CSE 548: Analysis of Algorithms

Lecture 4
(Divide-and-Conquer Algorithms:
Polynomial Multiplication)

Rezaul A. Chowdhury

Department of Computer Science
SUNY Stony Brook
Fall 2017

Coefficient Representation of Polynomials

g + a;x + ax? + -+ a,_{x"1
A(x) is a polynomial of degree bound n represented as a vector
a = (ag, a4, ,a,_1) of coefficients.

The degree of A(x) is k provided it is the largest integer such that
a; is nonzero. Clearly, 0 < k <n — 1.

Evaluating A(x) at a given point:
Takes ®(n) time using Horner’s rule:

A(xy) = ag + a;xg + ay(xg)* + -+ ap_1(x)" !

= Ay + X0 (a1 + xO(az + -+ xO(an—Z + xo(an—l))))

Coefficient Representation of Polynomials

Adding Two Polynomials:
Adding two polynomials of degree bound n takes ®(n) time.

C(x) =A(x) + B(x)

n—1 n-1
where, A(x) = z ajx) and B(x) = Z bix/.
j=0 j=0
n-—1

Then c(x) = z cix), where, ¢;=a;+b; for 0<j<n-1.
j=0

Coefficient Representation of Polynomials

Multiplying Two Polynomials:

The product of two polynomials of degree bound n is another
polynomial of degree bound 2n — 1.

C(x) = A(x)B(x)

n-—1 n-—1
where, A(x) = z ajxj and B(x) = Z bjxj.
=0 j=0
2n-2]
Then c(x) = Z cixj where, ¢ = Zakbj_k for o<j<2n-2.
j=0 k=0

The coefficient vector ¢ = (cy, ¢1,***,C21—2), denoted by c = a ® b,
is also called the convolution of vectors a = (ay, a4, -+, a,_1) and

b= (bO) bl) Y bn—l)-

Clearly, straightforward evaluation of ¢ takes @(nz) time.

Convolution

a,x

asx

Convolution

ao + a;x a,x asx
b3x bzx blx + bO
agbix | +| a1bpx

Convolution

Ay ax a,x asx
b3x bzxz blx bo
aobzxz alblxz azboxz

Convolution

ag + | ax a,x? asx3
b3x3 + bzxz blx bO
aghsx3 | + | a;byx3 a,byx3 asbyx3

Convolution

a1b3x4 + a2b2x4 + a3b1x4

Convolution

ao + a;x a,x asx
b3x3 bzxz blx bO
a2b3x5 a3b2x5

Convolution

a,x

Coefficient Representation of Polynomials
Multiplying Two Polynomials:

We can use Karatsuba’s algorithm (assume n to be a power of 2):

n—1 %—1 %—1
. . n . n
Alx) = Z ajx’ = z ajx’ + x2 Z agﬂ.xf = A;(x) + x24,(x)
j=0 j=0 =0 °
L L

Then ¢(x) = A(x)B(x)
= A;(x)B1(x) + x2[A;(x)B(x) + A;(x)B1(x)] + x™ A5 (x)B; (x)

But A4;(x)B,(x) + A;(x)B;(x)
= [A;(x) +A4; (X)][B1(x) +B, (x)] — A1 (x)B1(x) — Ay (x)B,(x)

3 recursive multiplications of polynomials of degree bound %

Similar recurrence as in Karatsuba’s integer multiplication

algorithm leading to a complexity of O(n'823) = O(n->?).

Point-Value Representation of Polynomials

A point-value representation of a polynomial A(x) is a set of n point-

value pairs {(xg, ¥o), (X1, V1), ..., (X,—1, Yn—1)} such that all x;, are
distinctand y, = A(xy) for0 <k <n-—1.

A polynomial has many point-value representations.

Adding Two Polynomials:
Suppose we have point-value representations of two polynomials
of degree bound n using the same set of n points.

