
CSE548, AMS542: Analysis of Algorithms, Fall 2017 Date: Nov 29

Final In-Class Exam
(7:05 PM – 8:20 PM : 75 Minutes)

• This exam will account for either 15% or 30% of your overall grade depending on your relative
performance in the midterm and the final. The higher of the two scores (midterm and final)
will be worth 30% of your grade, and the lower one 15%.

• There are three (3) questions, worth 75 points in total. Please answer all of them in the
spaces provided.

• There are 18 pages including four (4) blank pages and one (1) page of appendix. Please use
the blank pages if you need additional space for your answers.

• The exam is open slides and open notes. But no books and no computers (no laptops, tablets,
capsules, cell phones, etc.).

Good Luck!

Question Pages Score Maximum

1. A Queue from Two Stacks 2–6 20

2. Average Deviation from a Running Max 8–11 30

3. Largest Divisor 13–15 25

Total 75

Name:

1

Init(Q) () {initialize FIFO (First In, First Out) queue Q}
1. Q.S1 ← ∅, Q.S2 ← ∅ {Q.S1 and Q.S2 are stacks which are emptied initially}

Enqueue(Q) (x) {enqueue key x into queue Q}
1. Push(Q.S1)(x) {push x into stack Q.S1}

Dequeue(Q) () {dequeue the oldest key from Q}
1. if Q.S2 = ∅ then {if stack Q.S2 is empty}
2. while Q.S1 6= ∅ do {as long as there is at least one item in Q.S1}
3. x← Pop(Q.S1)() {remove the newest key from Q.S1}
4. Push(Q.S2)(x) {push x into Q.S2}
5. x← Pop(Q.S2)() {the topmost key x in stack Q.S2 must be the oldest key in the entire queue Q}
6. return x

Figure 1: A FIFO (First In, First Out) queue Q is implemented using two LIFO (Last In, First
Out) stacks Q.S1 and Q.S2.

Question 1. [20 Points] A Queue from Two Stacks. A queue Q is a dynamic collection
of items that supports two operations: Enqueue and Dequeue. An Enqueue(Q) (x) operation
inserts the item x into Q, while a Dequeue(Q) () operation removes the oldest item (i.e., the item
that has been in the set for the longest time) from the collection. Thus a queue works on a “First
In, First Out” or FIFO principle.

A stack S, on the other hand, is a collection of items that also supports two operations: Push and
Pop. An Push(S) (x) operation inserts the item x into S, while a Pop(S) () operation removes
the newest item (i.e., the item that has been in the set for the shortest time) from the collection.
Thus a stack works on a “Last In, First Out” or LIFO principle.

Figure 1 shows how to implement a queue Q using two stacks Q.S1 and Q.S2. Figure 2 shows the
state of the data structure after each of a sequence of fourteen Enqueue and Dequeue operations
performed on it.

Assuming that both Push and Pop operations can be performed on Q.S1 and Q.S2 in Θ (1) worst-
case cost per operation, this task asks you to determine the worst-case and amortized costs of
Enqueue and Dequeue operations on Q as implemented in Figure 1. You can assume that if a
Pop operation on an empty stack returns NIL.

2

Figure 2: State of Q after each of a sequence of fourteen Enqueue and Dequeue operations
performed on it.

3

1(a) [4 Points] What is the worst-case cost of each of the following operations when Q contains
n items: (i) Enqueue(Q)(x) and (ii) Dequeue(Q)()? Justify your answers.

4

1(b) [12 Points] Use either the accounting method or the potential method to show that the
amortized cost of each of the following operations is Θ (1): (i) Enqueue(Q)(x) and (ii)
Dequeue(Q)().

5

1(c) [4 Points] Suppose after executing Init(Q) we perform an intermixed sequence of n En-
queue and Dequeue operations on Q as implemented in Figure 1. What is the total worst-
case cost of performing these n operations on Q based on your results from part 1(a)? What
is the total worst-case cost based on your results from part 1(b)?

6

Use this page if you need additional space for your answers.

7

Question 2. [30 Points] Average Deviation from a Running Max. The Print-Max-
Stat(A, n) function in Figure 3 scans the input array A[1 : n] of n distinct positive numbers in
order to find the largest number in the array. Every time it finds a new maximum it prints the
average deviation of all the numbers seen so far from the new maximum. To reduce the number of
times the print statement is executed the function first randomly permutes the numbers in A.

