
CSE548, AMS542: Analysis of Algorithms, Fall 2019 Date: Oct 6

Homework #1
( Due: Oct 20 )

Figure 1: [Task 1] When the partial differential equation describing 2D heat diffusion is discretized
in time and space, the approximate heat value at any grid cell (x, y) at time step t can be computed
from the heat value at the four of its neighboring cells (x, y− 1), (x, y+ 1), (x− 1, y) and (x+ 1, y)
at time step t− 1.

Task 1. [ 60 Points ] 2D Heat Diffusion

In this task we will consider the following partial differential equation that describes heat diffusion
in two-dimensional space:

∂ht(x, y)

∂t
= α

(
∂2ht(x, y)

∂x2
+
∂2ht(x, y)

∂y2

)
,

where, ht(x, y) is the heat at a point (x, y) at time t and α is the thermal diffusivity.

By discretizing space and time, the equation above can be solved approximately by using the
following update equation:

ht+1(x, y) = ht(x, y)

+
α∆t

∆x2
(ht(x− 1, y) + ht(x+ 1, y)− 2ht(x, y))

+
α∆t

∆y2
(ht(x, y − 1) + ht(x, y + 1)− 2ht(x, y)) .

Given an Nx × Ny grid h with heat values at time step 0, Figure 2 shows how to update h to
heat values at time step T using periodic boundary conditions. Clearly, the algorithm runs in
Θ (NxNyT ) time, i.e., Θ

(
N3

)
time when Nx = Ny = T = N .

In this task you are required to do the following: given an N ×N grid with heat values at time step
0, show how to update the grid with heat values at time step N under periodic boundary conditions
in O

(
N2 logN

)
time by reducing the problem into a problem of multiplying polyonomials. You

can assume that N is a power of 2.
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2D-Heat-Diffusion( h [0..Nx − 1, 0..Ny − 1] , T ) {Given an Nx ×Ny grid h with heat values at time
step 0, update h to heat values at time step T

using periodic boundary conditions.}

1. allocate new grid g [0..Nx − 1, 0..Ny − 1]

2. for t = 1 to T do

3. for x = 0 to Nx − 1 do

4. for y = 0 to Ny − 1 do

5. g[x, y]← h[x, y] + cx (h [(x+ 1) mod Nx, y]− 2h [x, y] + h [(x− 1) mod Nx, y])

6. + cy (h [x, (y + 1) mod Ny]− 2h [x, y] + h [x, (y − 1) mod Ny])

7. for x = 0 to Nx − 1 do

8. for y = 0 to Ny − 1 do

9. h[x, y]← g[x, y]

10. deallocate g

Figure 2: [Task 1] Implementation of a stencil computation for the 2D heat equation with periodic
boundary conditions. The constants cx = α∆t/∆x2 and cy = α∆t/∆y2 are precomputed.

Task 2. [ 30 Points ] Traceless In-place Selection

You are given an array A[1..n] of length n with each cell containing a 〈height, weight〉 pair. All
height values are distinct, and so are all weight values. The array is sorted in increasing order of
the height values.

Your task is to design a recursive divide-and-conquer algorithm that given an integer k ∈ [1, n],
finds the entry with the kth smallest weight value. You are allowed to use only O (1) extra space in
every level of recursion. Though your algorithm is permitted to reorder the entries of A if required,
it must restore the original order of the entries before termination. Your algorithm must run in
Θ (n) time.

Task 3. [ 50 Points ] Blocking in Recursive Selection

Figure 3 shows a slightly generalized version of the selection algorithm we saw in the class. Instead
of using a single block size (e.g., 5) at all levels of recursion, it uses block size srare at levels that
are divisible by 3 (levels start from 1), and sfreq at all other levels. Now the base case size b is also
a parameter to the algorithm. Observe that when b = 140 and srare = sfreq = 5, the algorithm
reduces to the one we saw in the class.

(a) [ 10 Points ] Write a recurrence relation describing the running time of Select on an array
of size n assuming srare = sfreq = 3. What is the best running time you get by solving the
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Select( A[q : r], k, d, sfreq, srare, b )

Input: An array of distinct elements, and an integer k ∈ [1, r − q + 1]. The parameter d is the
depth of recursion (initially 1) with srare being the block size to be used at depths that are divisible
by 3, and sfreq at all other depths. Also b is an upper bound on the size of the base case.
Output: An element x of A[q : r] such that rank(x,A[q, r]) = k.

1. n← r − q + 1

2. if n ≤ b then

3. sort A[q : r]

4. return A[q + k − 1]

5. else

6. if d mod 3 = 0 then s← srare

7. else s← sfreq

8. divide A[q : r] into blocks Bi’s each containing s consecutive elements

( last block may contain fewer than s elements )

9. for i← 1 to
⌈
n
s

⌉
do

10. M [i]← median of Bi

11. x← Select

(
M

[
1 :

⌈
n
s

⌉]
,

⌊
dns e+1

2

⌋
, d+ 1, sfreq, srare, b

)
{median of medians}

12. t← Partition( A[q : r], x ) {partition around x which ends up at A[t]}
13. if k = t− q + 1 then return A[t]

14. else if k < t− q + 1 then return Select( A[q : t− 1], k, d+ 1, sfreq, srare, b )

15. else return Select( A[t+ 1 : r], k, d+ 1, sfreq, srare, b )

Figure 3: Selection with two potentially different block sizes. Initial call to the function uses d = 1.

recurrence? What is the smallest value of b you get?

(b) [ 25 Points ] Repeat part (a) with sfreq = 3 and srare = 5.

(c) [ 15 Points ] Suppose we replace line 11 of Select with lines 11.1–11.4 as shown below.
Then what will be its running time on an input of size n if we call it with srare = sfreq = 3?

11.1 divide M [1 :
⌈
n
s

⌉
] into blocks B′

i’s each containing s consecutive elements

( last block may contain fewer than s elements )

11.2 for i← 1 to
⌈⌈

n
s

⌉
/s
⌉
do

11.3 M ′[i]← median of B′
i

11.4 x← Select

(
M ′ [1 :

⌈⌈
n
s

⌉
/s
⌉]

,

⌊
ddns e/se+1

2

⌋
, d+ 1, sfreq, srare, b

)
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Figure 4: [Task 4] Sometimes rotating a photo clockwise by 90◦ can help you understand the real
story behind the photo. For example, in the photo above you won’t realize that the guy in the
black t-shirt is dangerously hanging from above until you rotate the photo clockwise. In the original
photo they seem like relaxing on the sidewalk like everyone does. Photo credit: Steph Goralnick.

Task 4. [ 40 Points ] Image Rotation

Sometimes rotating an image clockwise by 90◦ can be very useful as Figure 4 shows. This task asks
you to do something simpler: rotate an n× n clockwise by 90◦, where n is a power of 2. However,
you must design recursive divide-and-conquer algorithms for solving the problem and must not use
more than Θ (1) extra space in any level of recursion.

Figure 5 shows a recursive divide-and-conquer approach for solving our problem. You first divide
the image Q into four quadrants Q1, Q2, Q3 and Q4. Then move each quadrant clockwise to occupy
the position of the next quadrant in the sequence, that is, move Q1 to the location of Q2, Q2 to
the location of Q4, Q4 to the location of Q3, and Q3 to the location of Q1. Finally, rotate each
quadrant recursively. The result is a version of Q rotated in the clockwise direction by 90◦.

(a) [ 10 Points ] Show that the algorithm described above based on Figure 5 runs in Θ
(
n2 log n

)
time.

(b) [ 30 Points ] Extend the idea shown in Figure 5 to design a recursive divide-and-coqnuer
algorithm that runs in Θ

(
n2

)
time.
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Figure 5: [Task 4] A recursive algorithm for rotating n× n images, where n is a power of 2.
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