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Insertion Sort

Input: An array ��	1 ∶ 	�	� of � numbers.

Output: Elements of ��	1 ∶ 	�	� rearranged in non-decreasing order of value.

INSERTION-SORT ( A )

1. for � 	 2 to �. �
����
2. �
� 	 � �
3. // insert � � into the sorted sequence � 1. . � � 1
4. � 	 � � 1
5. while � � 0 and � � � �
�
6. � � � 1 	 � �
7. � 	 � � 1
8. � � � 1 	 �
�



Loop Invariants

We use loop invariants to prove correctness of iterative algorithms

A loop invariant is associated with a given loop of an algorithm, 

and it is a formal statement about the relationship among variables 

of the algorithm such that

― [ Initialization ] It is true prior to the first iteration of the loop

― [ Maintenance ] If it is true before an iteration of the loop, it 

remains true before the next iteration

― [ Termination ] When the loop terminates, the invariant gives us 

a useful property that helps show that the algorithm is correct



Loop Invariants for Insertion Sort

INSERTION-SORT ( A )

1. for � 	 2 to �. �
����
2. �
� 	 � �
3. // insert � � into the sorted sequence � 1. . � � 1
4. � 	 � � 1
5. while � � 0 and � � � �
�
6. � � � 1 	 � �
7. � 	 � � 1
8. � � � 1 	 �
�



Loop Invariants for Insertion Sort

INSERTION-SORT ( A )

1. for � 	 2 to �. �
����
Invariant 1: � 1. . � � 1 consists of the elements 

originally in � 1. . � � 1 , but in sorted order

2. �
� 	 � �
3. // insert � � into the sorted sequence � 1. . � � 1
4. � 	 � � 1
5. while � � 0 and � � � �
�
6. � � � 1 	 � �
7. � 	 � � 1
8. � � � 1 	 �
�



Loop Invariants for Insertion Sort

INSERTION-SORT ( A )

1. for � 	 2 to �. �
����
Invariant 1: � 1. . � � 1 consists of the elements 

originally in � 1. . � � 1 , but in sorted order

2. �
� 	 � �
3. // insert � � into the sorted sequence � 1. . � � 1
4. � 	 � � 1
5. while � � 0 and � � � �
�

Invariant 2: � �. . � are each � �
�
6. � � � 1 	 � �
7. � 	 � � 1
8. � � � 1 	 �
�



Loop Invariant 1: Initialization

At the start of the first iteration of the loop ( in lines 1 � 8 ): � 	 2
Hence, subarray � 1. . � � 1 consists of a single element � 1 , which is 

in fact the original element in � 1 .

The subarray consisting of a single element is trivially sorted.

Hence, the invariant holds initially.



Loop Invariant 1: Maintenance

We assume that invariant 1 holds before the start of the current iteration.

Hence, the following holds: � 1. . � � 1 consists of the elements originally 

in � 1. . � � 1 , but in sorted order.

For invariant 1 to hold before the start of the next iteration, the following 

must hold at the end of the current iteration:� 1. . � consists of the elements originally in � 1. . � , but in sorted order.

We use invariant 2 to prove this.



Loop Invariant 1: Maintenance
Loop Invariant 2: Initialization

At the start of the first iteration of the loop ( in lines 5 � 7 ): � 	 � � 1
Hence, subarray � �. . � consists of only two entries: � � and � � .

We know the following:

― � � � �
� ( explicitly tested in line 5 )

― � � 	 �
� ( from line 2 )

Hence, invariant 2 holds initially.



Loop Invariant 1: Maintenance
Loop Invariant 2: Maintenance

We assume that invariant 2 holds before the start of the current iteration.

Hence, the following holds: � �. . � are each � �
�.

Since line 6 copies � � which is known to be � �
� to � � � 1 which also 

held a value � �
�, the following holds at the end of the current iteration: � � � 1. . � are each � �
�.

Before the start of the next iteration the check � � � �
� in line 5 ensures 

that invariant 2 continues to hold.



Loop Invariant 1: Maintenance
Loop Invariant 2: Maintenance

Observe that the inner loop ( in lines 5 � 7 ) does not destroy any data 

because though the first iteration overwrites � � , that � � has already 

been saved in �
� in line 2.

As long as �
� is copied back into a location in � 1. . � without destroying 

any other element in that subarray, we maintain the invariant that � 1. . �
contains the first � elements of the original list.



Loop Invariant 1: Maintenance
Loop Invariant 2: Termination

When the inner loop terminates we know the following.

