CSE548, AMS542: Analysis of Algorithms, Fall 2015 Date: Sep 22

Homework #1
( Due: Oct 6 )
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(a) All possible moves of a knight on a (b) A closed knight’s tour on a 6 x 6
6 x 6 chessboard from location (4,4) chessboard with holes

Figure 1: Knight’s tour on a chessboard with holes.

Task 1. [ 50 Points | Knight’s Tour on a Defective Chessboard

Suppose you are given an n X n chessboard for some n > 3. Each cell is identified with a pair (r, c),
where r € [1,n] is its row number and ¢ € [1, n] is its column number. However, some of the cells
of the chessboard are defective (i.e., have holes in them), and so are unusable.

A knight is a chess piece that moves in an ‘L’ shape in any direction (see Figure 1(a)). A knight’s
tour on this chessboard is a sequence of moves made by the knight starting from a good (i.e.,
nondefective) cell and touching every other good cell exactly once. If the last cell on the tour is
reachable from the first cell in a single move of the knight, we call the tour closed. Figure 1(b)
shows a closed tour on a 6 x 6 chessboard with 4 defective cells, where each good cell is marked
with an integer giving its rank! in the tour. The tour starts at cell (3,1) and ends at cell (4,3),
and it is closed because cell (3,1) can be reached from cell (4,3) in a single knight’s move.

(a) [ 25 Points | Design and explain a recursive divide-and-conquer algorithm for finding a
closed knight’s tour on a defective n x n chessboard with n = 3 x 2* for some integer k > 0.
Assume that for 0 < i,j < 2%, cells (3 + 2,35 + 2) have holes. Include pseudocode.

(b) [ 10 Points | Write down a recurrence describing the running time of your algorithm from
part (a), and solve it.

(c) [ 15 Points | Repeat parts (a) and (b) for an n x n chessboard with n = 3 x 2¥ for some
integer £ > 0. Assume that this time the chessboard has no defective cells.

Yrank’ of a cell is equal to the number of cells visited before that cell plus one



Task 2. [ 50 Points | Distance-Incorporated Codon Autocorrelation Score

The availability of synonymous codons (codons that can translate the same amino acid into a
protein) enables a protein to be encoded by many different sequences of codons/tRNAs. Auto-
correlation measures the reuse of a particular codon/tRNA in succession (instead of choosing a
different synonymous one) during the translation of a protein sequence. Studies show that tRNA
autocorrelation in a coding sequence has important effects on its translation speed.

We can measure autocorrelation by transforming the problem into a combinatorial one. For ex-
ample, suppose we have a sequence of amino acids where Serene’s residues occur at positions 4,
6, and 301, and to be coded by a mix of codons from two different tRNAs (say, two of type A
and one of type B). These codons can appear in three different relative orders: AAB, BAA, and
ABA. Considering the opportunities of tRNA reuse, AAB is expected to translate faster and is
more autocorrelated than BAA, because the two occurrences of A in AAB are so close that the
specific tRNA molecule employed in coding for the 4th residue is likely to be around when residue
at position 6 is being translated, and hence can be reused.

Distance Incorporated Codon Autocorrelation (DICA) score is a recently proposed metric of gene
autocorrelation which is calculated for a coding sequence by finding positions of all synonymous
codons for a given amino acid and then summing a reward function, F(d(i,j)) which assigns a
positive score based on the distance between the synonymous codons. Here, d(i, j) is the distance
between codons translated by the same tRNA, i.e., if a tRNA repeat is found at positions ¢ and j
then the distance between these two is d(i,7) = j — i. Because autocorrelation appears to decay
slowly with distance, for a given synonymous codon, the probability that the next codon is the
same decreases as the distance increases. It has been shown that an exponential distance function
of the form ¢#(%7) where ¢ ~ 0.999 gives a better measure for DICA.

Suppose we have a codon sequence S of length n composed of K (< 9) different amino acids? A,
1 <a< K. Let §; be the maximal subsequence of S containing only A,’s, and let n, be its length.
Then n = Zle ng, and clearly, n = © (maxfle na). For any given a € [1, K] and 1 < i < ng, let
lga) be the location of & where the i-th entry of S, occurs. Then the Distance-Incorporated Codon
Autocorrelation (DICA) score (Dg) for S is:
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where T; is the tRNA at location i of S, 6(1;,T;) = 1 if T; = T; and 0 otherwise. Note that there
can be at most m different tRNA’s, where m < 6.

This equation can be evaluated using three nested loops. However, such a naive computation of
DICA takes © (n2) time, which can be prohibitively expensive for very long sequence.

Show how to compute Dg for a sequence of length n in © (nlogn) time. Include pseudocode of
your algorithm.

2There are 9 amino acids with synonymous codons translated by different tRNAs (A, G, I, L, P, R, S, T, V)



SELECT( Alg : 7], k, d, Seven, Sodd; b )

Input: An array of distinct elements, and an integer k € [1,7 — ¢ + 1]. The parameter d is the
depth of recursion with seyen being the block size to be used at even depths and s,qq at odd depths.
Also b is an upper bound on the size of the base case.

Output: An element x of Alg : 7] such that rank(z, Alg,r]) = k.

1. n<r—q+1

2. if n < b then

3. sort Alg : 7]

4 return Alg+k — 1]

5. else

6. if d mod 2 =0 then s < Seven
7 else s < 5044

8

divide A[g : r] into blocks B;’s each containing s consecutive elements

(last block may contain fewer than s elements )

fori<«+1to [ﬂ] do

s

©w

10. MTi] < median of B; using sorting
11. T + SELECT < M [1 : (%H , {@J , d4+ 1, Seven, Sodd, b) {median of medians}

12. t < PARTITION( Alg : 7], x) {partition around x which ends up at A[t]}
13. if k=1t—q+1 then return Alt]

14. else if k <t —q+1 then return SELECT( Alg:¢—1], k, d+ 1, Seven, Sodd, b )

15. else return SELECT( A[t+1:7], k, d+ 1, Scven, Sodd, b )

Figure 2: Selection with hybrid blocking.

Task 3. [ 60 Points | Recursive Selection with Hybrid Blocking

Figure 2 shows a slightly generalized version of the selection algorithm we saw in the class. Instead
of using a single block size (e.g., 5) at all levels of recursion, it uses block size Seyen at even levels,
and s,qq at odd levels. Now the base case size b is also a parameter to the algorithm. Observe that
when b = 140 and Seyen, = Sodd = D, the algorithm reduces to the one we saw in the class.

(a) [ 10 Points | Write a recurrence relation describing the running time of SELECT on an array
of size n assuming Seyen = Sodqd = 3. What is the best running time you get by solving the
recurrence? What is the smallest value of b you get?

(b) [ 20 Points | Repeat part (a) with seyen, = 3 and syqq = 5.

(c) [ 30 Points | Suppose we run SELECT with Seyen, = Sogq = 4. Then in steps 8-10, each group
of size 4 will have exactly 2 medians — one smaller and one larger. Suppose in step 10, we
assign the smaller median to M[i]. Then what will be the running time of SELECT on an
array of size n? If the running time is w (n), can one make change(s) to steps 11-15 to bring
the running time down to © (n)?



