
CSE 373: Analysis of Algorithms

Lectures 5 ‒ 8

(Correctness of Algorithms)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Fall 2014

Insertion Sort

Input: An array ��	1 ∶ 	�	� of � numbers.

Output: Elements of ��	1 ∶ 	�	� rearranged in non-decreasing order of value.

INSERTION-SORT (A)

1. for � 	 2 to �. �
����
2. �
� 	 � �
3. // insert � � into the sorted sequence � 1. . � � 1
4. � 	 � � 1
5. while � � 0 and � � � �
�
6. � � � 1 	 � �
7. � 	 � � 1
8. � � � 1 	 �
�

Loop Invariants

We use loop invariants to prove correctness of iterative algorithms

A loop invariant is associated with a given loop of an algorithm,

and it is a formal statement about the relationship among variables

of the algorithm such that

― [Initialization] It is true prior to the first iteration of the loop

― [Maintenance] If it is true before an iteration of the loop, it

remains true before the next iteration

― [Termination] When the loop terminates, the invariant gives us

a useful property that helps show that the algorithm is correct

Loop Invariants for Insertion Sort

INSERTION-SORT (A)

1. for � 	 2 to �. �
����
2. �
� 	 � �
3. // insert � � into the sorted sequence � 1. . � � 1
4. � 	 � � 1
5. while � � 0 and � � � �
�
6. � � � 1 	 � �
7. � 	 � � 1
8. � � � 1 	 �
�

Loop Invariants for Insertion Sort

INSERTION-SORT (A)

1. for � 	 2 to �. �
����
Invariant 1: � 1. . � � 1 consists of the elements

originally in � 1. . � � 1 , but in sorted order

2. �
� 	 � �
3. // insert � � into the sorted sequence � 1. . � � 1
4. � 	 � � 1
5. while � � 0 and � � � �
�
6. � � � 1 	 � �
7. � 	 � � 1
8. � � � 1 	 �
�

Loop Invariants for Insertion Sort

INSERTION-SORT (A)

1. for � 	 2 to �. �
����
Invariant 1: � 1. . � � 1 consists of the elements

originally in � 1. . � � 1 , but in sorted order

2. �
� 	 � �
3. // insert � � into the sorted sequence � 1. . � � 1
4. � 	 � � 1
5. while � � 0 and � � � �
�

Invariant 2: � �. . � are each � �
�
6. � � � 1 	 � �
7. � 	 � � 1
8. � � � 1 	 �
�

Loop Invariant 1: Initialization

At the start of the first iteration of the loop (in lines 1 � 8): � 	 2
Hence, subarray � 1. . � � 1 consists of a single element � 1 , which is

in fact the original element in � 1 .

The subarray consisting of a single element is trivially sorted.

Hence, the invariant holds initially.

Loop Invariant 1: Maintenance

We assume that invariant 1 holds before the start of the current iteration.

Hence, the following holds: � 1. . � � 1 consists of the elements originally

in � 1. . � � 1 , but in sorted order.

For invariant 1 to hold before the start of the next iteration, the following

must hold at the end of the current iteration:� 1. . � consists of the elements originally in � 1. . � , but in sorted order.

We use invariant 2 to prove this.

Loop Invariant 1: Maintenance
Loop Invariant 2: Initialization

At the start of the first iteration of the loop (in lines 5 � 7): � 	 � � 1
Hence, subarray � �. . � consists of only two entries: � � and � � .

We know the following:

― � � � �
� (explicitly tested in line 5)

― � � 	 �
� (from line 2)

Hence, invariant 2 holds initially.

Loop Invariant 1: Maintenance
Loop Invariant 2: Maintenance

We assume that invariant 2 holds before the start of the current iteration.

Hence, the following holds: � �. . � are each � �
�.

Since line 6 copies � � which is known to be � �
� to � � � 1 which also

held a value � �
�, the following holds at the end of the current iteration: � � � 1. . � are each � �
�.

Before the start of the next iteration the check � � � �
� in line 5 ensures

that invariant 2 continues to hold.

Loop Invariant 1: Maintenance
Loop Invariant 2: Maintenance

Observe that the inner loop (in lines 5 � 7) does not destroy any data

because though the first iteration overwrites � � , that � � has already

been saved in �
� in line 2.

As long as �
� is copied back into a location in � 1. . � without destroying

any other element in that subarray, we maintain the invariant that � 1. . �
contains the first � elements of the original list.