A:{(x0,¥0), (x1, Y1), o) (Xn_1, Yn—1)}
B:{(x0,¥8), (x1,¥2), oo, (-1, ¥5-1)}
If C(x) =A()+B(x) then
C:{(x0, ¥ +¥8), (xr, ¥ + ¥2), o, (ner, Yoy + ¥h-1))

Thus polynomial addition takes ®(n) time.

Point-Value Representation of Polynomials

Multiplying Two Polynomials:
Suppose we have extended (why?) point-value representations of
two polynomials of degree bound n using the same set of 2n points.

A: {(x0,y6), (e, ¥1)5 s (X2n—1, Yan-1)3
B:{(x0,¥8), (%1, ¥1), -, (X2n—1,¥5n—1)}
If C(x) = A(x)B(x) then
C:{(x0, y&y2), (21, YEY?), o) (Xt Yoro1¥E0—1))

Thus polynomial multiplication also takes only ®(n) time!

(compare this with the @(nz) time needed in the coefficient form)

Faster Polynomial Multiplication?

(in Coefficient Form)

Alx) =ag+ayx + -+ ay_qx™1
B(x) =bg+ byx+ -+ b,_qx"1

evaluation
Time?

I A
A(xg), B(xo)
A(x1)».B(x1)

A(xZn—l)r.B(xZn—l)

ordinary
multiplication
————— C(x) =co+cyx+ -+ Cyppqx?™ 1
Time ©(n?) A
C
Qo
|
ol €
==
Q
=
pointwise
multiplication
Time ©(n)

Faster Polynomial Multiplication?
(in Coefficient Form)

Coefficient Representation = Point-Value Representation:
We select any set of n distinct points {x, x4, ..., X,—1}, and
evaluate A(x;,) for0 < k <n-—1.

Using Horner’s rule this approach takes (H)(nz) time.

Point-Value Representation = Coefficient Representation:
We can interpolate using Lagrange’s formula:

A(x) = z Hjik(x

]ik(k

This again takes ®(n?) time.

In both cases we need to do much better!

Coefficient Form = Point-Value Form

A polynomial of degree bound n: A(x) = ag + a;x + -+ + a,_x™ 1
A set of n distinct points: {xo,x1, ..., xp—1}

Compute point-value form: {(xo, 4(xo)), (x1, ACGe1)), ov) (xn_1, AGtn_1))}

Using matrix notation: [A(xo) T [1 xo (x0)® - (xo)™ " |1 %o 7
A(xq) 1 x4 (x)2 - ()™ a,
AQXp—1). 1 xp— (xn—l)z (xn—l)n_l_ On—1]

We want to choose the set of points in a way that simplifies the
multiplication.

In the rest of the lecture on this topic we will assume:

n is a power of 2.

Coefficient Form = Point-Value Form

Let’s choose xp, /24 = —x; for 0 < j <n/2 — 1.Then
A(xp) 1 1 X0 (x0)?)™ 1
A(xy) 1 x (x)? e e)™? oo
. . 1
2 -1 *
A(xn/Z—l) 1 Xn/2-1 (xn/2—1) (xn/2—1)n .
A(xn/2+0) 1 —Xo (—x9)? (—xp)™ 7t
A(xn/2+1) 1 —X1 (—x1)* (—x)" .
. . . . , * 1 an—l
A(nszrmz-0)] |1 —xppe1 (“Hnjae1)” = (=%nja1)” |
K .
(xj) , if k= even,

k
< jT < — 1. n/2+j) —
Observe thatfor 0 < j < n/2 — 1: (xn/2+)) {_(xj)k, if k = odd.

Thus we have just split the original n X n matrix into two almost

similar > X 1n matrices!