This task asks you to find a high probability (w.r.t. n) upper bound on the running time of
Print-Max-Stat.

Print-Max-Stat(A, n) {A[1 : n] is an array of n distinct positive numbers}
1. for i← 1 to n− 1 do {randomly permute the numbers in A[1 : n]}
2. k ← Random(i, n) {k is an integer chosen uniformly at random from [i, n]}
3. A[i]↔ A[k] {swap A[i] and A[k]}
4. max← −∞ {max will store the current maximum as we scan A}
5. for i← 1 to n do {scan A[1 : n]}
6. if A[i] > max then {if A[i] is the largest among A[1 : i]}
7. max← A[i] {A[i] is the current maximum}
8. s← 0 {s will store the average deviation of the numbers in A[1 : i] from max}
9. for j ← 1 to i do {scan A[1 : i]}

10. s← s+ (max−A[j]) {add to s the deviation of A[j] from max}
11. print s

i
{print average deviation}

Figure 3: Printing average deviations from a running maximum.

2(a) [4 Points] How many times the print statement in line 11 will be executed in the worst
case? What is the worst-case running time of Print-Max-Stat(A, n)? What random
permutation of the input numbers leads to this worst-case performance? Assume that each
call to Random in line 2 takes only Θ (1) time to execute.

8

2(b) [10 Points] Show that the expected number of times the print statement in line 11 will be
executed during a call to Print-Max-Stat(A, n) is ≈ lnn. Also show that the expected
number of times the assignment statement in line 10 will be executed is n.

9

2(c) [10 Points] Show that during a call to Print-Max-Stat(A, n) the following statements
hold w.h.p. in n:

(i) the print statement in line 11 executes Θ (log n) times, and

(ii) the assignment statement in line 10 executes Θ (n) times.

10

2(d) [6 Points] Use your results from part 2(c) to give an upper bound on the running time of
Print-Max-Stat(A, n) which holds w.h.p. in n. Assume that each call to Random in
line 2 takes only Θ (1) time to execute.

11

Use this page if you need additional space for your answers.

12

Question 3. [25 Points] Largest Divisor. Suppose A[1 : n] and B[1 : n] are two arrays
containing only positive integers larger than 1, where n > 0. These two arrays are not necessarily
sorted. Also, suppose D[1 : n] is another array each entry of which is initialized to 0.

In this task, for every A[i] we will find the largest number B[j] (if exists) such that B[j] 6= A[i] but
B[j] divides A[i], and we will store that B[j] in D[i], where 1 ≤ i, j ≤ n. If no such entry exists in
B then D[i] will retain its initial value 0.

Largest-Divisor-Iterative(A[1 : n], B[1 : n], D[1 : n])

(Inputs are two arrays A[1 : n] and B[1 : n] containing only positive integers larger than 1, where n > 0.
Output will be written to another array D[1 : n] such that for 1 ≤ i ≤ n, D[i] will contain the largest number
in B[1 : n] that is not equal to A[i] but divides A[i]. If no such entry exists in B then D[i] will contain 0.
We assume that each entry of D has already been initialized to 0.)

1. for i← 1 to n do

2. for j ← 1 to n do

3. if B[j] 6= A[i] and B[j] divides A[i] then

4. D[i]← max { D[i], B[j] }

Figure 4: Finds the largest divisor of each entry of A[1 : n] from a given array B[1 : n].

3(a) [7 Points] Parallelize Largest-Divisor-Iterative shown in Figure 4 by replacing as
many (serial) for loops with parallel for loops as possible so that it still produces correct
results. You do not need to write the entire pseudocode for this parallel version. Simply
modify the pseudocode in Figure 4 by (clearly and unambiguously) writing parallel to the
left of the line number of each for loop you want to parallelize.

For each for loop justify your decision (in a sentence or two), i.e., if you parallelized a for loop
explain why that parallel for loop will still produce correct results, and if you chose not to
parallelize a for loop explain how parallelizing it will produce incorrect results.

Find the work and span of your parallel version of Largest-Divisor-Iterative. Justify
your answers.