Loop Invariant 1: Maintenance
Loop Invariant 2: Termination

When the inner loop terminates we know the following.

― � 1. . � is sorted with each element � �
�
� if � 	 0, true by default

� if � � 0, true because � 1. . � is sorted and � � � �
�
― � � � 1. . � is sorted with each element � �
� because the following

held before � was decremented: � �. . � is sorted with each item � �
�
― � � � 1 	 � � � 2 if the loop was executed at least once, and � � � 1 	 �
� otherwise

Loop Invariant 1: Maintenance
Loop Invariant 2: Termination

When the inner loop terminates we know the following.

― � 1. . � is sorted with each element � �
�
― � � � 1. . � is sorted with each element � �
�
― � � � 1 	 � � � 2 or � � � 1 	 �
�
Given the facts above, line 8 does not destroy any data, and gives us � 1. . � as the sorted permutation of the original data in � 1. . � .

Loop Invariant 1: Termination

When the outer loop terminates we know that � 	 �. �
���� � 1.

Hence, � 1. . � � 1 is the entire array � 1. . �. �
���� , which is sorted and

contains the original elements of � 1. . �. �
���� .

Worst Case Runtime of Insertion Sort (Upper Bound)

INSERTION-SORT (A)

1. for � 	 2 to �. �
����
2. �
� 	 � �
3. // insert � � into the sorted sequence � 1. . � � 1
4. � 	 � � 1
5. while � � 0 and � � � �
�
6. � � � 1 	 � �
7. � 	 � � 1
8. � � � 1 	 �
�

��� 0�!�"�#�$�%

�
� � 1
& � '(')& � � 1 '(')� � 1

cost times

Running time, * � � ��� � � � � 1 � �! � � 1��"∑ �)(, � �#∑ � � 1)(, � �$∑ � � 1)(, � �% � � 1	 0.5 �" � �# � �$ � � 0.5 2�� � 2� � 2�! � �" � �# � �$ � 2�% �	� � � �! � �" � �%⇒ * � 	 . �

Best Case Runtime of Insertion Sort (Lower Bound)

INSERTION-SORT (A)

1. for � 	 2 to �. �
����
2. �
� 	 � �
3. // insert � � into the sorted sequence � 1. . � � 1
4. � 	 � � 1
5. while � � 0 and � � � �
�
6. � � � 1 	 � �
7. � 	 � � 1
8. � � � 1 	 �
�

��� 0�!�"�#�$�%

�
� � 1

0
� � 1

cost times

Running time, * � � ��� � � � � 1 � �! � � 1��" � � 1 � �% � � 1
	 �� � � � �! � �" � �% � � � � �! � �" � �%

⇒ * � 	 Ω �

Selection Sort

Input: An array ��	1 ∶ 	�	� of � numbers.

Output: Elements of ��	1 ∶ 	�	� rearranged in non-decreasing order of value.

SELECTION-SORT (A)

1. for � 	 1 to �. �
����
2. // find the index of an entry with the smallest value in � �. . �. �
����
3. 0�� 	 �
4. for � 	 � � 1 to �. �
����
5. if � � 1 � 0��
6. 0�� 	 �
7. // swap � � and � 0��
8. � � ↔ � 0��

Selection Sort

Input: An array ��	1 ∶ 	�	� of � numbers.

Output: Elements of ��	1 ∶ 	�	� rearranged in non-decreasing order of value.

SELECTION-SORT (A)

1. for � 	 1 to �. �
����
Invariant 1: ?

2. // find the index of an entry with the smallest value in � �. . �. �
����
3. 0�� 	 �
4. for � 	 � � 1 to �. �
����

Invariant 2: ?

5. if � � 1 � 0��
6. 0�� 	 �
7. // swap � � and � 0��
8. � � ↔ � 0��

Merging Two Sorted Subarrays

Input: Two subarrays ��	3 ∶ 4	� and � 4 � 1: 6 in sorted order (3 � 4 1 6).

Output: A single sorted subarray ��	3 ∶ 6	� by merging the input subarrays.

Merging Two Sorted Subarrays

Input: Two subarrays ��	3 ∶ 4	� and � 4 � 1: 6 in sorted order (3 � 4 1 6).

Output: A single sorted subarray ��	3 ∶ 6	� by merging the input subarrays.

Loop Invariant

At the start of each iteration of the

for loop of lines 12‒17 the following

invariant holds:

The subarray � 3: � � 1 contains

the � � 3 smallest elements of 7 1: �� � 1 and 8 1: � � 1 ,

in sorted order.