Coefficient Form = Point-Value Form

How and how much do we save?

n—-1 n/2-1 n/2-1
Alx) = Z a;xt = Z ayx2t + z Ay X2t
1=0 1=0 1=0
n/2-1 n/2-1
l l
= > (@) +x)y (¥) = Aeven(x?) + xAoaa(x?),
[=0 [=0
n/2-1 n/2-1
where, Agpen(x) = z ayx' and A,qq(x) = z A1
[=0 1=0
Observe thatfor0 <j <n/2 —1: A(x)) = Aeven(sz) +xjAodd(xj2)

A(xn/2+j) = A(_xj) = Aeven(sz) _ xjAodd (sz)
So in order to evaluate A(xj) forall0 <j <n -1, we need:

n/2 evaluations of A, and n/2 evaluations of 4,44
n multiplications
n/?2 additions and n/2 subtractions

Thus we save about half the computation!

Coefficient Form = Point-Value Form

If we can recursively evaluate 4,,,., and 4,44 using the same
approach, we get the following recurrence relation for the running
time of the algorithm:

0(1), ifn=1,
T(n) = T (g) + ©(n), otherwise.

= ®(nlogn)
Our trick was to evaluate A at x (positive) and —x (negative).
But inputs to A,y and 4,44 are always of the form x# (positive)!

How can we apply the same trick?

Coefficient Form = Point-Value Form

Let us consider the evaluation ofAeven(xj) for0<j<n/2-1:

[Aeven(Xo) 1 (x0)? (x0)* (x)™ % Ao]
Aepen(X1) 1 (x1)? (x1)* (x)72 a
: RE . : . a,
2 4 -2
Aeven(xn/z—l) 1 (xn/z—l) (xn/z—l) (xn/2—1)n _ ey

In order to apply the same trick on 4,,.,, we must set:

(xnas;) = —(x;) for0<j<n/4—1

Coefficient Form = Point-Value Form

In Appen, We set: x,,zl/4+] x for0 <j <n/4—1.Then
_ 2 22 271
1 xo (xo) °ee (xo)z
Agpen(Xo)] 2 22 2 %_1
Aeven () o W e
A (.) 2 2 Vo (2 Y| e
even\Xn/4-1 1 X574 (xn/4—1) (xn/4—1) .
Aeven(xn/4+0) 1 _xg (_xg)z (_)2_1
Aeven(xn/4+1) 2 n_, .
. 1 _x% (_xlz) ces (_)2 _an_z_
Aeven(xn/4+(n/4—1))) ’ n
2 o-1
_1 _x721/4—1 (_xrzz/2—1) (_x721/4—1)2 |

This means setting Xy /44 = ixj, where i = v—1 (imaginary)!

This also allows us to apply the same trickon A,44.

Coefficient Form = Point-Value Form

We can apply the trick once if we set:

Xn/2+j = —Xj forOSJSTl/Z—l

We can apply the trick (recursively) 2 times if we also set:

2 2
(%n/224;) =—(x)) foro<j<n/22-1
We can apply the trick (recursively) 3 times if we also set:

272 22 . .
(%n/234;) =—(x)" foro<j<n/23-1

We can apply the trick (recursively) k times if we also set:

2f=1 Sk . .
(%nky;) =—(x)" foro<j<n/2k-1

Coefficient Form = Point-Value Form

Consider the t'" primitive root of unity:

27T

Wy =et = coszTn+ i sinzTn (i = \/—1)

Then
2 2
(xn/22+j) = —(%) = xn/p24j = wp2 -
22 22
Zk_l Zk—l

(xn/2k+j) = _(xf) = Xpyokyj = Wok * Xj

Coefficient Form = Point-Value Form

If n = 2% we would like to apply the trick k times recursively.

What values should we choose for {xg, x1, ..., X;;_1}?

Example: Forn = 23 we need to choose {xg, X1, ..., X~ }.

Choose:
k = 3:
k = 2:
k=1

X0

X1

= W)

=]

= W

= W}

21 .
(stl
1
w3 Wg
4.()‘1
g
7
w5 g
8 ¥
—7 6
i |wg

complex 8" roots of unity

Coefficient Form = Point-Value Form

For a polynomial of degree bound n = 2%, we need to apply the
trick recursively at most logn = k times.