13

Largest-Divisor-Recursive(A[1 : n], B[1 : n], D[1 : n])

(Inputs are two arrays A[1 : n] and B[1 : n] containing only positive integers larger than 1, where n > 0
and n is a power of 2. Output will be written to another array D[1 : n] such that for 1 ≤ i ≤ n, D[i] will
be overwritten with the largest number in B[1 : n] that is not equal to A[i] but divides A[i], provided that
number is larger than the value D[i] already contains, otherwise D[i] will remain unchanged)

1. if n = 1 then {base case}
2. if B[1] 6= A[1] and B[1] divides A[1] then

3. D[1]← max { D[1], B[1] }
4. else

5. let XL and XR denote X[1 : n
2
] and X[n

2
+ 1 : n], respectively, where X ∈ { A, B, D }

6. Largest-Divisor-Recursive(AL, BL, DL)

7. Largest-Divisor-Recursive(AR, BL, DR)

8. Largest-Divisor-Recursive(AL, BR, DL)

9. Largest-Divisor-Recursive(AR, BR, DR)

Figure 5: Finds the largest divisor of each entry of A[1 : n] from a given array B[1 : n]. Assumes
that each entry of D[1 : n] has already been initialized to 0 before making the initial function call.

3(b) [10 Points] Function Largest-Divisor-Recursive shown in Figure 5 is a recursive
version of Largest-Divisor-Iterative.

Show how you will parallelize Largest-Divisor-Recursive by writing down spawn and
sync keywords at the right places in Figure 5. Justify your choices.

Write down the recurrences for the work and span of your parallel version of Largest-
Divisor-Recursive. Solve them to show that it performs Θ

(
n2
)

work and has Θ (n) span.
What is its parallelism?

14

3(c) [8 Points] Explain how you will improve the parallelism of Largest-Divisor-Recursive.
Write down the pseudocode for your improved algorithm.

Write down the recurrences for the work and span of your new algorithm and solve them.
What is its parallelism?

15

Use this page if you need additional space for your answers.

16

Use this page if you need additional space for your answers.

17

Appendix I: Useful Tail Bounds

Markov’s Inequality. Let X be a random variable that assumes only nonnegative values. Then
for all δ > 0, Pr [X ≥ δ] ≤ E[X]

δ .

Chebyshev’s Inequality. Let X be a random variable with a finite mean E[X] and a finite

variance V ar[X]. Then for any δ > 0, Pr [|X − E[X]| ≥ δ] ≤ V ar[X]
δ2

.

Chernoff Bounds. Let X1, . . . , Xn be independent Poisson trials, that is, each Xi is a 0-1 random

variable with Pr[Xi = 1] = pi for some pi. Let X =

n∑
i=1

Xi and µ = E[X]. Following bounds hold:

Lower Tail:

– for 0 < δ < 1, Pr [X ≤ (1− δ)µ] ≤
(

e−δ

(1−δ)(1−δ)

)µ
– for 0 < δ < 1, Pr [X ≤ (1− δ)µ] ≤ e−

µδ2

2

– for 0 < γ < µ, Pr [X ≤ µ− γ] ≤ e−
γ2

2µ

Upper Tail:

– for any δ > 0, Pr [X ≥ (1 + δ)µ] ≤
(

eδ

(1+δ)(1+δ)

)µ
– for 0 < δ < 1, Pr [X ≥ (1 + δ)µ] ≤ e−

µδ2

3

– for 0 < γ < µ, Pr [X ≥ µ+ γ] ≤ e−
γ2

3µ

Appendix II: The Master Theorem

Let a ≥ 1 and b > 1 be constants, let f(n) be a function, and let T (n) be defined on the nonnegative
integers by the recurrence

T (n) =

{
Θ (1) , if n ≤ 1,
aT
(
n
b

)
+ f(n), otherwise,

where, n
b is interpreted to mean either

⌊
n
b

⌋
or
⌈
n
b

⌉
. Then T (n) has the following bounds:

Case 1: If f(n) = O
(
nlogb a−ε

)
for some constant ε > 0, then T (n) = Θ

(
nlogb a

)
.

Case 2: If f(n) = Θ
(
nlogb a logk n

)
for some constant k ≥ 0, then T (n) = Θ

(
nlogb a logk+1 n

)
.

Case 3: If f(n) = Ω
(
nlogb a+ε

)
for some constant ε > 0, and af

(
n
b

)
≤ cf(n) for some

constant c < 1 and all sufficiently large n, then T (n) = Θ (f(n)).

18

