<td>60</td>
<td>60</td>
<td>68</td>
</tr>
<tr>
<td>16</td>
<td>21</td>
<td>35</td>
<td>41</td>
<td>43</td>
<td>44</td>
<td>58</td>
<td>62</td>
<td>69</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
<td>36</td>
<td>41</td>
<td>42</td>
<td>50</td>
<td>61</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>76</td>
</tr>
<tr>
<td>21</td>
<td>25</td>
<td>37</td>
<td>44</td>
<td>44</td>
<td>59</td>
<td>60</td>
<td>62</td>
<td>70</td>
<td>75</td>
<td>78</td>
</tr>
<tr>
<td>22</td>
<td>28</td>
<td>39</td>
<td>48</td>
<td>50</td>
<td>61</td>
<td>62</td>
<td>66</td>
<td>71</td>
<td>75</td>
<td>81</td>
</tr>
<tr>
<td>26</td>
<td>31</td>
<td>40</td>
<td>56</td>
<td>65</td>
<td>65</td>
<td>69</td>
<td>75</td>
<td>78</td>
<td>80</td>
<td>86</td>
</tr>
<tr>
<td>29</td>
<td>34</td>
<td>41</td>
<td>61</td>
<td>66</td>
<td>69</td>
<td>72</td>
<td>72</td>
<td>78</td>
<td>80</td>
<td>85</td>
</tr>
<tr>
<td>31</td>
<td>41</td>
<td>45</td>
<td>66</td>
<td>67</td>
<td>70</td>
<td>72</td>
<td>72</td>
<td>82</td>
<td>84</td>
<td>85</td>
</tr>
<tr>
<td>32</td>
<td>45</td>
<td>49</td>
<td>67</td>
<td>67</td>
<td>72</td>
<td>78</td>
<td>80</td>
<td>81</td>
<td>86</td>
<td>88</td>
</tr>
<tr>
<td>40</td>
<td>55</td>
<td>56</td>
<td>70</td>
<td>71</td>
<td>75</td>
<td>81</td>
<td>81</td>
<td>86</td>
<td>86</td>
<td>91</td>
</tr>
</tbody>
</table>
```

$n = 2^m - 1$
Searching in a Sorted Grid (Algorithm 3)

Algorithm 3 (search for x):

Starting from the top row perform a *binary search* for x in each row until x is found.

Binary search in row i of A:

1. `left ← 1`
2. `right ← n`
3. *while* `left ≤ right` *do*
 1. `mid ← (left + right) / 2`
 2. *if* $A[i, mid] = x$ *then*
 1. `return "item found"
 3. *else if* $A[i, mid] < x$ *then*
 1. `left ← mid + 1`
 4. *else*
 1. `right ← mid - 1`
4. *end while*
5. `return "item not found"`

Search for $x = 35$

![Sorted Grid Table](image-url)
Searching in a Sorted Grid (Algorithm 3)

Algorithm 3 (search for x):

Starting from the top row, perform a binary search for x in each row until x is found.

Binary search in row i of A:

1. $left \leftarrow 1$
2. $right \leftarrow n$
3. while $left \leq right$ do
 1. $mid \leftarrow \frac{left + right}{2}$
 2. if $A[i, mid] = x$ then
 1. return "item found"
 3. else if $A[i, mid] < x$ then
 1. $left \leftarrow mid + 1$
 4. else $right \leftarrow mid - 1$
4. end while
5. return "item not found"
Search for $x = 35$

\[n = 2^m - 1 \]

Algorithm 3 (Search for x):

Starting from the top row perform a *binary search* for x in each row until x is found.

Binary search in row i of A:

\[
\begin{align*}
\text{left} & \leftarrow 1 \\
\text{right} & \leftarrow n \\
\text{while left} \leq \text{right} \text{ do} \\
\text{mid} & \leftarrow \frac{\text{left} + \text{right}}{2} \\
\text{if} \ A[i, \text{mid}] = x \text{ then} \\
& \quad \text{return "item found"} \\
\text{else if} \ A[i, \text{mid}] < x \text{ then} \\
& \quad \text{left} \leftarrow \text{mid} + 1 \\
\text{else right} & \leftarrow \text{mid} - 1 \\
\text{end while} \\
& \quad \text{return "item not found"}
\end{align*}
\]
Searching in a Sorted Grid (Algorithm 3)

Algorithm 3 (Search for x):

Starting from the top row, perform a *binary search* for x in each row until x is found.

Binary search in row i of A:

- $left \leftarrow 1$
- $right \leftarrow n$

while $left \leq right$ do

- $mid \leftarrow \frac{left + right}{2}$
- if $A[i, mid] = x$ then
 - return "item found"
- else if $A[i, mid] < x$ then
 - $left \leftarrow mid + 1$
- else right $\leftarrow mid - 1$

end while

return "item not found"
Searching in a Sorted Grid (Algorithm 3)

\[n = 2^m - 1 \]

A[1:n, 1:n]
2 5 10 11 20 22 26 30 31 33 34 37 40 45
4 6 15 18 27 30 31 38 39 40 42 44 48 48
7 9 16 21 27 31 39 41 41 48 50 55 55 59
8 13 22 22 27 34 40 45 48 50 50 58 58 65
11 14 29 31 35 36 41 49 55 55 58 59 61 62 67
15 20 30 32 39 42 42 50 59 60 60 65 68 71
16 21 35 41 41 43 44 58 62 69 70 70 75
20 22 36 41 42 50 50 61 65 70 75 75 76 78 78
21 25 37 44 44 59 60 62 70 72 75 76 78 80
22 28 39 48 50 61 62 66 71 75 75 76 78 81 85
26 31 40 56 65 65 65 69 75 78 78 80 82 82 88
29 34 41 61 66 69 72 72 78 80 80 81 82 84 88
31 41 45 66 67 70 72 72 78 82 84 84 85 85 88
32 45 49 67 67 72 78 80 81 86 85 86 86 88 95
40 55 56 70 71 75 81 81 81 86 86 88 91 93 98

Algorithm 3 (Search for x):

Starting from the top row perform a binary search for x in each row until x is found.

Binary search in row i of A:

\[\text{left} \leftarrow 1 \]
\[\text{right} \leftarrow n \]

while left \(\leq \) right do

\[\text{mid} \leftarrow \frac{\text{left} + \text{right}}{2} \]

if \(A[i, \text{mid}] = x \) then

return "item found"

else if \(A[i, \text{mid}] < x \) then

\[\text{left} \leftarrow \text{mid} + 1 \]

else right \(\leftarrow \text{mid} - 1 \)

end while

return "item not found"
Searching in a Sorted Grid (Algorithm 3)

Algorithm 3 (Search for x):

Starting from the top row, perform a *binary search* for x in each row until x is found.

Binary search in row i of A:

- $left \leftarrow 1$
- $right \leftarrow n$
- While $left \leq right$ do
 - $mid \leftarrow \frac{left + right}{2}$
 - If $A[i, mid] = x$ then
 - Return "item found"
 - Else if $A[i, mid] < x$ then
 - $left \leftarrow mid + 1$
 - Else $right \leftarrow mid - 1$
- End while
- Return "item not found"
Searching in a Sorted Grid (Algorithm 3)

Algorithm 3 (SEARCH FOR x):

Starting from the top row perform a *binary search* for *x* in each row until *x* is found.

Binary search in row *i* of *A*:

- \(left \leftarrow 1 \)
- \(right \leftarrow n \)
- While \(left \leq right \) do
 - \(mid \leftarrow \frac{left + right}{2} \)
 - If \(A[i, mid] = x \) then
 - Return "item found"
 - Else if \(A[i, mid] < x \) then
 - \(left \leftarrow mid + 1 \)
 - Else right \(\leftarrow mid - 1 \)
- End while
- Return "item not found"
Searching in a Sorted Grid (Algorithm 3)

\[n = 2^m - 1 \]

Algorithm 3 (Search for x):

Starting from the top row perform a *binary search* for \(x \) in each row until \(x \) is found.

Binary search in row \(i \) of \(A \):

1. \(left \leftarrow 1 \)
2. \(right \leftarrow n \)
3. while \(left \leq right \) do
 1. \(mid \leftarrow \frac{left + right}{2} \)
 2. if \(A[i, mid] = x \) then
 - return "item found"
 3. else if \(A[i, mid] < x \) then
 - \(left \leftarrow mid + 1 \)
 4. else \(right \leftarrow mid - 1 \)
4. end while
5. return "item not found"

Search for \(x = 35 \)
Searching in a Sorted Grid (Algorithm 3):

Algorithm 3 (Search for x):

Starting from the top row, perform a *binary search* for \(x \) in each row until \(x \) is found.

Binary search in row \(i \) of \(A \):

\[
\text{left} \leftarrow 1 \\
\text{right} \leftarrow n \\
\text{while left} \leq \text{right} \text{ do} \\
\quad \text{mid} \leftarrow \frac{\text{left} + \text{right}}{2} \\
\quad \text{if } A[i, \text{mid}] = x \text{ then} \\
\quad \quad \text{return "item found"} \\
\quad \quad \text{else if } A[i, \text{mid}] < x \text{ then} \\
\quad \quad \quad \text{left} \leftarrow \text{mid} + 1 \\
\quad \quad \quad \text{else right} \leftarrow \text{mid} - 1 \\
\quad \text{end while} \\
\text{return "item not found"}
\]
Searching in a Sorted Grid (Algorithm 3)

Algorithm 3 (Search for x):

Starting from the top row, perform a *binary search* for x in each row until x is found.

Binary search in row i of A:

- $\text{left} \leftarrow 1$
- $\text{right} \leftarrow n$
- while $\text{left} \leq \text{right}$ do
 - $\text{mid} \leftarrow \frac{\text{left} + \text{right}}{2}$
 - if $A[i, \text{mid}] = x$ then
 - return "item found"
 - else if $A[i, \text{mid}] < x$ then
 - $\text{left} \leftarrow \text{mid} + 1$
 - else right $\leftarrow \text{mid} - 1$
- end while
- return "item not found"

Example

Search for $x = 35$

$$
\begin{array}{cccccccccccc}
 2 & 5 & 10 & 11 & 20 & 22 & 26 & 30 & 31 & 34 & 37 & 40 & 45 \\
 4 & 6 & 15 & 18 & 27 & 30 & 31 & 38 & 39 & 40 & 42 & 44 & 48 & 48 \\
 7 & 9 & 16 & 21 & 27 & 31 & 39 & 41 & 41 & 48 & 50 & 55 & 55 & 59 \\
 8 & 13 & 22 & 22 & 27 & 34 & 40 & 45 & 48 & 50 & 50 & 58 & 58 & 65 \\
 15 & 20 & 30 & 32 & 39 & 42 & 50 & 59 & 60 & 60 & 60 & 65 & 68 & 71 \\
 16 & 21 & 35 & 41 & 41 & 43 & 44 & 58 & 62 & 69 & 69 & 70 & 70 & 75 \\
 20 & 22 & 36 & 41 & 42 & 50 & 50 & 61 & 65 & 70 & 75 & 75 & 76 & 78 \\
 21 & 25 & 37 & 44 & 44 & 59 & 60 & 62 & 70 & 72 & 75 & 76 & 78 & 80 \\
 22 & 28 & 39 & 48 & 50 & 61 & 62 & 66 & 71 & 75 & 75 & 76 & 78 & 81 \\
 26 & 31 & 40 & 56 & 65 & 65 & 65 & 69 & 75 & 78 & 78 & 80 & 82 & 82 \\
 29 & 34 & 41 & 61 & 66 & 69 & 72 & 72 & 78 & 80 & 80 & 81 & 82 & 84 \\
 31 & 41 & 45 & 66 & 67 & 70 & 72 & 72 & 78 & 82 & 84 & 84 & 85 & 85 \\
 32 & 45 & 49 & 67 & 72 & 78 & 80 & 81 & 86 & 85 & 86 & 86 & 88 & 95 \\
 40 & 55 & 56 & 70 & 71 & 75 & 81 & 81 & 81 & 86 & 86 & 88 & 91 & 93 & 98 \\
\end{array}
$$

$n = 2^m - 1$
Algorithm 3 (Search for x):

Starting from the top row, perform a *binary search* for \(x \) in each row until \(x \) is found.

Binary search in row \(i \) of \(A \):

\[
\text{left} \leftarrow 1 \\
\text{right} \leftarrow n \\
\text{while } \text{left} \leq \text{right} \text{ do} \\
\quad \text{mid} \leftarrow \frac{\text{left} + \text{right}}{2} \\
\quad \text{if } A[i, \text{mid}] = x \text{ then} \\
\quad \quad \text{return "item found"} \\
\quad \text{else if } A[i, \text{mid}] < x \text{ then} \\
\quad \quad \text{left} \leftarrow \text{mid} + 1 \\
\quad \text{else right} \leftarrow \text{mid} - 1 \\
\text{end while} \\
\text{return "item not found"}
\]

Searching in a Sorted Grid (Algorithm 3):

\[
n = 2^m - 1
\]

<table>
<thead>
<tr>
<th>A[1:n, 1:n]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 5 10 11 20 22 26 30</td>
</tr>
<tr>
<td>4 6 15 18 27 30 31 38</td>
</tr>
<tr>
<td>7 9 16 21 27 31 39 41</td>
</tr>
<tr>
<td>8 13 22 22 27 34 40 45</td>
</tr>
<tr>
<td>11 14 29 31 35 36 41</td>
</tr>
<tr>
<td>15 20 30 32 39 42 42</td>
</tr>
<tr>
<td>16 21 35 41 41 43 44</td>
</tr>
<tr>
<td>20 22 36 41 42 50</td>
</tr>
<tr>
<td>21 25 37 44 44</td>
</tr>
<tr>
<td>22 28 39 48</td>
</tr>
<tr>
<td>26 31 40 56</td>
</tr>
<tr>
<td>29 34 41 61</td>
</tr>
<tr>
<td>31 41 45 66</td>
</tr>
<tr>
<td>32 45 49 67</td>
</tr>
<tr>
<td>40 55 56 70</td>
</tr>
</tbody>
</table>

Search for \(x = 35 \)
Searching in a Sorted Grid (Algorithm 3)

Algorithm 3 (Search for x):

Starting from the top row perform a *binary search* for \(x \) in each row until \(x \) is found.

Binary search in row \(i \) of \(A \):

- Initialize `left` ← 1
- Initialize `right` ← \(n \)
- While `left` ≤ `right`
 - Compute `mid` ← \(\frac{left + right}{2} \)
 - If \(A[i, mid] = x \) then
 - Return "item found"
 - Else if \(A[i, mid] < x \) then
 - `left` ← `mid` + 1
 - Else
 - `right` ← `mid` - 1
- Return "item not found"

Table: Searching for \(x = 35 \)

<table>
<thead>
<tr>
<th>A[1:n, 1:n]</th>
<th>(n = 2^m - 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 5 10 11 20 22 26 30 31 34 37 40 45</td>
<td>(n = 2^m - 1)</td>
</tr>
<tr>
<td>4 6 15 18 27 30 31 38 39 40 42 44 48 48</td>
<td>(n = 2^m - 1)</td>
</tr>
<tr>
<td>7 9 16 21 27 31 39 41 41 41 48 50 55 59</td>
<td>(n = 2^m - 1)</td>
</tr>
<tr>
<td>8 13 22 22 27 34 40 45 48 50 50 58 58 65</td>
<td>(n = 2^m - 1)</td>
</tr>
<tr>
<td>11 14 29 31 35 36 41 49 55 55 58 59 61 62 67</td>
<td>(n = 2^m - 1)</td>
</tr>
<tr>
<td>15 20 30 32 39 42 42 50 59 60 60 65 68 71</td>
<td>(n = 2^m - 1)</td>
</tr>
<tr>
<td>16 21 35 41 41 43 44 58 62 69 69 70 70 75</td>
<td>(n = 2^m - 1)</td>
</tr>
<tr>
<td>20 22 36 41 42 50 50 61 65 70 75 75 76 78 78</td>
<td>(n = 2^m - 1)</td>
</tr>
<tr>
<td>21 25 37 44 44 59 60 62 70 72 75 76 78 78 80</td>
<td>(n = 2^m - 1)</td>
</tr>
<tr>
<td>22 28 39 48 50 61 62 66 71 75 75 76 78 81 85</td>
<td>(n = 2^m - 1)</td>
</tr>
<tr>
<td>26 31 40 56 65 65 65 69 75 78 78 80 82 82 88</td>
<td>(n = 2^m - 1)</td>
</tr>
<tr>
<td>29 34 41 61 66 69 72 72 78 80 80 81 82 84 88</td>
<td>(n = 2^m - 1)</td>
</tr>
<tr>
<td>31 41 45 66 67 70 72 72 78 82 84 84 85 85 91</td>
<td>(n = 2^m - 1)</td>
</tr>
<tr>
<td>32 45 49 67 67 72 78 80 81 86 85 86 86 88 95</td>
<td>(n = 2^m - 1)</td>
</tr>
<tr>
<td>40 55 56 70 71 75 81 81 81 86 86 88 91 93 98</td>
<td>(n = 2^m - 1)</td>
</tr>
</tbody>
</table>
 Searching in a Sorted Grid (Algorithm 3)

\[n = 2^m - 1 \]

Algorithm 3 (Search for x):

Starting from the top row, perform a *binary search* for \(x \) in each row until \(x \) is found.

Binary search in row \(i \) of \(A \):

\[
\begin{align*}
\text{left} & \leftarrow 1 \\
\text{right} & \leftarrow n \\
\text{while } \text{left} \leq \text{right} \text{ do} \\
\text{mid} & \leftarrow \frac{\text{left} + \text{right}}{2} \\
\text{if } A[i, \text{mid}] = x & \text{ then} \\
\quad & \text{return "item found"} \\
\text{else if } A[i, \text{mid}] < x & \text{ then} \\
\quad & \text{left} \leftarrow \text{mid} + 1 \\
\text{else right} & \leftarrow \text{mid} - 1 \\
\text{end while} \\
\text{return "item not found"}
\end{align*}
\]
Searching in a Sorted Grid (Algorithm 3)

Algorithm 3 (Search for x):

Starting from the top row perform a binary search for x in each row until x is found.

Binary search in row i of A:

\[
\begin{align*}
\text{left} & \leftarrow 1 \\
\text{right} & \leftarrow n \\
\text{while } \text{left} & \leq \text{right} \text{ do} \\
\text{mid} & \leftarrow \frac{\text{left} + \text{right}}{2} \\
\text{if } A[i, \text{mid}] = x & \text{ then} \\
& \quad \text{return "item found"} \\
\text{else if } A[i, \text{mid}] & < x \text{ then} \\
& \quad \text{left} \leftarrow \text{mid} + 1 \\
\text{else } \text{right} & \leftarrow \text{mid} - 1 \\
\text{end while} \\
& \quad \text{return "item not found"}
\end{align*}
\]
Searching in a Sorted Grid (Algorithm 3)

Algorithm 3 (Search for x):

Starting from the top row perform a binary search for x in each row until x is found.

Binary search in row i of A:

\[
\text{left} \leftarrow 1 \\
\text{right} \leftarrow n \\
\text{while left} \leq \text{right} \text{ do} \\
\text{mid} \leftarrow \frac{\text{left} + \text{right}}{2} \\
\text{if } A[i, \text{mid}] = x \text{ then} \\
\quad \text{return "item found"} \\
\text{else if } A[i, \text{mid}] < x \text{ then} \\
\quad \text{left} \leftarrow \text{mid} + 1 \\
\text{else right} \leftarrow \text{mid} - 1 \\
\text{end while} \\
\text{return "item not found"}
\]
Searching in a Sorted Grid (Algorithm 3):

Algorithm 3 (search for x):

Starting from the top row perform a binary search for x in each row until x is found.

Binary search in row i of A:

\[\text{left} \leftarrow 1 \]
\[\text{right} \leftarrow n \]
while left \leq right do

\[\text{mid} \leftarrow \frac{\text{left} + \text{right}}{2} \]
if \(A[i, \text{mid}] = x \) then

return "item found"
else if \(A[i, \text{mid}] < x \) then

\[\text{left} \leftarrow \text{mid} + 1 \]
else right \leftarrow mid - 1

end while

return "item not found"
Algorithm 3 (Search for \(x \)):

Starting from the top row perform a *binary search* for \(x \) in each row until \(x \) is found.

Binary search in row \(i \) of \(A \):

\[
\text{left} \leftarrow 1 \\
\text{right} \leftarrow n \\
\text{while } \text{left} \leq \text{right} \text{ do} \\
\quad \text{mid} \leftarrow \frac{\text{left} + \text{right}}{2} \\
\quad \text{if } A[i, \text{mid}] = x \text{ then} \\
\quad \quad \text{return } "\text{item found}\" \\
\quad \quad \text{else if } A[i, \text{mid}] < x \text{ then} \\
\quad \quad \quad \text{left} \leftarrow \text{mid} + 1 \\
\quad \quad \quad \text{else right} \leftarrow \text{mid} - 1 \\
\quad \text{end while} \\
\text{return } "\text{item not found}\"
\]
Searching in a Sorted Grid (Algorithm 3)

Let $Q_3(n) = \text{number of comparisons performed on an } n \times n \text{ grid.}$

Binary search on each row performs m comparisons.

So, $Q_3(n) \leq nm = n \log_2(n + 1)$
AGORITHM 4 (SEARCH FOR x):

Start the search for x from the bottom-left corner.
Searching in a Sorted Grid (Algorithm 4)

Algorithm 4 (Search for x):

Start the search for x from the bottom-left corner.

Keep performing the steps below until either you find x or you fall off the grid:

Let y be the number at current location.

- $y = x$: you found the item
- $y < x$: move to the right
- $y > x$: move to the cell above
Searching in a Sorted Grid (Algorithm 4):

\[n = 2^m - 1 \]

Algorithm 4 (Search for \(x \)):

Start the search for \(x \) from the bottom-left corner.

Keep performing the steps below until either you find \(x \) or you fall off the grid:

Let \(y \) be the number at current location.

- \(y = x \): you found the item
- \(y < x \): move to the right
- \(y > x \): move to the cell above

Search for \(x = 68 \)
Algorithm 4 (Search for x):

Start the search for x from the bottom-left corner.

Keep performing the steps below until either you find x or you fall off the grid:

Let y be the number at current location.

- $y = x$: you found the item
- $y < x$: move to the right
- $y > x$: move to the cell above

Search for $x = 68$
Algorithm 4 (Search for x):

Start the search for x from the bottom-left corner.

Keep performing the steps below until either you find x or you fall off the grid:

Let y be the number at current location.

- $y = x$: you found the item
- $y < x$: move to the right
- $y > x$: move to the cell above

Search for $x = 68$
Searching in a Sorted Grid (Algorithm 4)

\[n = 2^m - 1 \]

<table>
<thead>
<tr>
<th>(A[1:n,1:n])</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>21</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>26</td>
</tr>
<tr>
<td>29</td>
</tr>
<tr>
<td>31</td>
</tr>
<tr>
<td>32</td>
</tr>
<tr>
<td>40</td>
</tr>
</tbody>
</table>

Algorithm 4 (search for \(x \)):

Start the search for \(x \) from the bottom-left corner.

Keep performing the steps below until either you find \(x \) or you fall off the grid:

Let \(y \) be the number at current location.

- \(y = x \): you found the item
- \(y < x \): move to the right
- \(y > x \): move to the cell above

Search for \(x = 68 \)
Searching in a Sorted Grid (Algorithm 4):

\[n = 2^m - 1 \]

Algorithm 4 (Search for x):

Start the search for \(x \) from the bottom-left corner.

Keep performing the steps below until either you find \(x \) or you fall off the grid:

- Let \(y \) be the number at current location.
 - \(y = x \): you found the item
 - \(y < x \): move to the right
 - \(y > x \): move to the cell above

Search for \(x = 68 \)
Searching in a Sorted Grid (Algorithm 4)

The grid is defined as $A[1:n,1:n]$, where $n = 2^m - 1$.

Algorithm 4 (Search for x):

1. Start the search for x from the bottom-left corner.
2. Keep performing the steps below until either you find x or you fall off the grid:
 - Let y be the number at the current location.
 - **$y = x$:** you found the item
 - **$y < x$:** move to the right
 - **$y > x$:** move to the cell above

Example:

Search for $x = 68$
Searching in a Sorted Grid (Algorithm 4)

\[n = 2^m - 1 \]

<table>
<thead>
<tr>
<th>[1:n, 1:n]</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>16</td>
<td>21</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>21</td>
<td>25</td>
</tr>
<tr>
<td>22</td>
<td>28</td>
</tr>
<tr>
<td>26</td>
<td>31</td>
</tr>
<tr>
<td>29</td>
<td>34</td>
</tr>
<tr>
<td>31</td>
<td>41</td>
</tr>
<tr>
<td>32</td>
<td>45</td>
</tr>
<tr>
<td>40</td>
<td>55</td>
</tr>
</tbody>
</table>

\[A[1:n, 1:n] \]

Algorithm 4 (Search for x):

Start the search for \(x \) from the bottom-left corner.

Keep performing the steps below until either you find \(x \) or you fall off the grid:

Let \(y \) be the number at current location.

- \(y = x \): you found the item
- \(y < x \): move to the right
- \(y > x \): move to the cell above

Search for \(x = 68 \)
Searching in a Sorted Grid (Algorithm 4)

\[n = 2^m - 1 \]

<table>
<thead>
<tr>
<th>A[1:n, 1:n]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>21</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>26</td>
</tr>
<tr>
<td>29</td>
</tr>
<tr>
<td>31</td>
</tr>
<tr>
<td>32</td>
</tr>
<tr>
<td>40</td>
</tr>
</tbody>
</table>

Algorithm 4 (Search for x):

Start the search for \(x \) from the bottom-left corner.

Keep performing the steps below until either you find \(x \) or you fall off the grid:

Let \(y \) be the number at current location.

- \(y = x \): you found the item
- \(y < x \): move to the right
- \(y > x \): move to the cell above

Search for \(x = 68 \)
Search for $x = 68$

Algorithm 4 (Search for x):

Start the search for x from the bottom-left corner.

Keep performing the steps below until either you find x or you fall off the grid:

Let y be the number at current location.

- $y = x$: you found the item
- $y < x$: move to the right
- $y > x$: move to the cell above

$n = 2^m - 1$
Searching in a Sorted Grid (Algorithm 4)

\[n = 2^m - 1 \]

<table>
<thead>
<tr>
<th>A[1:n, 1:n]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 5 10 11 20 22 26 30 31 34 34 37 40 45</td>
</tr>
<tr>
<td>4 6 15 18 27 30 31 38 39 40 42 42 44 48 48</td>
</tr>
<tr>
<td>7 9 16 21 27 31 39 41 41 48 50 50 50 58 58</td>
</tr>
<tr>
<td>8 13 22 22 27 34 40 45 48 50 50 50 58 58 65</td>
</tr>
<tr>
<td>11 14 29 31 35 36 41 49 55 55 58 59 62 62 67</td>
</tr>
<tr>
<td>15 20 30 32 39 42 42 50 59 60 60 60 65 68 71</td>
</tr>
<tr>
<td>16 21 35 41 41 43 44 58 62 69 69 70 70 70 75</td>
</tr>
<tr>
<td>20 22 36 41 42 50 50 61 65 70 75 75 76 78 78</td>
</tr>
<tr>
<td>21 25 37 44 44 59 60 62 70 72 75 76 78 78 80</td>
</tr>
<tr>
<td>22 28 39 48 50 61 62 66 71 75 75 76 78 81 85</td>
</tr>
<tr>
<td>26 31 40 56 65 65 65 69 75 78 78 80 82 82 88</td>
</tr>
<tr>
<td>29 34 41 61 66 69 72 72 78 80 80 81 82 84 88</td>
</tr>
<tr>
<td>31 41 45 66 67 70 72 72 78 82 84 84 85 85 91</td>
</tr>
<tr>
<td>32 45 49 67 67 72 78 80 81 86 85 86 86 88 95</td>
</tr>
<tr>
<td>40 55 56 70 71 75 81 81 81 86 86 88 91 93 98</td>
</tr>
</tbody>
</table>

Algorithm 4 (Search for x):

Start the search for \(x \) from the bottom-left corner.

Keep performing the steps below until either you find \(x \) or you fall off the grid:

Let \(y \) be the number at current location.

- \(y = x \): you found the item
- \(y < x \): move to the right
- \(y > x \): move to the cell above

Search for \(x = 68 \)
Searching in a Sorted Grid (Algorithm 4)

Algorithm 4 (search for x):

Start the search for x from the bottom-left corner.

Keep performing the steps below until either you find x or you fall off the grid:

Let y be the number at current location.

- $y = x$: you found the item
- $y < x$: move to the right
- $y > x$: move to the cell above

Search for $x = 68$
Searching in a Sorted Grid (Algorithm 4)

\[n = 2^m - 1 \]

<table>
<thead>
<tr>
<th>A[1:n, 1:n]</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>11</th>
<th>20</th>
<th>22</th>
<th>26</th>
<th>30</th>
<th>31</th>
<th>34</th>
<th>34</th>
<th>37</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6</td>
<td>15</td>
<td>18</td>
<td>27</td>
<td>30</td>
<td>31</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>42</td>
<td>42</td>
<td>44</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>16</td>
<td>21</td>
<td>27</td>
<td>31</td>
<td>39</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>48</td>
<td>50</td>
<td>55</td>
<td>55</td>
<td>59</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>22</td>
<td>22</td>
<td>27</td>
<td>34</td>
<td>40</td>
<td>45</td>
<td>48</td>
<td>50</td>
<td>50</td>
<td>58</td>
<td>58</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>29</td>
<td>31</td>
<td>35</td>
<td>36</td>
<td>41</td>
<td>49</td>
<td>55</td>
<td>55</td>
<td>58</td>
<td>59</td>
<td>61</td>
<td>62</td>
<td>67</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>30</td>
<td>32</td>
<td>39</td>
<td>42</td>
<td>42</td>
<td>50</td>
<td>59</td>
<td>60</td>
<td>60</td>
<td>65</td>
<td>68</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>21</td>
<td>35</td>
<td>41</td>
<td>41</td>
<td>43</td>
<td>44</td>
<td>58</td>
<td>62</td>
<td>69</td>
<td>69</td>
<td>70</td>
<td>70</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>22</td>
<td>36</td>
<td>41</td>
<td>42</td>
<td>50</td>
<td>50</td>
<td>61</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>76</td>
<td>78</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>25</td>
<td>37</td>
<td>44</td>
<td>44</td>
<td>59</td>
<td>60</td>
<td>62</td>
<td>70</td>
<td>72</td>
<td>75</td>
<td>76</td>
<td>78</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>28</td>
<td>39</td>
<td>48</td>
<td>50</td>
<td>61</td>
<td>62</td>
<td>66</td>
<td>71</td>
<td>75</td>
<td>75</td>
<td>76</td>
<td>81</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>31</td>
<td>40</td>
<td>56</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>69</td>
<td>75</td>
<td>78</td>
<td>78</td>
<td>80</td>
<td>82</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>34</td>
<td>41</td>
<td>61</td>
<td>66</td>
<td>69</td>
<td>72</td>
<td>72</td>
<td>78</td>
<td>80</td>
<td>80</td>
<td>81</td>
<td>82</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>41</td>
<td>45</td>
<td>66</td>
<td>67</td>
<td>70</td>
<td>72</td>
<td>72</td>
<td>78</td>
<td>82</td>
<td>84</td>
<td>84</td>
<td>85</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>45</td>
<td>49</td>
<td>67</td>
<td>67</td>
<td>72</td>
<td>78</td>
<td>80</td>
<td>81</td>
<td>86</td>
<td>85</td>
<td>86</td>
<td>88</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>55</td>
<td>56</td>
<td>70</td>
<td>71</td>
<td>75</td>
<td>81</td>
<td>81</td>
<td>81</td>
<td>86</td>
<td>86</td>
<td>88</td>
<td>91</td>
<td>93</td>
<td></td>
</tr>
</tbody>
</table>

Algorithm 4 (Search for x):

Start the search for \(x \) from the bottom-left corner.

Keep performing the steps below until either you find \(x \) or you fall off the grid:

Let \(y \) be the number at current location.

- \(y = x \): you found the item
- \(y < x \): move to the right
- \(y > x \): move to the cell above

Search for \(x = 68 \)
Searching in a Sorted Grid (Algorithm 4)

\[n = 2^m - 1 \]

Algorithm 4 (Search for \(x \))

Start the search for \(x \) from the bottom-left corner.

Keep performing the steps below until either you find \(x \) or you fall off the grid:

Let \(y \) be the number at current location.

- \(y = x \): you found the item
- \(y < x \): move to the right
- \(y > x \): move to the cell above

Searching in a Sorted Grid

\[A[1:n, 1:n] \]

Search for \(x = 68 \)
Searching in a Sorted Grid (Algorithm 4)

Algorithm 4 (Search for x):

Start the search for \(x\) from the bottom-left corner.

Keep performing the steps below until either you find \(x\) or you fall off the grid:

Let \(y\) be the number at current location.