We choose xy = 1=a),({andsetxj =a),]1for1 <j<n-—1

Then we compute the following product:

- Yo T A1) T 1 1 1 1 _'a _
v Ay | |1 e @ @ || g
V2 |_| A(wd) |_|1 o (w%)z e (@2)7 || @

Yn-1d AP Y] 1w (wn 1)° (wn 1) | L1

The vector y = (yy, V1, ", ¥n—1) is called the discrete Fourier
transform (DFT) of (ag, aq, -+, an_1).

This method of computing DFT is called the fast Fourier transform
(FFT) method.

Coefficient Form = Point-Value Form

Example: Forn = 23 = 8:

A(x) = ag + a;x + a,x? + azx3 + a,x* + asx® + agx® + a,x’

We need to evaluate A(x) at x = wh for 0 < i < 8.

2| .
Wg |1

X
1

3 wg

Qo

I

—

= e
o

Il

(D

_l w8

complex 8t" roots of unity
Now A(x) = Aeven(xz) + X+ Apqa (xz)r

where A,,.,(¥) = ag + a,y + a,y* + agy’
and Aygq(¥) = a; + azy + asy? + a,y3

Coefficient Form = Point-Value Form

Observe that: g Also:
wy = wsg = ws g 8 ws =
0§ =" =i L, =of f =
o=l =uf of =
wg = wg* = w3 o | w} wl =
A(wg) = Acven(wg) + wg - Apaa(wg) = Aeven(ws) + wg
A(wg) = Acven(®§) + wg - Aoaa(wg) = Acven(®i) + w3
A(w§) = Acven(ws) + w§ - Apaa(wg) = Aeven(®i) + wg
A(w3) = Aeven(wg) + wg - Apaa(®§) = Aeven(®3) + wg
A(wg) = Acven(ws) + wg - Apaa(wg) = Aeven(ws) — wg

A(wg) = Aeven(wilso) + wg
A(wg) — Aeven(wilsz) + wg
A(wg) = Aeven(w£134) + wg

* Apda (wilso) — Aeven(wi) - w213
* Apda (wilsz) = Aeven(wz) - wg

) Aodd (w£134) — Aeven(wz) _ (‘)g

+ Apaa(w3),
+ Apaa(w3),
+Apga(w3),

+Apaa(w3),

+ Apaa(w3),
+ Apqa (W),
+Apaa(w5),

+Apqa(w3),

Coefficient Form = Point-Value Form

Rec-FFT ((ay, G4y ..., @,.1)) {n=2kforinteger k >0}
1. if n=1 then
2 return (ay)
3. @, <« exn
4., w1
5. y&ven « Rec-FFT ((ay, Gy, <oy Q.5))
6. vy« Rec-FFT ((aq, @3, ey Gy 1))
7. forj«<0ton/2-1do

8. yj «— yjeven + ijdd
9 . ¢ \y.even _ g y.odd
. yn/2+] yJ yJ
10. W— 0o,

11. returny

Running time:

e(1), ifn=1,
T(n) = T (g) + ®©(n), otherwise.

= ®(nlogn)

Faster Polynomial Multiplication?
(in Coefficient Form)

ordinary
A() = ae + @ix + -+ a.._.x=1 | multiplication -
ng% bt bttt [T T = S) =t axt Cop_1 X"
9 1 n-1 Time @(n) y

interpolation
Time?

forward FFT
Time ®(nlogn)

v ntwi
A(&)%n); B((‘)%n) mElOt:;TI\::v;ileon
A(w},), B(wi,)

Time ©(n)

A(w2" 1), B(w2n1)

Given:

=>V(w,) -a=y
We want to solve: a = [V(w,)] ! -

It turns out that: [V(w,)] ™t ==V

Point-Value Form = Coefficient Form

Vandermonde Matrix

y

(@)

1 1 1 1

1 w, ()3 (W)™ !