Moreover, 7 � and 8 � are the

smallest elements of their arrays that

have not been copied back into �.

Merging Two Sorted Subarrays

Input: Two subarrays ��	3 ∶ 4	� and � 4 � 1: 6 in sorted order (3 � 4 1 6).

Output: A single sorted subarray ��	3 ∶ 6	� by merging the input subarrays.

Running Time

Let � 	 6 � 3 � 1.

Then � 	 �� � � .

The loop in lines 4‒5 takes Θ �� time.

The loop in lines 6‒7 takes Θ � time.

The loop in lines 12‒17 takes Θ � time.

Lines 1‒3 and 8‒11 take Θ 1 time.

Overall running time 	 Θ �� � Θ � � Θ � � Θ 1	 Θ �

Divide-and-Conquer

1. Divide: divide the original problem into smaller

subproblems that are easier to solve

2. Conquer: solve the smaller subproblems

(perhaps recursively)

3. Merge: combine the solutions to the smaller subproblems

to obtain a solution for the original problem

Intuition Behind Merge Sort

1. Base case: We know how to correctly sort an array containing

only a single element.

Indeed, an array of one number is already trivially sorted!

2. Reduction to base case (recursive divide-and-conquer):

At each level of recursion we split the current subarray at the

midpoint (approx) to obtain two subsubarrays of equal or

almost equal lengths, and sort them recursively.

We are guaranteed to reach subproblems of size 1 (i.e., the

base case size) eventually which are trivially sorted.

3. Merge: We know how to merge two (recursively) sorted

subarrays to obtain a longer sorted subarray.

Merge Sort

Input: A subarray ��	3 ∶ 6	� of 6 � 3 � 1 numbers, where 3 � 6.

Output: Elements of ��	3 ∶ 6	� rearranged in non-decreasing order of value.

MERGE-SORT (A, p, r)

1. if 3 1 6 then

2. // split � 3. . 6 into two approximately equal halves � 3. . 4 and � 4 � 1. . 6
3. 4 	 :;<
4. // recursively sort the left half

5. MERGE-SORT (A, p, q)

6. // recursively sort the right half

7. MERGE-SORT (A, q + 1, r)

8. // merge the two sorted halves and put the sorted sequence in � 3. . 6
9. MERGE (A, p, q, r)

Correctness of Merge Sort

The proof has two parts.

‒ First we will show that the algorithm terminates.

‒ Then we will show that the algorithm produces correct

results (assuming the algorithm terminates).

Termination Guarantee

Size of the input subarray, � 	 6 � 3 � 1
Size of the left half, �� 	 4 � 3 � 1

Size of the right half, � 	 6 � 4 � 1 � 1 	 6 � 4
We will show the following: �� 1 � and � 1 �
Meaning: Sizes of subproblems decrease by at least 1 in each

recursive call, and so there cannot be more than � � 1 levels of

recursion. So MERGE-SORT will terminate in finite time.

Termination Guarantee

A problem will be recursively subdivided (i.e., lines 5 and 7 will be

executed) provided the following holds in line 1: 3 1 6
But 3 1 6 implies:

3 � 6 1 26 ⇒ :;< 1 6 ⇒ :;< 1 6⇒ 4 1 6 ⇒ 4 � 3 � 1 1 6 � 3 � 1 ⇒ �� 1 �

Termination Guarantee

A problem will be recursively subdivided (i.e., lines 5 and 7 will be

executed) provided the following holds in line 1: 3 1 6
3 1 6 also implies:

23 1 3 � 6 ⇒ 3 1 :;< ⇒ 3 � :;< ⇒ 3 � 4⇒ �4 � �3 ⇒ 6 � 4 � 6 � 3 ⇒ 6 � 4 1 6 � 3 � 1 ⇒ � 1 �

Inductive Proof of Correctness

Base Case: The algorithm is trivially correct when 6 � 3, i.e., � � 1.

Let � 	 6 � 3 � 1.

Inductive Hypothesis: Suppose the algorithm works correctly for all

integral values of � not larger than �, where � � 1 is an integer.

Inductive Step: We will prove that the algorithm works correctly for � 	 � � 1.

Inductive Proof of Correctness

When � 	 � � 1, lines 2‒9 of the algorithm will be executed

because � � 1 ⇒ � � 1 ⇒ 6 � 3 � 1 � 1 ⇒ 3 1 6 holds in line 1.