― � 1. . � is sorted with each element � �
�
� if � 	 0, true by default

� if � � 0, true because � 1. . � is sorted and � � � �
�
― � � � 1. . � is sorted with each element � �
� because the following 

held before � was decremented: � �. . � is sorted with each item � �
�
― � � � 1 	 � � � 2 if the loop was executed at least once, and  � � � 1 	 �
� otherwise



Loop Invariant 1: Maintenance
Loop Invariant 2: Termination

When the inner loop terminates we know the following.

― � 1. . � is sorted with each element � �
�
― � � � 1. . � is sorted with each element � �
�
― � � � 1 	 � � � 2 or � � � 1 	 �
�
Given the facts above, line 8 does not destroy any data, and gives us � 1. . � as the sorted permutation of the original data in � 1. . � .



Loop Invariant 1: Termination

When the outer loop terminates we know that � 	 �. �
���� � 1.

Hence, � 1. . � � 1 is the entire array � 1. . �. �
���� , which is sorted and 

contains the original elements of � 1. . �. �
���� .



Worst Case Runtime of Insertion Sort ( Upper Bound )

INSERTION-SORT ( A )

1. for � 	 2 to �. �
����
2. �
� 	 � �
3. // insert � � into the sorted sequence � 1. . � � 1
4. � 	 � � 1
5. while � � 0 and � � � �
�
6. � � � 1 	 � �
7. � 	 � � 1
8. � � � 1 	 �
�

��� 0�!�"�#�$�%

�
� � 1
& � '(')& � � 1 '(')� � 1

cost times

Running time, * � � ��� � � � � 1 � �! � � 1��"∑ �)(, � �#∑ � � 1)(, � �$∑ � � 1)(, � �% � � 1	 0.5 �" � �# � �$ � � 0.5 2�� � 2� � 2�! � �" � �# � �$ � 2�% �	� � � �! � �" � �%⇒ * � 	 . � 



Best Case Runtime of Insertion Sort ( Lower Bound )

INSERTION-SORT ( A )

1. for � 	 2 to �. �
����
2. �
� 	 � �
3. // insert � � into the sorted sequence � 1. . � � 1
4. � 	 � � 1
5. while � � 0 and � � � �
�
6. � � � 1 	 � �
7. � 	 � � 1
8. � � � 1 	 �
�

��� 0�!�"�#�$�%

�
� � 1

0
� � 1

cost times

Running time, * � � ��� � � � � 1 � �! � � 1��" � � 1 � �% � � 1
	 �� � � � �! � �" � �% � � � � �! � �" � �%

⇒ * � 	 Ω �



Selection Sort

Input: An array ��	1 ∶ 	�	� of � numbers.

Output: Elements of ��	1 ∶ 	�	� rearranged in non-decreasing order of value.

SELECTION-SORT ( A )

1. for � 	 1 to �. �
����
2. // find the index of an entry with the smallest value in � �. . �. �
����
3. 0�� 	 �
4. for � 	 � � 1 to �. �
����
5. if � � 1 � 0��
6. 0�� 	 �
7. // swap � � and � 0��
8. � � ↔ � 0��



Selection Sort

Input: An array ��	1 ∶ 	�	� of � numbers.

Output: Elements of ��	1 ∶ 	�	� rearranged in non-decreasing order of value.

SELECTION-SORT ( A )

1. for � 	 1 to �. �
����
Invariant 1: ?

2. // find the index of an entry with the smallest value in � �. . �. �
����
3. 0�� 	 �
4. for � 	 � � 1 to �. �
����

Invariant 2: ?

5. if � � 1 � 0��
6. 0�� 	 �
7. // swap � � and � 0��
8. � � ↔ � 0��



Merging Two Sorted Subarrays

Input: Two subarrays ��	3 ∶ 4	� and � 4 � 1: 6 in sorted order ( 3 � 4 1 6 ).

Output: A single sorted subarray ��	3 ∶ 6	� by merging the input subarrays.



Merging Two Sorted Subarrays

Input: Two subarrays ��	3 ∶ 4	� and � 4 � 1: 6 in sorted order ( 3 � 4 1 6 ).

Output: A single sorted subarray ��	3 ∶ 6	� by merging the input subarrays.

Loop Invariant

At the start of each iteration of the 

for loop of lines 12‒17 the following 

invariant holds:

The subarray � 3: � � 1 contains 

the � � 3 smallest elements of 7 1: �� � 1 and 8 1: � � 1 , 

in sorted order. 