1 w2 (w?) (w02)"
1wt (o) e ()t
N V(on) ~

That means [V (w,,)] ! looks almost similar to V (w,,)!

SRV

V1
)

Vn-1

Point-Value Form = Coefficient Form

Show that: [V(wy)]™! = 1[/ (i)

n \w,
1 1
Let U(w,,) :EV w—
n

We want to show that U(w,)V(w,) = I,
where [, is the n X n identity matrix.

Observe that for 0 < j,k < n — 1, the (j, k)" entries are:

[V(wn)]jk = 7{Lk and [U(wn)]jk — Ew;]k
Then entry (p, q) of U(w,)V (wy),
n-1 n—1
1
[V (@)Y @)lpg = Y [U@n)]pie [V @)lig == 0f @

k=0 k=0

Point-Value Form = Coefficient Form

n—1
1 _
[U(wn)v(wn)]pq — E z ws(q P)
k=0
CASEp = ¢q:
n-—1 n-—1

k=0 k=0
CASE p # q: .
n— —_\1
1 ok 1 (wq p —1
U V :—Z a-p = —X Tl_
| (wp) (wn)]pq nk=0(wn) n wz P _ 1
L o(epiPo1 1 WPl
n wiP-1 n wfP-1

Hence U(w,)V(w,) =1,

Point-Value Form = Coefficient Form

We need to compute the following matrix-vector product:

1 1 1 1
. 1 1 2 1 n—1
_ aO _ wn wn wn _ yO _
a —
=<t @z a2 o2 .
n n n n
T 1 1 2 1 n-—1 T
Lo e 1)

[V (wp)]
This inverse problem is almost similar to the forward problem,

and can be solved in ®(nlogn) time using the same algorithm as
the forward FFT with only minor modifications!

Faster Polynomial Multiplication?
(in Coefficient Form)

ordinary

AX) = ag + ayx + -+ a,_;x™ 1 multiplication =
B(x) = by + by + -+ by xn=t [T N TLEE) = ot X+ con 1 X
— 0 1 n—1 T|me®(n) A

inverse FFT

forward FFT
Time ®(nlogn)
Time ®(nlogn)

Yy Wi
A(wiy), B(wiy,)
: Time ®(n)

A(w2" 1), B(w2n1)

Two polynomials of degree bound n given in the coefficient form
can be multiplied in ®(nlogn) time!

Some Applications of Fourier Transform and FFT

e Signal processing

* Image processing

* Noise reduction

e Data compression

e Solving partial differential equation
 Multiplication of large integers

* Polynomial multiplication

 Molecular docking

Some Applications of Fourier Transform and FFT

Jean Baptiste Joseph Fourier

Any periodic signal can be represented as a sum of a series of
sinusoidal (sine & cosine) waves. [1807]

Spatial (Time) Domain & Frequency Domain

Frequency Domain

apradury

w» £ 2
e * =
[~ ~
3 a -
> . .
Q . .
p—
wO - -
fl_ [=] =]
k=]
c 11 } I -
o= o _
(] o _
m o _
o _
Of 7 L_lﬁl_rlrH
(@] o _ i
— - 2
<)) I _ m
= O s N - e R
= o _ L
= o _
o _
~— _ _ _ |l | v
N e I I R |lT||5+
S | w11
o
= L _
© _ _ _ _
Q. _ _ _ _
v __ __ —— e
g 8 § 8 < &8 %

’s Guide to Digital Signal Processing by Steven W. Smith

ineer

tist and Eng

The Scien

Source

Spatial (Time) Domain & Frequency Domain

sg(T)

\/\/xnf\-/\f/ i\v‘vxn f\-/\Jf

Function s(x) (in red) is a sum of six sine functions of different amplitudes and
harmonically related frequencies. The Fourier transform, S(f) (in blue), which
depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

Source: http://en.wikipedia.org/wiki/Fourier series#tmediaviewer/File:Fourier series and transform.gif (uploaded by Bob K.)