- \(y = x\): you found the item
- \(y < x\): move to the right
- \(y > x\): move to the cell above

Search for \(x = 68\)

\[
A[1:n, 1:n] = \begin{bmatrix}
2 & 5 & 10 & 11 & 20 & 22 & 26 & 30 & 31 & 34 & 34 & 37 & 40 & 45 \\
4 & 6 & 15 & 18 & 27 & 30 & 31 & 38 & 39 & 40 & 42 & 42 & 44 & 48 & 48 \\
7 & 9 & 16 & 21 & 27 & 31 & 39 & 41 & 41 & 48 & 50 & 50 & 58 & 58 & 65 \\
8 & 13 & 22 & 22 & 27 & 34 & 40 & 45 & 48 & 50 & 50 & 58 & 58 & 65 \\
15 & 20 & 30 & 32 & 39 & 42 & 42 & 50 & 59 & 60 & 60 & 60 & 65 & 68 & 71 \\
16 & 21 & 35 & 41 & 41 & 43 & 44 & 58 & 62 & 69 & 69 & 70 & 70 & 70 & 75 \\
20 & 22 & 36 & 41 & 42 & 50 & 50 & 61 & 65 & 70 & 75 & 75 & 76 & 78 & 78 \\
21 & 25 & 37 & 44 & 44 & 59 & 60 & 62 & 70 & 72 & 75 & 76 & 78 & 78 & 80 \\
22 & 28 & 39 & 48 & 50 & 61 & 62 & 66 & 71 & 75 & 75 & 76 & 78 & 81 & 85 \\
26 & 31 & 40 & 56 & 65 & 65 & 65 & 69 & 75 & 78 & 78 & 80 & 82 & 82 & 88 \\
29 & 34 & 41 & 61 & 66 & 69 & 72 & 72 & 78 & 80 & 80 & 81 & 82 & 84 & 88 \\
31 & 41 & 45 & 66 & 67 & 70 & 72 & 72 & 78 & 82 & 84 & 84 & 85 & 85 & 91 \\
32 & 45 & 49 & 67 & 67 & 72 & 78 & 80 & 81 & 86 & 85 & 86 & 86 & 88 & 95 \\
40 & 55 & 56 & 70 & 71 & 75 & 81 & 81 & 81 & 86 & 86 & 88 & 91 & 93 & 98 \\
\end{bmatrix}
\]

\[
n = 2^m - 1
\]
Searching in a Sorted Grid (Algorithm 4)

$$n = 2^m - 1$$

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>11</th>
<th>20</th>
<th>22</th>
<th>26</th>
<th>30</th>
<th>31</th>
<th>33</th>
<th>34</th>
<th>37</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6</td>
<td>15</td>
<td>18</td>
<td>27</td>
<td>30</td>
<td>31</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>42</td>
<td>42</td>
<td>44</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>16</td>
<td>21</td>
<td>27</td>
<td>31</td>
<td>39</td>
<td>41</td>
<td>41</td>
<td>48</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>22</td>
<td>22</td>
<td>27</td>
<td>34</td>
<td>40</td>
<td>45</td>
<td>48</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>58</td>
<td>58</td>
<td>65</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>29</td>
<td>31</td>
<td>35</td>
<td>36</td>
<td>41</td>
<td>49</td>
<td>55</td>
<td>55</td>
<td>58</td>
<td>59</td>
<td>61</td>
<td>62</td>
<td>67</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>30</td>
<td>32</td>
<td>39</td>
<td>42</td>
<td>42</td>
<td>50</td>
<td>59</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>65</td>
<td>68</td>
<td>71</td>
</tr>
<tr>
<td>16</td>
<td>21</td>
<td>35</td>
<td>41</td>
<td>41</td>
<td>43</td>
<td>44</td>
<td>58</td>
<td>62</td>
<td>69</td>
<td>69</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
<td>36</td>
<td>41</td>
<td>42</td>
<td>50</td>
<td>50</td>
<td>61</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>75</td>
<td>76</td>
<td>78</td>
<td>78</td>
</tr>
<tr>
<td>21</td>
<td>25</td>
<td>37</td>
<td>44</td>
<td>44</td>
<td>59</td>
<td>60</td>
<td>62</td>
<td>70</td>
<td>72</td>
<td>75</td>
<td>76</td>
<td>78</td>
<td>78</td>
<td>80</td>
</tr>
<tr>
<td>22</td>
<td>28</td>
<td>39</td>
<td>48</td>
<td>50</td>
<td>61</td>
<td>62</td>
<td>66</td>
<td>71</td>
<td>75</td>
<td>75</td>
<td>76</td>
<td>78</td>
<td>81</td>
<td>85</td>
</tr>
<tr>
<td>26</td>
<td>31</td>
<td>40</td>
<td>56</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>69</td>
<td>75</td>
<td>78</td>
<td>78</td>
<td>80</td>
<td>82</td>
<td>82</td>
<td>88</td>
</tr>
<tr>
<td>29</td>
<td>34</td>
<td>41</td>
<td>61</td>
<td>66</td>
<td>69</td>
<td>72</td>
<td>72</td>
<td>78</td>
<td>80</td>
<td>80</td>
<td>81</td>
<td>82</td>
<td>84</td>
<td>88</td>
</tr>
<tr>
<td>31</td>
<td>41</td>
<td>45</td>
<td>66</td>
<td>67</td>
<td>70</td>
<td>72</td>
<td>72</td>
<td>78</td>
<td>82</td>
<td>84</td>
<td>84</td>
<td>85</td>
<td>85</td>
<td>91</td>
</tr>
<tr>
<td>32</td>
<td>45</td>
<td>49</td>
<td>67</td>
<td>67</td>
<td>72</td>
<td>78</td>
<td>80</td>
<td>81</td>
<td>86</td>
<td>85</td>
<td>86</td>
<td>86</td>
<td>88</td>
<td>95</td>
</tr>
<tr>
<td>40</td>
<td>55</td>
<td>56</td>
<td>70</td>
<td>71</td>
<td>75</td>
<td>81</td>
<td>81</td>
<td>81</td>
<td>86</td>
<td>86</td>
<td>88</td>
<td>91</td>
<td>93</td>
<td>98</td>
</tr>
</tbody>
</table>

Algorithm 4 (Search for x):

Start the search for x from the bottom-left corner.

Keep performing the steps below until either you find x or you fall off the grid:

Let y be the number at current location.

- $y = x$: you found the item
- $y < x$: move to the right
- $y > x$: move to the cell above

Search for $x = 68$
Searching in a Sorted Grid (Algorithm 4)

Algorithm 4 (Search for x):

Start the search for x from the bottom-left corner.

Keep performing the steps below until either you find x or you fall off the grid:

Let y be the number at current location.

- $y = x$: you found the item
- $y < x$: move to the right
- $y > x$: move to the cell above

Search for $x = 68$

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>11</th>
<th>20</th>
<th>22</th>
<th>26</th>
<th>30</th>
<th>31</th>
<th>33</th>
<th>34</th>
<th>37</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6</td>
<td>15</td>
<td>18</td>
<td>27</td>
<td>30</td>
<td>31</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>42</td>
<td>42</td>
<td>44</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>16</td>
<td>21</td>
<td>27</td>
<td>31</td>
<td>39</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>48</td>
<td>50</td>
<td>55</td>
<td>55</td>
<td>59</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>22</td>
<td>22</td>
<td>27</td>
<td>34</td>
<td>40</td>
<td>45</td>
<td>48</td>
<td>50</td>
<td>50</td>
<td>58</td>
<td>58</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>29</td>
<td>31</td>
<td>35</td>
<td>36</td>
<td>41</td>
<td>49</td>
<td>55</td>
<td>55</td>
<td>58</td>
<td>59</td>
<td>61</td>
<td>62</td>
<td>67</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>30</td>
<td>32</td>
<td>39</td>
<td>42</td>
<td>42</td>
<td>50</td>
<td>59</td>
<td>60</td>
<td>60</td>
<td>65</td>
<td>68</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>21</td>
<td>35</td>
<td>41</td>
<td>43</td>
<td>44</td>
<td>58</td>
<td>62</td>
<td>69</td>
<td>69</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>22</td>
<td>36</td>
<td>41</td>
<td>42</td>
<td>50</td>
<td>61</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>75</td>
<td>76</td>
<td>78</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>25</td>
<td>37</td>
<td>44</td>
<td>44</td>
<td>59</td>
<td>62</td>
<td>70</td>
<td>72</td>
<td>75</td>
<td>76</td>
<td>78</td>
<td>78</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>28</td>
<td>39</td>
<td>48</td>
<td>50</td>
<td>61</td>
<td>62</td>
<td>66</td>
<td>71</td>
<td>75</td>
<td>75</td>
<td>76</td>
<td>81</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>31</td>
<td>40</td>
<td>56</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>69</td>
<td>75</td>
<td>78</td>
<td>80</td>
<td>82</td>
<td>82</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>34</td>
<td>41</td>
<td>61</td>
<td>66</td>
<td>69</td>
<td>72</td>
<td>72</td>
<td>78</td>
<td>80</td>
<td>80</td>
<td>81</td>
<td>82</td>
<td>84</td>
<td>88</td>
</tr>
<tr>
<td>31</td>
<td>41</td>
<td>45</td>
<td>66</td>
<td>67</td>
<td>70</td>
<td>72</td>
<td>72</td>
<td>78</td>
<td>82</td>
<td>84</td>
<td>85</td>
<td>85</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>45</td>
<td>49</td>
<td>67</td>
<td>67</td>
<td>72</td>
<td>78</td>
<td>80</td>
<td>81</td>
<td>86</td>
<td>85</td>
<td>86</td>
<td>86</td>
<td>88</td>
<td>95</td>
</tr>
<tr>
<td>40</td>
<td>55</td>
<td>56</td>
<td>70</td>
<td>71</td>
<td>75</td>
<td>81</td>
<td>81</td>
<td>81</td>
<td>86</td>
<td>86</td>
<td>88</td>
<td>91</td>
<td>93</td>
<td>98</td>
</tr>
</tbody>
</table>

$n = 2^m - 1$
Searching in a Sorted Grid (Algorithm 4)

Algorithm 4 (Search for x):

Start the search for x from the bottom-left corner.

Keep performing the steps below until either you find x or you fall off the grid:

Let y be the number at current location.

- $y = x$: you found the item
- $y < x$: move to the right
- $y > x$: move to the cell above

Search for $x = 68$

<table>
<thead>
<tr>
<th>Grid</th>
<th>$n = 2^m - 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A[1:n, 1:n]$</td>
<td>$n = 2^m - 1$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>5</th>
<th>10</th>
<th>11</th>
<th>20</th>
<th>22</th>
<th>26</th>
<th>30</th>
<th>31</th>
<th>34</th>
<th>37</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6</td>
<td>15</td>
<td>18</td>
<td>27</td>
<td>30</td>
<td>31</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>42</td>
<td>42</td>
<td>48</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>16</td>
<td>21</td>
<td>27</td>
<td>31</td>
<td>39</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>48</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>22</td>
<td>22</td>
<td>27</td>
<td>34</td>
<td>40</td>
<td>45</td>
<td>48</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>58</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>29</td>
<td>31</td>
<td>35</td>
<td>36</td>
<td>41</td>
<td>49</td>
<td>55</td>
<td>55</td>
<td>58</td>
<td>59</td>
<td>61</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>30</td>
<td>32</td>
<td>39</td>
<td>42</td>
<td>42</td>
<td>50</td>
<td>59</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>65</td>
</tr>
<tr>
<td>16</td>
<td>21</td>
<td>35</td>
<td>41</td>
<td>41</td>
<td>43</td>
<td>44</td>
<td>58</td>
<td>62</td>
<td>69</td>
<td>69</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
<td>36</td>
<td>41</td>
<td>42</td>
<td>50</td>
<td>50</td>
<td>61</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>75</td>
<td>76</td>
</tr>
<tr>
<td>21</td>
<td>25</td>
<td>37</td>
<td>44</td>
<td>44</td>
<td>59</td>
<td>60</td>
<td>62</td>
<td>70</td>
<td>72</td>
<td>75</td>
<td>76</td>
<td>78</td>
</tr>
<tr>
<td>22</td>
<td>28</td>
<td>39</td>
<td>48</td>
<td>50</td>
<td>61</td>
<td>62</td>
<td>66</td>
<td>71</td>
<td>75</td>
<td>75</td>
<td>76</td>
<td>78</td>
</tr>
<tr>
<td>26</td>
<td>31</td>
<td>40</td>
<td>56</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>69</td>
<td>75</td>
<td>78</td>
<td>80</td>
<td>81</td>
<td>82</td>
</tr>
<tr>
<td>29</td>
<td>34</td>
<td>41</td>
<td>61</td>
<td>66</td>
<td>69</td>
<td>72</td>
<td>72</td>
<td>78</td>
<td>80</td>
<td>80</td>
<td>81</td>
<td>82</td>
</tr>
<tr>
<td>31</td>
<td>41</td>
<td>45</td>
<td>66</td>
<td>67</td>
<td>70</td>
<td>72</td>
<td>72</td>
<td>78</td>
<td>82</td>
<td>84</td>
<td>84</td>
<td>85</td>
</tr>
<tr>
<td>32</td>
<td>45</td>
<td>49</td>
<td>67</td>
<td>67</td>
<td>72</td>
<td>78</td>
<td>80</td>
<td>81</td>
<td>86</td>
<td>85</td>
<td>86</td>
<td>86</td>
</tr>
<tr>
<td>40</td>
<td>55</td>
<td>56</td>
<td>70</td>
<td>71</td>
<td>75</td>
<td>81</td>
<td>81</td>
<td>81</td>
<td>86</td>
<td>86</td>
<td>88</td>
<td>91</td>
</tr>
</tbody>
</table>

Search for $x = 68$
Searching in a Sorted Grid (Algorithm 4):

Start the search for x from the bottom-left corner.

Keep performing the steps below until either you find x or you fall off the grid:

Let y be the number at current location.

- $y = x$: you found the item
- $y < x$: move to the right
- $y > x$: move to the cell above

Search for $x = 68$
Searching in a Sorted Grid (Algorithm 4):

Start the search for x from the bottom-left corner.

Keep performing the steps below until either you find x or you fall off the grid:

Let y be the number at current location.

- $y = x$: you found the item
- $y < x$: move to the right
- $y > x$: move to the cell above

Search for $x = 68$
Searching in a Sorted Grid (Algorithm 4)

Algorithm 4 (search for x):

Start the search for x from the bottom-left corner.

Keep performing the steps below until either you find x or you fall off the grid:

Let y be the number at current location.

- $y = x$: you found the item
- $y < x$: move to the right
- $y > x$: move to the cell above

Grid:

Find the item $x = 68$ in the sorted grid $A[1:n, 1:n]$ with $n = 2^m - 1$. The grid is filled with numbers from 1 to n^2 in ascending order. You start at the bottom-left corner and search for x by comparing it with the current element y and moving either right or up based on the comparison.
Searching in a Sorted Grid (Algorithm 4)

\[n = 2^m - 1 \]

Algorithm 4 (search for \(x \)):

Start the search for \(x \) from the bottom-left corner.

Keep performing the steps below until either you find \(x \) or you fall off the grid:

Let \(y \) be the number at current location.

- \(y = x \): you found the item
- \(y < x \): move to the right
- \(y > x \): move to the cell above

Search for \(x = 68 \)

<table>
<thead>
<tr>
<th>2</th>
<th>5</th>
<th>10</th>
<th>11</th>
<th>20</th>
<th>22</th>
<th>26</th>
<th>30</th>
<th>31</th>
<th>34</th>
<th>37</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6</td>
<td>15</td>
<td>18</td>
<td>27</td>
<td>30</td>
<td>31</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>42</td>
<td>42</td>
<td>44</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>16</td>
<td>21</td>
<td>27</td>
<td>31</td>
<td>39</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>48</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>22</td>
<td>22</td>
<td>27</td>
<td>34</td>
<td>40</td>
<td>45</td>
<td>48</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>58</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>29</td>
<td>31</td>
<td>35</td>
<td>36</td>
<td>41</td>
<td>49</td>
<td>55</td>
<td>55</td>
<td>58</td>
<td>59</td>
<td>61</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>30</td>
<td>32</td>
<td>39</td>
<td>42</td>
<td>42</td>
<td>50</td>
<td>59</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>65</td>
</tr>
<tr>
<td>16</td>
<td>21</td>
<td>35</td>
<td>41</td>
<td>41</td>
<td>43</td>
<td>44</td>
<td>58</td>
<td>62</td>
<td>69</td>
<td>69</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
<td>36</td>
<td>41</td>
<td>42</td>
<td>50</td>
<td>50</td>
<td>61</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>75</td>
<td>76</td>
</tr>
<tr>
<td>21</td>
<td>25</td>
<td>37</td>
<td>44</td>
<td>44</td>
<td>59</td>
<td>60</td>
<td>62</td>
<td>70</td>
<td>72</td>
<td>75</td>
<td>76</td>
<td>78</td>
</tr>
<tr>
<td>22</td>
<td>28</td>
<td>39</td>
<td>48</td>
<td>50</td>
<td>61</td>
<td>62</td>
<td>66</td>
<td>71</td>
<td>75</td>
<td>75</td>
<td>76</td>
<td>78</td>
</tr>
<tr>
<td>26</td>
<td>31</td>
<td>40</td>
<td>56</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>69</td>
<td>75</td>
<td>78</td>
<td>78</td>
<td>80</td>
<td>82</td>
</tr>
<tr>
<td>29</td>
<td>34</td>
<td>41</td>
<td>61</td>
<td>66</td>
<td>69</td>
<td>72</td>
<td>72</td>
<td>78</td>
<td>80</td>
<td>80</td>
<td>81</td>
<td>82</td>
</tr>
<tr>
<td>31</td>
<td>41</td>
<td>45</td>
<td>66</td>
<td>67</td>
<td>67</td>
<td>70</td>
<td>72</td>
<td>72</td>
<td>78</td>
<td>82</td>
<td>84</td>
<td>84</td>
</tr>
<tr>
<td>32</td>
<td>45</td>
<td>49</td>
<td>67</td>
<td>67</td>
<td>72</td>
<td>78</td>
<td>80</td>
<td>81</td>
<td>86</td>
<td>85</td>
<td>86</td>
<td>86</td>
</tr>
<tr>
<td>40</td>
<td>55</td>
<td>56</td>
<td>70</td>
<td>71</td>
<td>75</td>
<td>81</td>
<td>81</td>
<td>81</td>
<td>86</td>
<td>86</td>
<td>88</td>
<td>91</td>
</tr>
</tbody>
</table>

Search for \(x = 68 \)
 Searching in a Sorted Grid (Algorithm 4)

Algorithm 4 (search for \(x \)):

Start the search for \(x \) from the bottom-left corner.

Keep performing the steps below until either you find \(x \) or you fall off the grid:

Let \(y \) be the number at current location.

- \(y = x \): you found the item
- \(y < x \): move to the right
- \(y > x \): move to the cell above

Search for \(x = 68 \)
Searching in a Sorted Grid (Algorithm 4)

Algorithm 4 (Search for x):

Start the search for x from the bottom-left corner.

Keep performing the steps below until either you find x or you fall off the grid:

Let y be the number at current location.

- $y = x$: you found the item
- $y < x$: move to the right
- $y > x$: move to the cell above

Example

Search for $x = 68$
Searching in a Sorted Grid (Algorithm 4)

Let \(Q_4(n) \) = number of comparisons performed on an \(n \times n \) grid.

Then \(Q_4(n) \leq 2n - 1 < 2n \)

Search for \(x = 68 \)
Comparing the Four (4) Grid Search Algorithms

\[Q_1(n) \geq n^2 \]

\[Q_2(n) \geq 2(n+1)^{1.6} \]

\[Q_3(n) \geq \frac{n\ln(n+1)}{\ln(2)} \]

\[Q_4(n) \geq 2n \]
Searching in a Sorted Grid (Algorithm 1)

$$ T_1(n) = \text{running time of algorithm 1 on an } n \times n \text{ grid.} $$

Though we were able to compute an exact worst-case bound for \(Q_1(n) \), the same cannot be done for \(T_1(n) \) because it depends on many other external factors such as CPU speed, programming style, compiler and optimization level used, etc.

But for large values of \(n \), \(T_1(n) \)'s worst-case value will be within a constant factor of that of \(Q_1(n) \). That constant is generally unknown, and depends on the specific hardware and compiler used, expertise of the programmer, etc.

Algorithm 1 (search for x):

1. \(\text{for } i = 1 \text{ to } n \text{ do } \)
2. \(\quad \text{for } j = 1 \text{ to } n \text{ do } \)
3. \(\quad \quad \text{if } A[i,j] = x \text{ then return "item found" } \)
4. \(\quad \text{end for } \)
5. \(\text{end for } \)
6. \(\text{return "item not found" } \)
ALGORITHM 1 (SEARCH FOR x):

1. for i = 1 to n do
2. for j = 1 to n do
3. if A[i,j] = x then return "item found"
4. end for
5. end for
6. return "item not found"

In the worst case,

- line 3 will be executed n^2 times,
- variable j in line 2 will be updated n^2 times,
- variable i in line 1 will be updated n times, and
- line 6 will be executed will be executed 1 time.

Hence, $T_1(n) \leq a_1 n^2 + a_2 n + a_3$, where a_1, a_2 and a_3 are constants.

Clearly, $T_1(n) \leq (a_1 + 1)n^2 = (a_1 + 1)Q_1(n)$, when $n \geq a_2 + a_3$.

In the worst case,
Why Lower Order Terms Can be Dropped
Running Times of the Four (4) Algorithms for Large n

<table>
<thead>
<tr>
<th>GRID SEARCHING ALGORITHM</th>
<th>WORST-CASE BOUND ON #COMPARISONS</th>
<th>WORST-CASE BOUND ON RUNNING TIMES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ALGORITHM</td>
<td>$Q_1(n) \leq n^2$</td>
<td>$T_1(n) \leq c_1n^2$</td>
</tr>
<tr>
<td>2 ALGORITHM</td>
<td>$Q_2(n) \leq 2(n + 1)^{1.6}$</td>
<td>$T_2(n) \leq c_2(n + 1)^{1.6}$</td>
</tr>
<tr>
<td>3 ALGORITHM</td>
<td>$Q_3(n) \leq n \log_2(n + 1)$</td>
<td>$T_3(n) \leq c_3n \log_2(n + 1)$</td>
</tr>
<tr>
<td>4 ALGORITHM</td>
<td>$Q_4(n) \leq 2n$</td>
<td>$T_4(n) \leq c_4n$</td>
</tr>
</tbody>
</table>

c_1, c_2, c_3 and c_4 are constants
Why Faster Algorithms?

As the input gets large a faster algorithm run on a slow computer will eventually beat a slower algorithm run on a fast computer!

Suppose we run ALGORITHM 4 on computer A that can execute only 1 million instructions per second. The algorithm was implemented by an inexperienced programmer, and so $c_4 = 10$.

Suppose we run ALGORITHM 1 on computer B that is 1000 times faster than A, and the algorithm was implemented by an expert programmer, and so $c_1 = 1$.

Let’s run both algorithm on a large grid with $n = 100,000$.

Then ALGORITHM 1 will require up to $\frac{1 \times (100000)^2}{10000000000} = 10$ seconds,

while ALGORITHM 4 will terminate in only $\frac{10 \times 100000}{1000000} = 1$ second!
Asymptotic Bounds

We compute performance bounds as functions of input size n. Asymptotic bounds are obtained when $n \to \infty$.

Several types of asymptotic bounds

- upper bound (O-notation)
- strict upper bound (o-notation)
- lower bound (Ω-notation)
- strict lower bound (ω-notation)
- tight bound (Θ-notation)
Asymptotic Upper Bound (O-notation)

\[O(g(n)) = \left\{ \begin{array}{l}
 f(n): \text{there exist positive constants } c \text{ and } n_0 \text{ such that } \\
 0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0
\end{array} \right\} \]

\[O(g(n)) = \left\{ \begin{array}{l}
 f(n): \text{there exists a positive constant } c \text{ such that } \\
 \lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) \leq c
\end{array} \right\} \]
Asymptotic Upper Bound (O-notation)

Recall that for Algorithm 1 we had, \(T_1(n) \leq f(n) \), where,
\[
f(n) = a_1 n^2 + a_2 n + a_3, \quad \text{for constants } a_1, a_2 \text{ and } a_3.
\]

Suppose, \(a_1 = 5 \), \(a_2 = 2 \) and \(a_3 = 9 \).

Then \(f(n) = 5n^2 + 2n + 9 \).

We will now derive asymptotic bounds for \(f(n) \).
Let $g(n) = n^2$.

Then $f(n) = O(n^2)$ because:

$$0 \leq f(n) \leq cg(n) \text{ for } c = 6 \text{ and } n \geq 5.$$
Let $g(n) = n^3$.

Then $f(n) = O(n^3)$ because:

$$0 \leq f(n) \leq cg(n) \text{ for } c = 1 \text{ and } n \geq 6.$$
Asymptotic Upper Bound (O-notation)

Let \(g(n) = n \).

Then \(f(n) \neq O(n) \) because:

\[f(n) > cg(n) \text{ for any } c \text{ and } n \geq \frac{c}{5}. \]
Asymptotic Lower Bound (Ω-notation)

Ω(g(n)) = \left\{ f(n): \text{there exist positive constants } c \text{ and } n_0 \text{ such that} \\
0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \right\}

Ω(g(n)) = \left\{ f(n): \text{there exists a positive constant } c \text{ such that} \\
\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) \geq c \right\
Let $g(n) = n^2$.

Then $f(n) = \Omega(n^2)$ because:

$$0 \leq cg(n) \leq f(n) \text{ for } c = 5 \text{ and } n \geq 1.$$
Let $g(n) = n^3$.

Then $f(n) \neq \Omega(n^3)$ because:

$$cg(n) > f(n) \text{ for any } c \text{ and } n \geq \frac{5}{c}.$$
Let $g(n) = n$.

Then $f(n) = \Omega(n)$ because:

$$0 \leq cg(n) \leq f(n) \text{ for } c = 30 \text{ and } n \geq 6.$$
Asymptotic Tight Bound (Θ-notation)

\[\Theta(g(n)) = \left\{ f(n) : \text{there exist positive constants } c_1, c_2 \text{ and } n_0 \text{ such that} \right\]

\[0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \text{ for all } n \geq n_0 \]

\[\Theta(g(n)) = \left\{ f(n) : \text{there exist positive constants } c_1 \text{ and } c_2 \text{ such that} \right\]

\[c_1 \leq \lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) \leq c_2 \]
Asymptotic Tight Bound (Θ-notation)

\[f(n) = O(g(n)) \land f(n) = \Omega(g(n)) \iff f(n) = \Theta(g(n)) \]
Asymptotic Tight Bound (Θ-notation)

\[f(n) = 5n^2 + 2n + 9 \]

\[f(n) = \Theta(n^2) \] because both \(f(n) = O(n^2) \) and \(f(n) = \Omega(n^2) \) hold.

\[f(n) \neq \Theta(n^3) \] because though \(f(n) = O(n^3) \) holds, \(f(n) \neq \Omega(n^3) \).

\[f(n) \neq \Theta(n) \] because though \(f(n) = \Omega(n) \) holds, \(f(n) \neq O(n) \).
Asymptotic Strict Upper Bound (\(o \)-notation)

\[
O(g(n)) = \left\{ f(n): \text{there exist positive constants } c \text{ and } n_0 \text{ such that } \\
0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \right\}
\]

\[
O(g(n)) = \left\{ f(n): \text{there exists a positive constant } c \text{ such that} \\
\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) \leq c \right\}
\]

\[
o(g(n)) = \left\{ f(n): \lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) = 0 \right\}
\]
Asymptotic Strict Lower Bound (\(\omega \)-notation)

\[\Omega(g(n)) = \left\{ f(n): \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \right\} \]

\[\Omega(g(n)) = \left\{ f(n): \text{there exists a positive constant } c \text{ such that } \lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) \geq c \right\} \]

\[\omega(g(n)) = \left\{ f(n): \lim_{n \to \infty} \left(\frac{g(n)}{f(n)} \right) = 0 \right\} \]
Comparing Functions: Transitivity

\[
\begin{align*}
 f(n) &= O(g(n)) \quad \text{and} \quad g(n) = O(h(n)) \quad \Rightarrow \quad f(n) = O(h(n)) \\
 f(n) &= \Omega(g(n)) \quad \text{and} \quad g(n) = \Omega(h(n)) \quad \Rightarrow \quad f(n) = \Omega(h(n)) \\
 f(n) &= \Theta(g(n)) \quad \text{and} \quad g(n) = \Theta(h(n)) \quad \Rightarrow \quad f(n) = \Theta(h(n)) \\
 f(n) &= o(g(n)) \quad \text{and} \quad g(n) = o(h(n)) \quad \Rightarrow \quad f(n) = o(h(n)) \\
 f(n) &= \omega(g(n)) \quad \text{and} \quad g(n) = \omega(h(n)) \quad \Rightarrow \quad f(n) = \omega(h(n))
\end{align*}
\]
Comparing Functions: Reflexivity

\[f(n) = O(f(n)) \]

\[f(n) = \Omega(f(n)) \]

\[f(n) = \Theta(f(n)) \]
Comparing Functions: Symmetry

\[f(n) = \Theta(g(n)) \text{ if and only if } g(n) = \Theta(f(n)) \]
Comparing Functions: Transpose Symmetry

\[f(n) = \Theta(g(n)) \quad \text{if and only if} \quad g(n) = \Omega(f(n)) \]

\[f(n) = \Omega(g(n)) \quad \text{if and only if} \quad g(n) = \Theta(f(n)) \]
Adding Functions

\[O(f(n)) + O(g(n)) = O(f(n) + g(n)) \]
\[\Omega(f(n)) + \Omega(g(n)) = \Omega(f(n) + g(n)) \]
\[\Theta(f(n)) + \Theta(g(n)) = \Theta(f(n) + g(n)) \]
Multiplying Functions by Constants

\[O(cf(n)) = O(f(n)) \]
\[\Omega(cf(n)) = \Omega(f(n)) \]
\[\Theta(cf(n)) = \Theta(f(n)) \]
Multiplying Two Functions

\[O(f(n)) \times O(g(n)) = O(f(n) \times g(n)) \]

\[\Omega(f(n)) \times \Omega(g(n)) = \Omega(f(n) \times g(n)) \]

\[\Theta(f(n)) \times \Theta(g(n)) = \Theta(f(n) \times g(n)) \]
Division of Functions

\[
\frac{O(f(n))}{\Theta(g(n))} = O\left(\frac{f(n)}{g(n)}\right)
\]

\[
\frac{\Omega(f(n))}{\Theta(g(n))} = \Omega\left(\frac{f(n)}{g(n)}\right)
\]

\[
\frac{\Theta(f(n))}{\Theta(g(n))} = \Theta\left(\frac{f(n)}{g(n)}\right)
\]

\[
\frac{O(f(n))}{\Omega(g(n))} = O\left(\frac{f(n)}{g(n)}\right)
\]

\[
\frac{\Omega(f(n))}{O(g(n))} = \Omega\left(\frac{f(n)}{g(n)}\right)
\]

\[
\frac{\Theta(f(n))}{O(g(n))} = \Omega\left(\frac{f(n)}{g(n)}\right)
\]
Growth Rates of Common Functions

The following table shows how much time an algorithm that performs $f(n)$ operations on an input of size n takes assuming each operation takes one nanosecond (10^{-9} seconds) to execute.

<table>
<thead>
<tr>
<th>n</th>
<th>$f(n)$</th>
<th>$\lg n$</th>
<th>n</th>
<th>$n \lg n$</th>
<th>n^2</th>
<th>2^n</th>
<th>$n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td>0.003 μs</td>
<td>0.01 μs</td>
<td>0.033 μs</td>
<td>0.1 μs</td>
<td>1 μs</td>
<td>3.63 ms</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>0.004 μs</td>
<td>0.02 μs</td>
<td>0.086 μs</td>
<td>0.4 μs</td>
<td>1 ms</td>
<td>77.1 years</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>0.005 μs</td>
<td>0.03 μs</td>
<td>0.147 μs</td>
<td>0.9 μs</td>
<td>1 sec</td>
<td>8.4×10^{15} yrs</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>0.005 μs</td>
<td>0.04 μs</td>
<td>0.213 μs</td>
<td>1.6 μs</td>
<td>18.3 min</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>0.006 μs</td>
<td>0.05 μs</td>
<td>0.282 μs</td>
<td>2.5 μs</td>
<td>13 days</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>0.007 μs</td>
<td>0.1 μs</td>
<td>0.644 μs</td>
<td>10 μs</td>
<td>4 $\times 10^{13}$ yrs</td>
<td></td>
</tr>
<tr>
<td>1,000</td>
<td></td>
<td>0.010 μs</td>
<td>1.00 ms</td>
<td>9.966 μs</td>
<td>1 ms</td>
<td>100 ms</td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td></td>
<td>0.013 μs</td>
<td>10 μs</td>
<td>130 μs</td>
<td>10 sec</td>
<td>16.7 min</td>
<td></td>
</tr>
<tr>
<td>100,000</td>
<td></td>
<td>0.017 μs</td>
<td>0.10 ms</td>
<td>1.67 ms</td>
<td>1.16 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,000,000</td>
<td></td>
<td>0.020 μs</td>
<td>1 ms</td>
<td>19.93 ms</td>
<td>115.7 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,000,000</td>
<td></td>
<td>0.023 μs</td>
<td>0.01 sec</td>
<td>0.23 sec</td>
<td>31.7 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100,000,000</td>
<td></td>
<td>0.027 μs</td>
<td>0.10 sec</td>
<td>2.66 sec</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,000,000,000</td>
<td></td>
<td>0.030 μs</td>
<td>1 sec</td>
<td>29.90 sec</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>