Moreover, 7 � and 8 � are the 

smallest elements of their arrays that 

have not been copied back into �.



Merging Two Sorted Subarrays

Input: Two subarrays ��	3 ∶ 4	� and � 4 � 1: 6 in sorted order ( 3 � 4 1 6 ).

Output: A single sorted subarray ��	3 ∶ 6	� by merging the input subarrays.

Running Time

Let � 	 6 � 3 � 1.

Then � 	 �� � � .

The loop in lines 4‒5 takes Θ �� time.

The loop in lines 6‒7 takes Θ � time.

The loop in lines 12‒17 takes Θ � time.

Lines 1‒3 and 8‒11 take Θ 1 time.

Overall running time 	 Θ �� � Θ � � Θ � � Θ 1	 Θ �



Divide-and-Conquer

1. Divide: divide the original problem into smaller 

subproblems that are easier to solve

2. Conquer: solve the smaller subproblems

( perhaps recursively )

3. Merge: combine the solutions to the smaller subproblems

to obtain a solution for the original problem



Intuition Behind Merge Sort

1. Base case: We know how to correctly sort an array containing 

only a single element. 

Indeed, an array of one number is already trivially sorted!

2. Reduction to base case ( recursive divide-and-conquer ):

At each level of recursion we split the current subarray at the     

midpoint ( approx ) to obtain two subsubarrays of equal or  

almost equal lengths, and sort them recursively.

We are guaranteed to reach subproblems of size 1 ( i.e., the 

base case size ) eventually which are trivially sorted.

3. Merge: We know how to merge two ( recursively ) sorted 

subarrays to obtain a longer sorted subarray.



Merge Sort

Input: A subarray ��	3 ∶ 6	� of 6 � 3 � 1 numbers, where 3 � 6.

Output: Elements of ��	3 ∶ 6	� rearranged in non-decreasing order of value.

MERGE-SORT ( A, p, r )

1. if 3 1 6 then

2. // split � 3. . 6 into two approximately equal halves � 3. . 4 and � 4 � 1. . 6
3. 4 	 :;< 
4. // recursively sort the left half

5. MERGE-SORT ( A, p, q )

6. // recursively sort the right half

7. MERGE-SORT ( A, q + 1, r )

8. // merge the two sorted halves and put the sorted sequence in � 3. . 6
9. MERGE ( A, p, q, r )



Correctness of Merge Sort

The proof has two parts. 

‒ First we will show that the algorithm terminates.

‒ Then we will show that the algorithm produces correct 

results ( assuming the algorithm terminates ).



Termination Guarantee

Size of the input subarray, � 	 6 � 3 � 1
Size of the left half, �� 	 4 � 3 � 1

Size of the right half, � 	 6 � 4 � 1 � 1 	 6 � 4
We will show the following:  �� 1 � and � 1 �
Meaning: Sizes of subproblems decrease by at least 1 in each 

recursive call, and so there cannot be more than � � 1 levels of 

recursion. So MERGE-SORT will terminate in finite time.



Termination Guarantee

A problem will be recursively subdivided ( i.e., lines 5 and 7 will be 

executed ) provided the following holds in line 1:  3 1 6
But 3 1 6 implies: 

3 � 6 1 26 ⇒ :;< 1 6 ⇒ :;< 1 6⇒ 4 1 6 ⇒ 4 � 3 � 1 1 6 � 3 � 1 ⇒ �� 1 �



Termination Guarantee

A problem will be recursively subdivided ( i.e., lines 5 and 7 will be 

executed ) provided the following holds in line 1:  3 1 6
3 1 6 also implies: 

23 1 3 � 6 ⇒ 3 1 :;< ⇒ 3 � :;< ⇒ 3 � 4⇒ �4 � �3 ⇒ 6 � 4 � 6 � 3 ⇒ 6 � 4 1 6 � 3 � 1 ⇒ � 1 �



Inductive Proof of Correctness

Base Case: The algorithm is trivially correct when 6 � 3, i.e., � � 1.

Let � 	 6 � 3 � 1.

Inductive Hypothesis: Suppose the algorithm works correctly for all 

integral values of � not larger than �, where � � 1 is an integer.

Inductive Step: We will prove that the algorithm works correctly for � 	 � � 1.



Inductive Proof of Correctness

When � 	 � � 1, lines 2‒9 of the algorithm will be executed 

because � � 1 ⇒ � � 1 ⇒ 6 � 3 � 1 � 1 ⇒ 3 1 6 holds in line 1.