Spatial (Time) Domain & Frequency Domain

an cos(nx) + b, sin(nx)

Function s(x) (in red) is a sum of six sine functions of different amplitudes and
harmonically related frequencies. The Fourier transform, S(f) (in blue), which
depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

Source: http://en.wikipedia.org/wiki/Fourier series#tmediaviewer/File:Fourier series and transform.gif (uploaded by Bob K.)

Spatial (Time) Domain & Frequency Domain

Function s(x) (in red) is a sum of six sine functions of different amplitudes and
harmonically related frequencies. The Fourier transform, S(f) (in blue), which
depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

Source: http://en.wikipedia.org/wiki/Fourier series#tmediaviewer/File:Fourier series and transform.gif (uploaded by Bob K.)

Spatial (Time) Domain & Frequency Domain

5(f)

Function s(x) (in red) is a sum of six sine functions of different amplitudes and
harmonically related frequencies. The Fourier transform, S(f) (in blue), which
depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

Source: http://en.wikipedia.org/wiki/Fourier series#tmediaviewer/File:Fourier series and transform.gif (uploaded by Bob K.)

Spatial (Time) Domain & Frequency Domain

Function s(x) (in red) is a sum of six sine functions of different amplitudes and
harmonically related frequencies. The Fourier transform, S(f) (in blue), which
depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

Source: http://en.wikipedia.org/wiki/Fourier series#tmediaviewer/File:Fourier series and transform.gif (uploaded by Bob K.)

Spatial (Time) Domain & Frequency Domain
(Fourier Transforms)

Let s(t) be a signal specified in the time domain.
The strength of s(t) at frequency f is given by:

S(f) = foos(t) e 2Tt gt

Evaluating this integral for all values of f gives the frequency

domain function.

Now s(t) can be retrieved by summing up the signal strengths

at all possible frequencies:

5@ = | T S(p) - et g

Why do the Transforms Work?

Let’s try to get a little intuition behind why the transforms work.

We will look at a very simple example.

Suppose: s(t) = cos(2mh - t)

f 1+ Sin‘l-(;;r’]]‘CT)) lff = h;
%f_TTS(t) e 2T gt = 4
sin(2e(h—f)T) . sin(2u(h+f)T) _
| 2n(h-P)T 2t)T otherwise.
1 r (1) lff —_ h,
— ’11111’1’1 (Tf S(t) . 3_27Tlft dt) —
- 0, otherwise.

So, the transform can detect if f = h!

Noise Reduction

inverse FFT

—

remove
noise

Source: http://www.mediacy.com/index.aspx?page=AH_FFTExample

Data Compression

Discrete Cosine Transforms (DCT) are used for lossy data
compression (e.g., MP3, JPEG, MPEG)

DCT is a Fourier-related transform similar to DFT (Discrete
Fourier Transform) but uses only real data (uses cosine waves
only instead of both cosine and sine waves)

Forward DCT transforms data from spatial to frequency domain

Each frequency component is represented using a fewer
number of bits (i.e., truncated / quantized)

Low amplitude high frequency components are also removed
Inverse DCT then transforms the data back to spatial domain

The resulting image compresses better

Data Compression

Transformation to frequency domain using cosine transforms
work in the same way as the Fourier transform.

Suppose: s(t) = cos(2mh - t)

(sin(4nfT) _
1+ anfT if f =h,

T
lj s(t) - cos(2rft) dt = <
T)_r sin(r(h — f)T) sin2u(h + f)T)

therwise.
T 2nh—PHT | 2ntht T 0 Orerwise

1 (T 1, iff =h,
— Tll_)n(}o (? j_TS(t) - cos(2mft) dt) =

0, otherwise.

So, this transform can also detect if f = h.

Protein-Protein Docking

J Knowledge of complexes is used in

— Drug design — Structure function analysis

— Studying molecular assemblies — Protein interactions

 Protein-Protein Docking: Given two proteins, find the best relative
transformation and conformations to obtain a stable complex.

T ’
-I_J‘J-~] :.

1 Docking is a hard problem
— Search space is huge (6D for rigid proteins)
— Protein flexibility adds to the difficulty

Shape Complementarity

[Wang’'?1, Katchalski-Katzir et al.’92, Chen et al.’03]

Molecule A

skin

Molecule B

surface atom

a possible docking solution

To maximize skin-skin overlaps and minimize core-core overlaps

— assign positive real weights to skin atoms
— assign positive imaginary weights to core atoms

Let A~ denote molecule A with the pseudo skin atoms.
For P e {A’ B} with M, atoms, affinity function: fp(x) = Z’,?jl W * g (x)

Here g, (x) is a Gaussian representation of atom k, and wy, its weight.

Shape Complementarity

[Wang’'?1, Katchalski-Katzir et al.’92, Chen et al.’03]

Molecule A

skin

Molecule B

surface atom

a possible docking solution

Let A~ denote molecule A with the pseudo skin atoms.

For P e {A’ B} with M, atoms, affinity function:
M
fp(x) = Zkfl Wi gi (x)
For rotation r and translation t of molecule B (i.e., B,),

the interaction score, F, g(t,7) = fx far(x)fp, (x)dx

Shape Complementarity

[Wang’'?1, Katchalski-Katzir et al.’92, Chen et al.’03]

Molecule A

skin

Molecule B

surface atom

a possible docking solution

For rotation r and translation t of molecule B (i.e., By,),

the interaction score, F, g(t, 1) = fx fAr(x)th,r(x) dx

Re (FA,B (t, r)) = skin-skin overlap score — core-core overlap score

Im (FA,B (t, r)) = skin-core overlap score

Docking: Rotational & Translational Search

IIIIIIIIIIIIIII

Docking: Rotational & Translational Search

IIIIIIIIIIIIIII

Docking: Rotational & Translational Search

IIIIIIIIIIIIIII

IIIIIIIIIIIIIII

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

IIIIIIIIIIIIIII

IIIIIIIIIIIIIII

Docking: Rotational & Translational Search

IIIIIIIIIIIIIII

IIIIIIIIIIIIIII

Docking: Rotational & Translational Search

IIIIIIIIIIIIIII

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

IIIIIIIIIIIIIII

IIIIIIIIIIIIIII

Docking: Rotational & Translational Search

IIIIIIIIIIIIIII

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

IIIIIIIIIIIIIII

IIIIIIIIIIIIIII

Docking: Rotational & Translational Search

IIIIIIIIIIIIIII

IIIIIIIIIIIIIII

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

IIIIIIIIIIIIIII

IIIIIIIIIIIIIII

Docking: Rotational & Translational Search

IIIIIIIIIIIIIII

IIIIIIIIIIIIIII

Docking: Rotational & Translational Search

IIIIIIIIIIIIIII

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

ational & Translational Search

i

Ro

Docking:

IIIIIIIIIIIIIII

IIIIIIIIIIIIIII

otational & Translational Search

g: R

Dockin

IIIIIIIIIIIIIII

IIIIIIIIIIIIIII

Translational Search using FFT

TDE
I ST
19 PO
Lo 0 discretize ANZE s anSuman Forward
A / > { = =i
N NiE
e , FFT . |2
PR 2 auo
\:‘,4_‘ g_ 2
o c
Slo
(@]
. Inverse
multiply frequency maps >
FFT
discretize R Forward h(z),‘v’ze Q
> EESE NN
IENEEEENE=EN)
P FFT

vz € Q= [-nn]3 h(z) = J QfA,(x)fBr(z — x)dx

