CSE 373: Analysis of Algorithms

Lectures S -8
(Correctness of Algorithms)

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Fall 2014

Insertion Sori

Input: An array A[1 : n | of n numbers.

Output: Elements of A[1 : n | rearranged in non-decreasing order of value.

INSERTION-SORT (A)

1. for j =2 to A.length
key = Alj]
// insert A[j] into the sorted sequence A[1..j — 1]
i=j—1
while i > 0 and A[i] > key
Ali + 1] = Ali]
i=i—1

Ali + 1] = key

©® N o U AW DN

Loop Invariants

We use loop invariants to prove correctness of iterative algorithms

A loop invariant is associated with a given loop of an algorithm,
and it is a formal statement about the relationship among variables
of the algorithm such that

— [Initialization] It is true prior to the first iteration of the loop

— [Maintenance] If it is true before an iteration of the loop, it
remains true before the next iteration

— [Termination] When the loop terminates, the invariant gives us
a useful property that helps show that the algorithm is correct

Loop Invariants for Insertion Sort

INSERTION-SORT (A)

for j =2 to A.length
key = Alj]
// insert A[j] into the sorted sequence A[1..j — 1]
i=j—1
while i > 0 and Ali] > key
Ali + 1] = Ali]
i=1—1

Ali + 1] = key

O N O U1 A W N =

Loop Invariants for Insertion Sort

INSERTION-SORT (A)

1.

© N o v &> W N

for j =2 to A.length

Invariant 1: A[1..j — 1] consists of the elements

originally in A[1..j — 1], but in sorted order

key = Alj]
// insert A[j] into the sorted sequence A[1..j — 1]
i=j—1
while i > 0 and Ali] > key
Ali + 1] = Ali]
i=1—1

Ali + 1] = key

Loop Invariants for Insertion Sort

INSERTION-SORT (A)

1. forj=2toA.length

Invariant 1: A[1..j — 1] consists of the elements

originally in A[1..j — 1], but in sorted order

2. key = A[j]
3. // insert A[j] into the sorted sequence A[1..j — 1]
4, i=j—1
5. while i > 0 and Ali] > key
Invariant 2: A[i..j]| are each > key
6. Ali + 1] = Ali]
/. i=i—1

8. Ali + 1] = key

Loop Invariant 1: Initialization

INSERTION-SORT (A)

1. forj=2to A.length

Invariant 1: A[1..j — 1] consists of the elements

originally in A[1..j — 1], but in sorted order

2. key = A[j]
3. // insert A[j] into the sorted sequence A[1..j — 1]
4, i=j—1
5. while i > 0 and A[i] > key
| Invariant 2: A[i..j] are each > key |
6. Ali + 1] = A[i]
7. i=i—1
8. Ali + 1] = key

At the start of the first iteration of the loop (inlines1 —8):j = 2

Hence, subarray A[1..j — 1] consists of a single element A[1], which is
in fact the original element in A[1].

The subarray consisting of a single element is trivially sorted.

Hence, the invariant holds initially.

Loop Invariant 1: Maintenance

INSERTION-SORT (A)

1. forj=2to A.length

Invariant 1: A[1..j — 1] consists of the elements

originally in A[1..j — 1], but in sorted order

2. key = A[j]
3. // insert A[j] into the sorted sequence A[1..j — 1]
4, i=j—1
5. while i > 0 and A[i] > key
| Invariant 2: A[i..j] are each > key |
6. Ali + 1] = A[i]
7. i=i—1
8. Ali + 1] = key

We assume that invariant 1 holds before the start of the current iteration.

Hence, the following holds: A[1..j — 1] consists of the elements originally
in A[1..j — 1], but in sorted order.

For invariant 1 to hold before the start of the next iteration, the following
must hold at the end of the current iteration:

Al[1..j] consists of the elements originally in A[1..]], but in sorted order.

We use invariant 2 to prove this.