The algorithm splits the input subarray � 3: 6 into two parts: 

� 3: 4 and � 4 � 1: 6 , where 4 	 :;< .

The recursive call in line 5 sorts the left part � 3: 4 . Since � 3: 4
containis �� 	 4 � 3 � 1 1 � ⇒ �� � � numbers, it is sorted 

correctly (using inductive hypothesis). 



Inductive Proof of Correctness

The recursive call in line 7 sorts the right part � 4 � 1: 6 . Since � 4 � 1: 6 containis � 	 6 � 4 1 � ⇒ � � � numbers, it is 

sorted correctly (using inductive hypothesis). 

We know that the MERGE algorithm can merge two sorted arrays 

correctly. So, line 9 correctly merges the sorted left and right parts 

of the input subarray into a single sorted sequence in � 3: 4 .  

Therefore, the algorithm works correctly for � 	 � � 1, and 

consequently for all integral values of �.



Analyzing Divide-and-Conquer Algorithms

Let * � be the running time of the algorithm on a problem of size �.

― If the problem size is small enough, say � � � for some constant �, 

the straightforward solution takes Θ 1 time.

― Suppose our division of the problem yields = subproblems, each of 

which is 1/? the size of the original.

― Let @ � 	 time needed to divide the problem into subproblems.

― Let A � 	 time needed to combine the solutions to the 

subproblems into the solution to the original problem.

Then * � 	 B Θ 1 �C	� � �,=* )E � @ � � A � F��
6G�H
.



Analysis of Merge Sort

Let * � be the worst-case running time of MERGE-SORT on � numbers.

We reason as follows to set up the recurrence for * � .

― When � 	 1, MERGE-SORT takes Θ 1 time.

― When � � 1, we break down the running time as follows. 

� Divide: This step simply computes the middle of the subarray, which takes 

constant time. Hence, @ � 	 Θ 1 .

� Conquer: We recursively solve 2 subproblems of size �/2 each, which adds 2* �/2 to the running time.

� Combine: The MERGE procedure takes Θ � time on an �-element subarray. 

Hence, A � 	 Θ � .

Then * � 	 B Θ 1 �C	� 	 1,2* ) � Θ � �C	� � 1.



Analysis of Merge Sort

Let us assume for simplicity that � 	 2I for some integer � � 0, 

and for constants �� and � :

* � 	 B �� �C	� 	 1,2* �2 � � � �C	� � 1;
where, �� is the time needed to solve a problem of size 1, and � is the time per array element of the divide and combine steps.

Let’s see how the recursion unfolds.



Analysis of Merge Sort

* �
Running time on an input of size � 	 2I for some integer � � 0:



Analysis of Merge Sort

� �

* �2 * �2
1

Unfolding the recurrence up to level 1:



Analysis of Merge Sort

� �

� �2 � �2
* �2 * �2 * �2 * �2 

2

Unfolding the recurrence up to level 2:



Analysis of Merge Sort

� �

� �2 � �2
� �2 � �2 � �2 � �2 

* �2K * �2K * �2K * �2K * �2K * �2K * �2K * �2K

3

Unfolding the recurrence up to level 3:



Analysis of Merge Sort

� �

� �2 � �2
� �2 � �2 � �2 � �2 

* �2I * �2I * �2I * �2I * �2I * �2I * �2I * �2I

�

Unfolding the recurrence up to level �:



Analysis of Merge Sort

� �

� �2 � �2
� �2 � �2 � �2 � �2 �

* 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1
�

But � 	 2I ⇒ ) M 	 1, and there will be � nodes (leaves) at level �:



Analysis of Merge Sort

� �

� �2 � �2
� �2 � �2 � �2 � �2 �

�
�� �� �� �� �� �� �� ��

Then * ) M 	 * 1 	 ��:



Analysis of Merge Sort

� �

� �2 � �2
� �2 � �2 � �2 � �2 �

�
�� �� �� �� �� �� �� ��

� �

� �

� �

���

Total work at each level:



Analysis of Merge Sort

� �

� �2 � �2
� �2 � �2 � �2 � �2 �

�
�� �� �� �� �� �� �� ��

� �

� �

� �

���
Total: � �� � ���

Total work across all levels:



Analysis of Merge Sort

� �

� �2 � �2
� �2 � �2 � �2 � �2 �

�
�� �� �� �� �� �� �� ��

� �

� �

� �

���
Total: � � log � � ���	 Θ � log�

But � 	 2I ⇒ � 	 log �:


