
CSE548, AMS542: Analysis of Algorithms, Fall 2019 Date: Nov 24

Homework #3
( Due: Dec 4 )

Task 1. [ 80 Points ] Searching in Circular Linked Lists

You are given n distinct real numbers in an array A[1 : n] and a permutation of the first n natural
numbers in another array Next[1 : n]. The permutation in Next[1 : n] is carefully created to ensure
that if, for any i ∈ [1, n], A[i] is the largest number in A then A[Next[i]] is the smallest, otherwise
A[Next[i]] is the smallest number in A with value larger than A[i]. Figure 1 shows an example.

(a) [ 40 Points ] Given any number s ∈ R, you are required to search for s in A. Design
a randomized algorithm that returns False if the number does not exist in A, otheriwse
returns True along with the index i ∈ [1, n] such that A[i] = s. Your algorithm must run
in O (

√
n log n) time w.h.p. in n. You cannot preprocess the given data and cannot use any

extra space.

Figure 1: [Task 1] All numbers in array A are distinct and linked in sorted order using a circular
linked list formed by the pointers stored in the Next array. If A[i] is the largest number in A then
A[Next[i]] is the smallest, otherwise A[Next[i]] is the next larger number in the sorted order.

Now consider n distinct real numbers that were originally stored in an
√
n ×
√
n array A′ such

that the numbers in every row were sorted in increasing order from left to right and those in every
column were sorted in increasing order from top to bottom. However, you do not have access to
that array. Instead, you are given another array A[1 :

√
n, 1 :

√
n] where the same n numbers

are stored, but possibly in a different order. However, with every entry p = A[i, j] you are given
four pointers (each with a row index and a column index): Left[i, j], Right[i, j], Up[i, j], and
Down[i, j]. The entry q = A[Left[i, j].row, Left[i, j].col] is the left neighbor of p in A′ provided
p is not the first entry in its row in A′, otherwise q is the last entry in that row. The entry
r = A[Right[i, j].row,Right[i, j].col] is the right neighbor of p in A′ provided p is not the last entry
in its row in A′, otherwise r is the first entry in that row. Similarly, for Up[i, j] and Down[i, j].
Figure 2 shows an example.

(b) [ 40 Points ] Given a 2D array A[1 :
√
n, 1 :

√
n] as described above with four pointers per

cell, and any number s ∈ R, you are required to search for s in A. Design an efficient that
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Figure 2: [Task 1] The numbers in every row of the 4× 4 array on the left are sorted in increasing
order from left to right and those on every row are sorted from top to bottom. All number in the
array are distinct. The 4× 4 array on the right stores the same numbers but not necessarily in the
same order. However, the rowwise sorted order of the numbers in the left array are also maintained
in the right array using the left and right pointers. The columnwise sorted order can be retrieved
by following the up and down pointers.

runs in O (
√
n) worst-case time. As in part (a), you are not allowed to preprocess the given

data and you cannot use any extra space.

Task 2. [ 100 Points ] Recursive Randomized Min-Cut

Consider the randomized min-cut algorithm we saw in the class that returns a min-cut with prob-
ability ≥ 1 − 1

e . Given a connected undirected multigraph with n vertices, the strategy is to run

the following algorithm n2

2 times and return the smallest cut identified by those runs. Each run
uses an algorithm that starts with the original n-vertex graph and performs a sequence of n − 2
edge contractions. Each contraction is performed on an edge chosen uniformly at random from
the current set of edges. A contraction step contracts the two endpoints of the given edge into a
single vertex and removes all edges between them, but retains all other edges (and thus leading to
a multigraph). After n − 2 contraction steps only 2 vertices remain, and all edges between those
two vertices are returned as a potential min-cut.

(a) [ 10 Points ] Argue that each contraction step can be implemented to run in O (n) time, and
thus the randomized min-cut algorithm described above takes O

(
n4 log n

)
time to return a

min-cut with high probability.

Now consider the recursive algorithm given in Figure 3.
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Recursive-Randomized-Min-Cut( G, α )

(Input is an undirected multigraph G with n vertices, and an integer constant α > 0. Output is a cut of G.)

1. if n ≤ α3 then

2. C ← a min-cut of G found using brute force (exhaustive) search

3. else

4. for i← 1 to α do

5. G′ ← multigraph obtained by applying n−
⌈
n√
α

⌉
random contraction steps on G

6. C′ ← Recursive-Randomized-Min-Cut( G′, α )

7. if i = 1 or |C′| < |C| then C ← C′

8. return C

Figure 3: [Task 2] A recursive randomized min-cut algorithm.

(b) [ 10 Points ] Let T (n) be the running time of the algorithm on a multigraph with n vertices.
Write a recurrence relation describing T (n) and solve it.

(c) [ 10 Points ] Let P (n) be the probability that the algorithm returns a min-cut when run on
a multigraph with n vertices. Argue that

P (n) ≥ 1−
(

1− 1

α
P

(
n√
α

+ 1

))α
.

(d) [ 5 Points ] Let p(r) be the probability that the algorithm returns a min-cut from recursion
level r ≥ 0, where r = 0 at the base case (in line 2). Argue that p(0) = 1, and use part (c) to
show that for r > 0,

p(r) ≥ 1−
(

1− 1

α
p (r − 1)

)α
.

(e) [ 30 Points ] Let q(r) = α
p(r) . Show that q(r) ≤

(
α(α−1)α

αα−(α−1)α

)
r + α.

(f) [ 10 Points ] Let r(n) be the number of recursion levels to descend to reach the base case
starting from an input of size n. Write a recurrence relation for r(n) and solve it to show
that r(n) ≤ log( α3

1+α2
√
α

) ( n
α3

)
.

(g) [ 10 Points ] Use parts (c)–(f) to show that P (n) ≥ 1(
(α−1)α

αα−(α−1)α

)
log(

α3

1+α2
√
α

) (
n
α3

)
+1

.

(h) [ 15 Points ] Based on the result from part (g), how would you use the algorithm in Figure
3 to obtain a min-cut of an n-node multigraph w.h.p. in n? What is the running time of the
resulting algorithm?
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