Loop Invariant 1: Maintenance
Loop Invariant 2: Initialization

INSERTION-SORT (A)

1. forj=2to A.length

Invariant 1: A[1..j — 1] consists of the elements

originally in A[1..j — 1], but in sorted order

2. key = A[j]
3. // insert A[j] into the sorted sequence A[1..j — 1]
4, i=j—1
5. while i > 0 and A[i] > key
| Invariant 2: A[i..j] are each > key |
6. Ali + 1] = A[i]
7. i=i—1
8. Ali + 1] = key

At the start of the first iteration of the loop (inlines5—7)i =j—1
Hence, subarray Ali. . j] consists of only two entries: A[i] and A[j].

We know the following:
— Ali] > key (explicitly tested in line 5)
— Alj] = key (from line 2)

Hence, invariant 2 holds initially.

Loop Invariant 1: Maintenance
Loop Invariant 2: Maintenance

INSERTION-SORT (A)

1. forj=2to A.length

Invariant 1: A[1..j — 1] consists of the elements

originally in A[1..j — 1], but in sorted order

2. key = A[j]
3. // insert A[j] into the sorted sequence A[1..j — 1]
4, i=j—1
5. while i > 0 and A[i] > key
| Invariant 2: A[i..j] are each > key |
6. Ali + 1] = A[i]
7. i=i—1
8. Ali + 1] = key

We assume that invariant 2 holds before the start of the current iteration.
Hence, the following holds: Ali..j] are each > key.

Since line 6 copies A[i] which is known to be > key to Ali + 1] which also
held a value = key, the following holds at the end of the current iteration:
Ali + 1..j] are each = key.

Before the start of the next iteration the check A[i] > key in line 5 ensures
that invariant 2 continues to hold.

Loop Invariant 1: Maintenance

Loop Invariant 2: Maintenance

INSERTION-SORT (A)

1.
2
3
4.
5
6.

7.
8.

for j =2 to A.length

Invariant 1: A[1..j — 1] consists of the elements

originally in A[1..j — 1], but in sorted order
key = A[j]
// insert A[j] into the sorted sequence A[1..j — 1]

i=j—1
while i > 0 and A[i] > key

| Invariant 2: A[i..j] are each > key |

Ali + 1] = Al

i=i—1

Ali + 1] = key

Observe that the inner loop (in lines 5 — 7) does not destroy any data
because though the first iteration overwrites A|j], that A|j] has already
been saved in key in line 2.

As long as key is copied back into a location in A[1..j]| without destroying
any other element in that subarray, we maintain the invariant that A[1../]
contains the first j elements of the original list.

Loop Invariant 1: Maintenance
Loop Invariant 2: Termination

INSERTION-SORT (A)

1. forj=2to A.length

Invariant 1: A[1..j — 1] consists of the elements

originally in A[1..j — 1], but in sorted order
key = A[j]

2

3 // insert A[j] into the sorted sequence A[1..j — 1]
4, i=j—1

5 while i > 0 and A[i] > key

| Invariant 2: A[i..j] are each > key |

6. Ali + 1] = A[i]
7. i=i—1
8. Ali + 1] = key

When the inner loop terminates we know the following.

— A|1..i] is sorted with each element < key
= ifi =0, true by default
= ifi > 0, true because A[1..i] is sorted and A[i] < key

— Ali + 1..j] is sorted with each element > key because the following
held before i was decremented: Ali..j] is sorted with each item > key

— Ali + 1] = Ali + 2] if the loop was executed at least once, and
Ali + 1] = key otherwise

Loop Invariant 1: Maintenance
Loop Invariant 2: Termination

INSERTION-SORT (A)

1. forj=2to A.length

Invariant 1: A[1..j — 1] consists of the elements

originally in A[1..j — 1], but in sorted order
key = A[j]

2

3 // insert A[j] into the sorted sequence A[1..j — 1]
4, i=j—1

5 while i > 0 and A[i] > key

| Invariant 2: A[i..j] are each > key |

6. Ali + 1] = A[i]
7. i=i—1
8. Ali + 1] = key

When the inner loop terminates we know the following.

— A|1..i] is sorted with each element < key
— Ali + 1..j] is sorted with each element > key
— Ali+1] = Ali + 2] or Ali + 1] = key

Given the facts above, line 8 does not destroy any data, and gives us
A[1..j] as the sorted permutation of the original data in A[1..].

Loop Invariant 1: Termination

INSERTION-SORT (A)

1. forj=2to A.length

Invariant 1: A[1..j — 1] consists of the elements

originally in A[1..j — 1], but in sorted order

2. key = A[j]
3. // insert A[j] into the sorted sequence A[1..j — 1]
4, i=j—1
5. while i > 0 and A[i] > key
| Invariant 2: A[i..j] are each > key |
6. Ali + 1] = A[i]
7. i=i—1
8. Ali + 1] = key

When the outer loop terminates we know that j = A.length + 1.

Hence, A[1..j — 1] is the entire array A[1.. A. length], which is sorted and
contains the original elements of A[1..A.length].

Worst Case Runtime of Insertion Sort (Upper Bound)

INSERTION-SORT (A) cost times
1. forj=2to A length ------------mmmmmmmmmmmmmrr oo Cp - n
2. key = A[j] - C;
3. // insert A[j] into the sorted sequence A[1..j — 1] 0 » n—1
4. = f =1 -eoooreeemmomene e C4
5. while i > 0 and A[i] > key oo C5 e Z j
6. Ali + 1] = A[i] e b ce 1L
7. Y N o Z;n(i -V
8. Ali + 1] = key -----------eemmrmm e L Cg -~ n—1

Running time, T(n) < cin+c,(n—1)+c,(n—1)
+Cs Z?:zj + Ce Z?:z(]' —1) + ¢ Z?:z(]' —1) +cg(n—1)

= 0.5(cs + cg + c;)n? + 0.5(2¢c; + 2¢, + 2¢4 + ¢5 — ¢ — 7 + 2cg)n
_(CZ + Cy + Cg + C8)
= T(n) = 0(n?)

Best Case Runitime of Insertion Sort (Lower Bound)

INSERTION-SORT (A) cost times
1 for j =2 to A.length ------------------mmmmmomm e Lo Cp - n
2 key = A[j] C2
3 // insert A[j] into the sorted sequence A[1..j — 1] ——§ - 0 * I
4 i=j—1 e Ca
5. while i > 0 and Ali] > key -------------omm cs
6 Ali+1] =4[] Co
7 I =0—1- Cy -0
8 Ali+ 1] = key ---------mrmmrr L Cg -~ n—1

Running time, T(n) =2 cin+c,(n—1)+c,(n —1)
+cc(n—1) +cg(n—1)

=(c;+cy+cy+cs+cgn—(c, +c4 +cs +cg)

= T(n) = Qn)

Selection Sort

Input: An array A[1 : n | of n numbers.

Output: Elements of A[1 : n | rearranged in non-decreasing order of value.

SELECTION-SORT (A)

1. forj=1to A.length
// find the index of an entry with the smallest value in A[j..A. length]
min = j
fori=j+1toAlength

if Ali] < A[min]

min =i

/1 swap A[j] and A[min]
A[j] & A[min]

©® N o U AW DN

Selection Sort

Input: An array A[1 : n | of n numbers.

Output: Elements of A[1 : n | rearranged in non-decreasing order of value.

SELECTION-SORT (A)

1. forj=1to A.length

Invariant 1: ?

2. // find the index of an entry with the smallest value in A[j..A. length]
3. min = j
4, fori=j+1toAlength

Invariant 2: ?

if Ali] < A[min]

min =i
/1 swap A[j] and A[min]
A[j] & A[min]

© N o U

Merging Two Sorted Subarrays

Input: Two subarrays A[p : g Jand A|q + 1:r] insorted order (p < g < 1).
Output: A single sorted subarray A[p : r | by merging the input subarrays.

MERGE (A, p, q,)

n=q-p+1
n, =r—gq
Let L[1:n; + 1] and R[1:n, + 1] be new arrays
fori=1ton
Lli] =Alp+i—-1]
forj=1ton,
Rj1 = Alq +/]
Ling+1] =

0 ® N o U kWS

R[n, +1] =

—
e

i=1

— —
N =
. .

j=1
fork=ptor
if L[i] < R[j]
Alk] = Lli]
i=i+1
else A[k] = R][j]
j=j+1

B e T T N N
N o U »x W

Merging Two Sorted Subarrays

Input: Two subarrays A[p : g Jand A|q + 1:r] insorted order (p < g < 1).
Output: A single sorted subarray A[p : r | by merging the input subarrays.

MERGE (A, p, G, I')

1. m=q-p+1 Loop Invariant
2. m=T—gq At the start of each iteration of the
3. LetL[l:n;+1]and R[1:n, +1] b . .
et tlim i} and £tz Albenewam®s 1 for loop of lines 12—17 the following

4. fori=1ton i .
5. L] =Alp+i—1] invariant holds:
6. forj=1ton,)
Rl Al The subarray Alp: k — 1] contains
8. Ling+1]=o the k — p smallest elements of
‘1’0 ?[“21“1:“’ L[1:ny + 1] and R[1:n, + 1],

. L= .
D in sorted order.
12. k=pt . .
o ! Osz[i]p:R;,] Moreover, L[i] and R[j] are the
14 ALK] = L[] smallest elements of their arrays that
15. i=i+1 have not been copied back into A.
16. else A[k] = R[j]

—
™

j=j+1

Merging Two Sorted Subarrays

Input: Two subarrays A[p : g Jand A|q + 1:r] insorted order (p < g < 1).

Output: A single sorted subarray A[p : r | by merging the input subarrays.

MERGE (A, p, G, ')

n=q-p+1
n, =r—gq
Let L[1:n, + 1] and R[1:n, + 1] be new arrays
fori=1ton
Lli] =Alp+i—-1]
forj=1ton,
Rj1 = Alg +J]
Ling+1] =00

0 o N o v h W DN

R[n, +1] =

—
S

i=1

—
—

. oj=1

N
N

fork=ptor
if L[i] < R[j]
Alk] = Lli]
i=i+1
else A[k] = R[j]
j=j+1

B G R
N o0 o Nw

Running Time

letn=7r—p+ 1.
Thenn =n, + n,.

The loop in lines 4-5 takes O(n,) time.
The loop in lines 6-7 takes O(n,) time.
The loop in lines 12-17 takes O(n) time.
Lines 1-3 and 8-11 take O(1) time.

Overall running time
=0(ny) +0(n,) +60(n)+06(1)
= 0(n)

Divide-and-Conquer

1. Divide: divide the original problem into smaller
subproblems that are easier to solve

2. Conquer: solve the smaller subproblems
(perhaps recursively)

3. Merge: combine the solutions to the smaller subproblems
to obtain a solution for the original problem

Intuition Behind Merge Sort

Base case: We know how to correctly sort an array containing
only a single element.

Indeed, an array of one number is already trivially sorted!

Reduction to base case (recursive divide-and-conquer):

At each level of recursion we split the current subarray at the
midpoint (approx) to obtain two subsubarrays of equal or
almost equal lengths, and sort them recursively.

We are guaranteed to reach subproblems of size 1 (i.e., the
base case size) eventually which are trivially sorted.

Merge: We know how to merge two (recursively) sorted
subarrays to obtain a longer sorted subarray.

Merge Sori

Input: A subarray A[p : v] of r — p + 1 numbers, wherep <.

Output: Elements of A[p : 7] rearranged in non-decreasing order of value.

MERGE-SORT (A, p, r)

1. if p <r then

2. /1 split A[p..r] into two approximately equal halves A[p..q] and A[q + 1..r]
3. q= lpTH

// recursively sort the left half
MERGE-SORT (A, p, q)

// recursively sort the right half
MERGE-SORT (A, g+ 1, r)

// merge the two sorted halves and put the sorted sequence in A[p..r]

0 o N o vk

MERGE (A, p, q,)

Correctness of Merge Sort

MERGE-SORT (A, p, r)

if p <r then
/1 split A[p..r] into two approximately equal halves A[p..q] and A[q + 1..7]

o=

// recursively sort the left half

// recursively sort the right half

1

2

3

4

5. MERGE-SORT (A, p, q)
6

7 MERGE-SORT (A, g+ 1, r)
8

9

// merge the two sorted halves and put the sorted sequence in A[p..r]

MERGE (A, p, G, ')

The proof has two parts.
— First we will show that the algorithm terminates.

- Then we will show that the algorithm produces correct
results (assuming the algorithm terminates).

Termination Guarantee

MERGE-SORT (A, p, r)

if p <r then
/1 split A[p..r] into two approximately equal halves A[p..q] and A[q + 1..7]
— |p*r
a= l 2 J
// recursively sort the left half
// recursively sort the right half

MERGE-SORT (A, g+ 1, 1)

1.

2

3

4

5. MERGE-SORT (A, p, q)
6

7

8 // merge the two sorted halves and put the sorted sequence in A[p..r]
9

MERGE (A, p, G, ')

Size of the input subarray, n =r—p +1
Size of the lefthalf, ny =q—p +1
Size of the right half, n,

r—(@+1)+1=r—gq

We will show the following:|n; <nandn, <n

Meaning: Sizes of subproblems decrease by at least 1 in each
recursive call, and so there cannot be more than n — 1 levels of
recursion. So MERGE-SORT will terminate in finite time.

Termination Guarantee

MERGE-SORT (A, p, r)

if p <r then
/1 split A[p..r] into two approximately equal halves A[p..q] and A[q + 1..7]

o=

// recursively sort the left half

// recursively sort the right half

1

2

3

4

5. MERGE-SORT (A, p, q)
6

7 MERGE-SORT (A, g+ 1, r)
8

9

// merge the two sorted halves and put the sorted sequence in A[p..r]

MERGE (A, p, G, ')

A problem will be recursively subdivided (i.e., lines 5 and 7 will be
executed) provided the following holds inline 1: p <r

Butp < r implies:
p+r<2r:>p7+r<r=>{p7+”r‘<r

>qg<r=>q-—-p+l<r—p+1l1=>n<n

Termination Guarantee

MERGE-SORT (A, p, r)

if p <r then
/1 split A[p..r] into two approximately equal halves A[p..q] and A[q + 1..7]
— |p*r
a= l 2 J
// recursively sort the left half
// recursively sort the right half

MERGE-SORT (A, g+ 1, 1)

1.

2

3

4

5. MERGE-SORT (A, p, q)
6

7

8 // merge the two sorted halves and put the sorted sequence in A[p..r]
9

MERGE (A, p, G, ')

A problem will be recursively subdivided (i.e., lines 5 and 7 will be
executed) provided the following holds inline 1: p <r

p < r also implies:
2p<p+r:>p<pT+T:>pSV?2i‘:>qu

> —q<-p=>r—q<r—-p>r—-q<r—-pt+l=n,<n

Inductive Proof of Correctness

MERGE-SORT (A, p, r)

if p <r then
/1 split A[p..r] into two approximately equal halves A[p..q] and A[q + 1..7]

— |ptr
a= l 2 J
// recursively sort the left half
// recursively sort the right half

MERGE-SORT (A, g+ 1, 1)

1.

2.

3

4

5. MERGE-SORT (A, p, q)
6

7

8 // merge the two sorted halves and put the sorted sequence in A[p..r]
9

MERGE (A, p, G, ')

letn=r—p+ 1.
Base Case: The algorithm is trivially correct whenr = p, i.e.,, n < 1.

Inductive Hypothesis: Suppose the algorithm works correctly for all
integral values of n not larger than k, where k = 1 is an integer.

Inductive Step: We will prove that the algorithm works correctly for
n=k+1.

Inductive Proof of Correctness

MERGE-SORT (A, p, r)

—_

if p <r then
/1 split A[p..r] into two approximately equal halves A[p..q] and A[q + 1..7]
— |p*r
a= l 2 J
// recursively sort the left half
MERGE-SORT (A, p,)

// recursively sort the right half

MERGE-SORT (A, g+ 1, 1)

A L o

// merge the two sorted halves and put the sorted sequence in A[p..r]

MERGE (A, p, G, ')

Whenn = k + 1, lines 2-9 of the algorithm will be executed
becausek=>1=>n>1=>r—p+1>1=p<rholdsinline 1.

The algorithm splits the input subarray A[p: r] into two parts:
p+r

Alp:q] and A[g + 1: 7], where g = — |

The recursive call in line 5 sorts the left part A|p: q]. Since A[p: q]
containisny =q—p+ 1 <n = n; <knumbers, it is sorted
correctly (using inductive hypothesis).

Inductive Proof of Correctness

MERGE-SORT (A, p, r)

if p <r then
/1 split A[p..r] into two approximately equal halves A[p..q] and A[q + 1..7]
— |p*r
a= l 2 J
// recursively sort the left half
// recursively sort the right half

MERGE-SORT (A, g+ 1, 1)

1.

2.

3

4

5. MERGE-SORT (A, p, q)
6

7

8 // merge the two sorted halves and put the sorted sequence in A[p..r]
9

MERGE (A, p, G, ')

The recursive call in line 7 sorts the right part A[g + 1:7]. Since
Alg + 1:r] containisn, =r — g < n = n, < k numbers, itis
sorted correctly (using inductive hypothesis).

We know that the MERGE algorithm can merge two sorted arrays

correctly. So, line 9 correctly merges the sorted left and right parts
of the input subarray into a single sorted sequence in A|p: q].

Therefore, the algorithm works correctly forn = k 4+ 1, and
consequently for all integral values of n.

Analyzing Divide-and-Conquer Algorithms

Let T (n) be the running time of the algorithm on a problem of size n.

— If the problem size is small enough, say n < ¢ for some constant c,
the straightforward solution takes ©(1) time.

— Suppose our division of the problem yields a subproblems, each of
which is 1/b the size of the original.

— Let D(n) = time needed to divide the problem into subproblem:s.

— Let C(n) = time needed to combine the solutions to the
subproblems into the solution to the original problem.

(0(1) ifn<c,

ThenT(n) =1 (g) +D(n) + C(n) otherwise.
\

Analysis of Merge Sort

Let T (n) be the worst-case running time of MERGE-SORT on n numbers.

We reason as follows to set up the recurrence for T (n).
— When n = 1, MERGE-SORT takes ©(1) time.

— Whenn > 1, we break down the running time as follows.

= Divide: This step simply computes the middle of the subarray, which takes
constant time. Hence, D(n) = 0(1).

= Conquer: We recursively solve 2 subproblems of size n/2 each, which adds
2T (n/2) to the running time.

= Combine: The MERGE procedure takes ©(n) time on an n-element subarray.
Hence, C(n) = 0(n).

(e ifn=1,

Then T(n) = | n .
\ZT (E) +0(n) ifn>1.

Analysis of Merge Sort

Let us assume for simplicity that n = 2% for some integer k > 0,

and for constants ¢; and ¢5:

(Cq ifn=1,
n

T(n):<2T(2)+c2n if n>1;
\

where, ¢4 is the time needed to solve a problem of size 1, and
C, is the time per array element of the divide and combine steps.

Let’s see how the recursion unfolds.

Analysis of Merge Sort

Running time on an input of size n = 2* for some integer k > 0:

T(n)

Analysis of Merge Sort

Unfolding the recurrence up to level 1:

* "

Analysis of Merge Sort

Unfolding the recurrence up to level 2:

N
N N

- n
T22 ?

Analysis of Merge Sort

Unfolding the recurrence up to level 3:

Analysis of Merge Sort

Unfolding the recurrence up to level k:

N
VANEVAN

ANANWANAN
T(z_) T(Z—)T(z) T(z_)

)))

Analysis of Merge Sort

Butn = 2F = Zn—k =1, and there wiII be n nodes (leaves) at level k:

N
EVANEVAN
SANVANVANVAN

v r(T1@) --- TA) T@A) --e TA) T@) --- T T()
\ J

Analysis of Merge Sort

Then T (zn—k) =T(1) = cq:

BN
VA NENVAN
SVANVANVANVAN

Analysis of Merge Sort

Total work at each level:

: / N > o
n
CZE ____________ > con
/ \ / \ n
C22_2 ________ > con

SV ANVANVARVA

Cl Cl oo Cl Cl L) Cl Cl XN Cl Cl —————) Cln

Analysis of Merge Sort

Total work across all levels:

g N
BV ANEVANE
SVANVANVANVAN

n Total: c,nk + cyn

Analysis of Merge Sort

Butn = 2% = k = log, n:

! / \ “““““““““““ T
i ---------------- > CoNn
————————— > Cn
| / \ / \ / \ / \
¢ Cl Cl XX Cl C1 L C]_ C1 eoo C1 i ~~°7°) cin
\ Y /
n Total: c,nlog, n+ cin

= 0(nlogn)