The algorithm splits the input subarray � 3: 6 into two parts:

� 3: 4 and � 4 � 1: 6 , where 4 	 :;< .

The recursive call in line 5 sorts the left part � 3: 4 . Since � 3: 4
containis �� 	 4 � 3 � 1 1 � ⇒ �� � � numbers, it is sorted

correctly (using inductive hypothesis).

Inductive Proof of Correctness

The recursive call in line 7 sorts the right part � 4 � 1: 6 . Since � 4 � 1: 6 containis � 	 6 � 4 1 � ⇒ � � � numbers, it is

sorted correctly (using inductive hypothesis).

We know that the MERGE algorithm can merge two sorted arrays

correctly. So, line 9 correctly merges the sorted left and right parts

of the input subarray into a single sorted sequence in � 3: 4 .

Therefore, the algorithm works correctly for � 	 � � 1, and

consequently for all integral values of �.

Analyzing Divide-and-Conquer Algorithms

Let * � be the running time of the algorithm on a problem of size �.

― If the problem size is small enough, say � � � for some constant �,

the straightforward solution takes Θ 1 time.

― Suppose our division of the problem yields = subproblems, each of

which is 1/? the size of the original.

― Let @ � 	 time needed to divide the problem into subproblems.

― Let A � 	 time needed to combine the solutions to the

subproblems into the solution to the original problem.

Then * � 	 B Θ 1 �C	� � �,=*)E � @ � � A � F��
6G�H
.

Analysis of Merge Sort

Let * � be the worst-case running time of MERGE-SORT on � numbers.

We reason as follows to set up the recurrence for * � .

― When � 	 1, MERGE-SORT takes Θ 1 time.

― When � � 1, we break down the running time as follows.

� Divide: This step simply computes the middle of the subarray, which takes

constant time. Hence, @ � 	 Θ 1 .

� Conquer: We recursively solve 2 subproblems of size �/2 each, which adds 2* �/2 to the running time.

� Combine: The MERGE procedure takes Θ � time on an �-element subarray.

Hence, A � 	 Θ � .

Then * � 	 B Θ 1 �C	� 	 1,2*) � Θ � �C	� � 1.

Analysis of Merge Sort

Let us assume for simplicity that � 	 2I for some integer � � 0,

and for constants �� and � :

* � 	 B �� �C	� 	 1,2* �2 � � � �C	� � 1;
where, �� is the time needed to solve a problem of size 1, and � is the time per array element of the divide and combine steps.

Let’s see how the recursion unfolds.

Analysis of Merge Sort

* �
Running time on an input of size � 	 2I for some integer � � 0:

Analysis of Merge Sort

� �

* �2 * �2
1

Unfolding the recurrence up to level 1:

Analysis of Merge Sort

� �

� �2 � �2
* �2 * �2 * �2 * �2

2

Unfolding the recurrence up to level 2:

Analysis of Merge Sort

� �

� �2 � �2
� �2 � �2 � �2 � �2

* �2K * �2K * �2K * �2K * �2K * �2K * �2K * �2K

3

Unfolding the recurrence up to level 3:

Analysis of Merge Sort

� �

� �2 � �2
� �2 � �2 � �2 � �2

* �2I * �2I * �2I * �2I * �2I * �2I * �2I * �2I

�

Unfolding the recurrence up to level �:

Analysis of Merge Sort

� �

� �2 � �2
� �2 � �2 � �2 � �2 �

* 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1
�

But � 	 2I ⇒) M 	 1, and there will be � nodes (leaves) at level �:

Analysis of Merge Sort

� �

� �2 � �2
� �2 � �2 � �2 � �2 �

�
�� �� �� �� �� �� �� ��

Then *) M 	 * 1 	 ��:

Analysis of Merge Sort

� �

� �2 � �2
� �2 � �2 � �2 � �2 �

�
�� �� �� �� �� �� �� ��

� �

� �

� �

���

Total work at each level:

Analysis of Merge Sort

� �

� �2 � �2
� �2 � �2 � �2 � �2 �

�
�� �� �� �� �� �� �� ��

� �

� �

� �

���
Total: � �� � ���

Total work across all levels:

Analysis of Merge Sort

� �

� �2 � �2
� �2 � �2 � �2 � �2 �

�
�� �� �� �� �� �� �� ��

� �

� �

� �

���
Total: � � log � � ���	 Θ � log�

But � 	 2I ⇒ � 	 log �:

