
CSE 373: Analysis of Algorithms

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Fall 2014

“Theory is when you know everything but nothing works.

Practice is when everything works but no one knows why.

In our lab, theory and practice are combined:

nothing works and no one knows why.”

— A practical theoretician

(no one knows who)

Some Mostly Useless Information

― Lecture Time: TuTh 4:00 pm - 5:20 pm

― Location: Light Engineering Lab 102, West Campus

― Instructor: Rezaul A. Chowdhury

― Office Hours: TuTh 2:00 pm - 3:30 pm, 1421 Computer Science

― Email: rezaul@cs.stonybrook.edu

― TA: Ibrahim Hammoud

― Office Hours: MoWe 10:00 am - 11:30 am, 2110 Computer Science

― Email: firstname.lastname@stonybrook.edu

― Class Webpage:

http://www.cs.sunysb.edu/~rezaul/CSE373-F14.html

Topics to be Covered

The following topics will be covered (hopefully)

― elementary data structures

― sorting and searching

― greedy algorithms

― divide-and-conquer algorithms

― dynamic programming

― graph algorithms

― randomized algorithms

― parallel algorithms and multithreaded computations

― NP-completeness and approximation algorithms

Grading Policy

― Problem solving (4 homework problem sets):

40% (highest score 15%, lowest score 5%, and others 10% each)

― Problem design (4 themes, one per homework problem set):

10% (each worth 2.5%)

― In-class midterm (Thursday, Oct 16, 4:00pm – 5:20pm):

15%

― Final exam (Monday, Dec 15, 2:30pm – 5:00pm, location: TBD):

35%

Each homework problem set and exam will include additional

problems for graduate students taking the course as CSE 587.

Graduate and undergraduate students will be graded separately.

Groups and Supergroups

Groups for Problem Solving:

Each group will consist of a pair of students

― each group will submit only one copy of hand-written

solutions for each homework problem set

― each group member must write down solutions for two

problem sets

Supergroups for Problem Design:

Each supergroup will consist of a pair of groups (4 students)

― each supergroup will submit only one copy of hand-written

problem for each theme

― each supergroup member must write down problem for

one theme

Textbooks

Required

― Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein.

Introduction to Algorithms (3rd Edition), MIT Press, 2009.

Recommended

― Sanjoy Dasgupta, Christos Papadimitriou, and Umesh Vazirani.

Algorithms (1st Edition), McGraw-Hill, 2006.

― Jon Kleinberg and Éva Tardos.

Algorithm Design (1st Edition), Addison Wesley, 2005.

― Steven Skiena.

The Algorithm Design Manual (2nd Edition), Springer, 2008.

What is an Algorithm?

An algorithm is a well-defined computational procedure that solves

a well-specified computational problem.

It accepts a value or set of values as input, and produces a value or

set of values as output

What is an Algorithm?

An algorithm is a well-defined computational procedure that solves

a well-specified computational problem.

It accepts a value or set of values as input, and produces a value or

set of values as output

Example: mergesort solves the sorting problem specified as a

relationship between the input and the output as follows.

Input: A sequence of � numbers ��, ��, … , �� .

Output: A permutation �′�, �′�, … , �′� of the input sequence

such that �′� 	 �′� 	 ⋯ 	 �′�.

Desirable Properties of an Algorithm

√ Correctness

― Designing an incorrect algorithm is straight-forward

√ Efficiency

― Efficiency is easily achievable if we give up on correctness

Surprisingly, sometimes incorrect algorithms can also be useful!

― If you can control the error rate

― Tradeoff between correctness and efficiency:

Randomized algorithms

(Monte Carlo: always efficient but sometimes incorrect,

Las Vegas: always correct but sometimes inefficient)

Approximation algorithms

(always incorrect!)

Algorithmic Puzzles

Tromino Cover

Puzzle: You are given a 2� � 2� board

with one missing square.

― you must cover all squares except

the missing one exactly using right

trominoes

― the trominoes must not overlap

A right tromino is an L-shaped tile

formed by three adjacent squares.

2� � 2� board

Tromino Cover
Steps

2� � 2� board

Tromino Cover
Steps

― Divide the 2� � 2� board into 4 disjoint 2��� � 2��� subboards.

2� � 2� board

Tromino Cover
Steps

― Divide the 2� � 2� board into 4 disjoint 2��� � 2��� subboards.

2� � 2� board

― Place a tromino at the center so

that it fully covers one square from

each of the three (3) subboards

with no missing square, and misses

the fourth subboard completely.

Tromino Cover
Steps

― Divide the 2� � 2� board into 4 disjoint 2��� � 2��� subboards.

2� � 2� board

This reduces the original problem

into 4 smaller instances of the

same problem!

― Place a tromino at the center so

that it fully covers one square from

each of the three (3) subboards

with no missing square, and misses

the fourth subboard completely.

Tromino Cover
Steps

― Divide the 2� � 2� board into 4 disjoint 2��� � 2��� subboards.

2� � 2� board

This reduces the original problem

into 4 smaller instances of the

same problem!

― Place a tromino at the center so

that it fully covers one square from

each of the three (3) subboards

with no missing square, and misses

the fourth subboard completely.

― Solve each smaller subproblem

recursively using the same technique.

Tromino Cover
Steps

― Divide the 2� � 2� board into 4 disjoint 2��� � 2��� subboards.

2� � 2� board

This reduces the original problem

into 4 smaller instances of the

same problem!

― Place a tromino at the center so

that it fully covers one square from

each of the three (3) subboards

with no missing square, and misses

the fourth subboard completely.

― Solve each smaller subproblem

recursively using the same technique.

Tromino Cover
Steps

― Divide the 2� � 2� board into 4 disjoint 2��� � 2��� subboards.

2� � 2� board

This reduces the original problem

into 4 smaller instances of the

same problem!

― Place a tromino at the center so

that it fully covers one square from

each of the three (3) subboards

with no missing square, and misses

the fourth subboard completely.

― Solve each smaller subproblem

recursively using the same technique.

Tromino Cover
Steps

― Divide the 2� � 2� board into 4 disjoint 2��� � 2��� subboards.

2� � 2� board

This reduces the original problem

into 4 smaller instances of the

same problem!

― Place a tromino at the center so

that it fully covers one square from

each of the three (3) subboards

with no missing square, and misses

the fourth subboard completely.

― Solve each smaller subproblem

recursively using the same technique.

Tromino Cover
Steps

― Divide the 2� � 2� board into 4 disjoint 2��� � 2��� subboards.

2� � 2� board

This reduces the original problem

into 4 smaller instances of the

same problem!

― Place a tromino at the center so

that it fully covers one square from

each of the three (3) subboards

with no missing square, and misses

the fourth subboard completely.

― Solve each smaller subproblem

recursively using the same technique.

Tromino Cover
Steps

― Divide the 2� � 2� board into 4 disjoint 2��� � 2��� subboards.

2� � 2� board

This reduces the original problem

into 4 smaller instances of the

same problem!

― Place a tromino at the center so

that it fully covers one square from

each of the three (3) subboards

with no missing square, and misses

the fourth subboard completely.

― Solve each smaller subproblem

recursively using the same technique.

Tromino Cover
Steps

― Divide the 2� � 2� board into 4 disjoint 2��� � 2��� subboards.

2� � 2� board

This reduces the original problem

into 4 smaller instances of the

same problem!

― Place a tromino at the center so

that it fully covers one square from

each of the three (3) subboards

with no missing square, and misses

the fourth subboard completely.

― Solve each smaller subproblem

recursively using the same technique.

Tromino Cover
Steps

― Divide the 2� � 2� board into 4 disjoint 2��� � 2��� subboards.

2� � 2� board

This reduces the original problem

into 4 smaller instances of the

same problem!

― Place a tromino at the center so

that it fully covers one square from

each of the three (3) subboards

with no missing square, and misses

the fourth subboard completely.

― Solve each smaller subproblem

recursively using the same technique.

Tromino Cover
Steps

― Divide the 2� � 2� board into 4 disjoint 2��� � 2��� subboards.

2� � 2� board

This reduces the original problem

into 4 smaller instances of the

same problem!

― Place a tromino at the center so

that it fully covers one square from

each of the three (3) subboards

with no missing square, and misses

the fourth subboard completely.

― Solve each smaller subproblem

recursively using the same technique.

Tromino Cover
Steps

― Divide the 2� � 2� board into 4 disjoint 2��� � 2��� subboards.

2� � 2� board

This reduces the original problem

into 4 smaller instances of the

same problem!

― Place a tromino at the center so

that it fully covers one square from

each of the three (3) subboards

with no missing square, and misses

the fourth subboard completely.

― Solve each smaller subproblem

recursively using the same technique.

Tromino Cover
Steps

― Divide the 2� � 2� board into 4 disjoint 2��� � 2��� subboards.

2� � 2� board

This reduces the original problem

into 4 smaller instances of the

same problem!

― Place a tromino at the center so

that it fully covers one square from

each of the three (3) subboards

with no missing square, and misses

the fourth subboard completely.

― Solve each smaller subproblem

recursively using the same technique.

Tromino Cover
Steps

― Divide the 2� � 2� board into 4 disjoint 2��� � 2��� subboards.

2� � 2� board

This reduces the original problem

into 4 smaller instances of the

same problem!

― Place a tromino at the center so

that it fully covers one square from

each of the three (3) subboards

with no missing square, and misses

the fourth subboard completely.

― Solve each smaller subproblem

recursively using the same technique.

Tromino Cover
Steps

― Divide the 2� � 2� board into 4 disjoint 2��� � 2��� subboards.

2� � 2� board

This reduces the original problem

into 4 smaller instances of the

same problem!

― Place a tromino at the center so

that it fully covers one square from

each of the three (3) subboards

with no missing square, and misses

the fourth subboard completely.

― Solve each smaller subproblem

recursively using the same technique.

Tromino Cover
Steps

― Divide the 2� � 2� board into 4 disjoint 2��� � 2��� subboards.

2� � 2� board

This reduces the original problem

into 4 smaller instances of the

same problem!

― Place a tromino at the center so

that it fully covers one square from

each of the three (3) subboards

with no missing square, and misses

the fourth subboard completely.

― Solve each smaller subproblem

recursively using the same technique.

Tromino Cover
Steps

― Divide the 2� � 2� board into 4 disjoint 2��� � 2��� subboards.

2� � 2� board

This reduces the original problem

into 4 smaller instances of the

same problem!

― Place a tromino at the center so

that it fully covers one square from

each of the three (3) subboards

with no missing square, and misses

the fourth subboard completely.

― Solve each smaller subproblem

recursively using the same technique.

Tromino Cover
Steps

― Divide the 2� � 2� board into 4 disjoint 2��� � 2��� subboards.

2� � 2� board

This reduces the original problem

into 4 smaller instances of the

same problem!

― Place a tromino at the center so

that it fully covers one square from

each of the three (3) subboards

with no missing square, and misses

the fourth subboard completely.

― Solve each smaller subproblem

recursively using the same technique.

Tromino Cover
Steps

― Divide the 2� � 2� board into 4 disjoint 2��� � 2��� subboards.

2� � 2� board

This reduces the original problem

into 4 smaller instances of the

same problem!

― Place a tromino at the center so

that it fully covers one square from

each of the three (3) subboards

with no missing square, and misses

the fourth subboard completely.

― Solve each smaller subproblem

recursively using the same technique.

Tromino Cover
Steps

― Divide the 2� � 2� board into 4 disjoint 2��� � 2��� subboards.

2� � 2� board

This reduces the original problem

into 4 smaller instances of the

same problem!

― Place a tromino at the center so

that it fully covers one square from

each of the three (3) subboards

with no missing square, and misses

the fourth subboard completely.

― Solve each smaller subproblem

recursively using the same technique.

Tromino Cover
Steps

― Divide the 2� � 2� board into 4 disjoint 2��� � 2��� subboards.

2� � 2� board

This reduces the original problem

into 4 smaller instances of the

same problem!

― Place a tromino at the center so

that it fully covers one square from

each of the three (3) subboards

with no missing square, and misses

the fourth subboard completely.

― Solve each smaller subproblem

recursively using the same technique.

Tromino Cover
Steps

― Divide the 2� � 2� board into 4 disjoint 2��� � 2��� subboards.

2� � 2� board

This reduces the original problem

into 4 smaller instances of the

same problem!

― Place a tromino at the center so

that it fully covers one square from

each of the three (3) subboards

with no missing square, and misses

the fourth subboard completely.

― Solve each smaller subproblem

recursively using the same technique.

Tromino Cover
Steps

― Divide the 2� � 2� board into 4 disjoint 2��� � 2��� subboards.

2� � 2� board

This reduces the original problem

into 4 smaller instances of the

same problem!

― Place a tromino at the center so

that it fully covers one square from

each of the three (3) subboards

with no missing square, and misses

the fourth subboard completely.

― Solve each smaller subproblem

recursively using the same technique.

Tromino Cover
Steps

― Divide the 2� � 2� board into 4 disjoint 2��� � 2��� subboards.

2� � 2� board

This reduces the original problem

into 4 smaller instances of the

same problem!

― Place a tromino at the center so

that it fully covers one square from

each of the three (3) subboards

with no missing square, and misses

the fourth subboard completely.

― Solve each smaller subproblem

recursively using the same technique.

Tromino Cover
Steps

― Divide the 2� � 2� board into 4 disjoint 2��� � 2��� subboards.

2� � 2� board

This reduces the original problem

into 4 smaller instances of the

same problem!

― Place a tromino at the center so

that it fully covers one square from

each of the three (3) subboards

with no missing square, and misses

the fourth subboard completely.

― Solve each smaller subproblem

recursively using the same technique.

Tromino Cover
Steps

― Divide the 2� � 2� board into 4 disjoint 2��� � 2��� subboards.

2� � 2� board

This reduces the original problem

into 4 smaller instances of the

same problem!

― Place a tromino at the center so

that it fully covers one square from

each of the three (3) subboards

with no missing square, and misses

the fourth subboard completely.

― Solve each smaller subproblem

recursively using the same technique.

Tromino Cover
Steps

― Divide the 2� � 2� board into 4 disjoint 2��� � 2��� subboards.

2� � 2� board

This reduces the original problem

into 4 smaller instances of the

same problem!

― Place a tromino at the center so

that it fully covers one square from

each of the three (3) subboards

with no missing square, and misses

the fourth subboard completely.

― Solve each smaller subproblem

recursively using the same technique.

Tromino Cover
Steps

― Divide the 2� � 2� board into 4 disjoint 2��� � 2��� subboards.

2� � 2� board

This reduces the original problem

into 4 smaller instances of the

same problem!

― Place a tromino at the center so

that it fully covers one square from

each of the three (3) subboards

with no missing square, and misses

the fourth subboard completely.

― Solve each smaller subproblem

recursively using the same technique.

― This algorithm design technique is called recursive divide & conquer.

Collecting Coins

Puzzle: A robot moves from the top-left corner to the bottom-right

corner of an � � � grid. At each step it either moves one cell to the

right or one cell down from its current location.

Each cell of the grid contains zero or

more coins. The robot collects the

coins from every cell it visits.

What path the robot should take to

collect the maximum number of coins?

8 � 7 grid

Collecting Coins

2 6 1 0

0 3 6 4

2 5 0 2

0 1 1 3

5 0 0 2

2 0 3 1

4 1 0 6

0 0 5 1

6 3 2 0

5 4 0 5

1 0 4 2

2 6 4 0

3 0 3 2

1 6 0 4

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

�
Let us first count the number of coins in each cell.

2 6 1 0

0 3 6 4

2 5 0 2

0 1 1 3

5 0 0 2

2 0 3 1

4 1 0 6

0 0 5 1

6 3 2 0

5 4 0 5

1 0 4 2

2 6 4 0

3 0 3 2

1 6 0 4

Collecting Coins

2 6 1 0

0 3 6 4

2 5 0 2

0 1 1 3

5 0 0 2

2 0 3 1

4 1 0 6

0 0 5 1

6 3 2 0

5 4 0 5

1 0 4 2

2 6 4 0

3 0 3 2

1 6 0 4

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

� 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

�
� �, � � �0, 																																																							��	� � 0	��	� � 0	max � �, � ! 1 , � � ! 1, � # $%,& , 						�'()�*�+)

Let $%,& � number of coins in cell �, �
Let � �, � � max number of coins the robot can collect if it goes

from cell 1,1 to cell �, �

2 6 1 0

0 3 6 4

2 5 0 2

0 1 1 3

5 0 0 2

2 0 3 1

4 1 0 6

0 0 5 1

6 3 2 0

5 4 0 5

1 0 4 2

2 6 4 0

3 0 3 2

1 6 0 4

Collecting Coins

2 6 1 0

0 3 6 4

2 5 0 2

0 1 1 3

5 0 0 2

2 0 3 1

4 1 0 6

0 0 5 1

6 3 2 0

5 4 0 5

1 0 4 2

2 6 4 0

3 0 3 2

1 6 0 4

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

� 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

�
� �, � � �0, 																																																							��	� � 0	��	� � 0	max � �, � ! 1 , � � ! 1, � # $%,& , 						�'()�*�+)

Let $%,& � number of coins in cell �, �
Let � �, � � max number of coins the robot can collect if it goes

from cell 1,1 to cell �, �

2 6 1 0

0 3 6 4

2 5 0 2

0 1 1 3

5 0 0 2

2 0 3 1

4 1 0 6

0 0 5 1

6 3 2 0

5 4 0 5

1 0 4 2

2 6 4 0

3 0 3 2

1 6 0 4

Collecting Coins

2 8 1 0

0 3 6 4

2 5 0 2

0 1 1 3

5 0 0 2

2 0 3 1

4 1 0 6

0 0 5 1

6 3 2 0

5 4 0 5

1 0 4 2

2 6 4 0

3 0 3 2

1 6 0 4

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

� 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

�
� �, � � �0, 																																																							��	� � 0	��	� � 0	max � �, � ! 1 , � � ! 1, � # $%,& , 						�'()�*�+)

Let $%,& � number of coins in cell �, �
Let � �, � � max number of coins the robot can collect if it goes

from cell 1,1 to cell �, �

2 6 1 0

0 3 6 4

2 5 0 2

0 1 1 3

5 0 0 2

2 0 3 1

4 1 0 6

0 0 5 1

6 3 2 0

5 4 0 5

1 0 4 2

2 6 4 0

3 0 3 2

1 6 0 4

Collecting Coins

2 8 1 0

2 3 6 4

2 5 0 2

0 1 1 3

5 0 0 2

2 0 3 1

4 1 0 6

0 0 5 1

6 3 2 0

5 4 0 5

1 0 4 2

2 6 4 0

3 0 3 2

1 6 0 4

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

� 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

�
� �, � � �0, 																																																							��	� � 0	��	� � 0	max � �, � ! 1 , � � ! 1, � # $%,& , 						�'()�*�+)

Let $%,& � number of coins in cell �, �
Let � �, � � max number of coins the robot can collect if it goes

from cell 1,1 to cell �, �

2 6 1 0

0 3 6 4

2 5 0 2

0 1 1 3

5 0 0 2

2 0 3 1

4 1 0 6

0 0 5 1

6 3 2 0

5 4 0 5

1 0 4 2

2 6 4 0

3 0 3 2

1 6 0 4

Collecting Coins

2 8 9 0

2 3 6 4

2 5 0 2

0 1 1 3

5 0 0 2

2 0 3 1

4 1 0 6

0 0 5 1

6 3 2 0

5 4 0 5

1 0 4 2

2 6 4 0

3 0 3 2

1 6 0 4

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

� 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

�
� �, � � �0, 																																																							��	� � 0	��	� � 0	max � �, � ! 1 , � � ! 1, � # $%,& , 						�'()�*�+)

Let $%,& � number of coins in cell �, �
Let � �, � � max number of coins the robot can collect if it goes

from cell 1,1 to cell �, �

2 6 1 0

0 3 6 4

2 5 0 2

0 1 1 3

5 0 0 2

2 0 3 1

4 1 0 6

0 0 5 1

6 3 2 0

5 4 0 5

1 0 4 2

2 6 4 0

3 0 3 2

1 6 0 4

Collecting Coins

2 8 9 0

2 11 6 4

2 5 0 2

0 1 1 3

5 0 0 2

2 0 3 1

4 1 0 6

0 0 5 1

6 3 2 0

5 4 0 5

1 0 4 2

2 6 4 0

3 0 3 2

1 6 0 4

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

� 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

�
� �, � � �0, 																																																							��	� � 0	��	� � 0	max � �, � ! 1 , � � ! 1, � # $%,& , 						�'()�*�+)

Let $%,& � number of coins in cell �, �
Let � �, � � max number of coins the robot can collect if it goes

from cell 1,1 to cell �, �

2 6 1 0

0 3 6 4

2 5 0 2

0 1 1 3

5 0 0 2

2 0 3 1

4 1 0 6

0 0 5 1

6 3 2 0

5 4 0 5

1 0 4 2

2 6 4 0

3 0 3 2

1 6 0 4

Collecting Coins

2 8 9 0

2 11 6 4

4 5 0 2

0 1 1 3

5 0 0 2

2 0 3 1

4 1 0 6

0 0 5 1

6 3 2 0

5 4 0 5

1 0 4 2

2 6 4 0

3 0 3 2

1 6 0 4

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

� 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

�
� �, � � �0, 																																																							��	� � 0	��	� � 0	max � �, � ! 1 , � � ! 1, � # $%,& , 						�'()�*�+)

Let $%,& � number of coins in cell �, �
Let � �, � � max number of coins the robot can collect if it goes

from cell 1,1 to cell �, �

2 6 1 0

0 3 6 4

2 5 0 2

0 1 1 3

5 0 0 2

2 0 3 1

4 1 0 6

0 0 5 1

6 3 2 0

5 4 0 5

1 0 4 2

2 6 4 0

3 0 3 2

1 6 0 4

Collecting Coins

2 8 9 9

2 11 6 4

4 5 0 2

0 1 1 3

5 0 0 2

2 0 3 1

4 1 0 6

0 0 5 1

6 3 2 0

5 4 0 5

1 0 4 2

2 6 4 0

3 0 3 2

1 6 0 4

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

� 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

�
� �, � � �0, 																																																							��	� � 0	��	� � 0	max � �, � ! 1 , � � ! 1, � # $%,& , 						�'()�*�+)

Let $%,& � number of coins in cell �, �
Let � �, � � max number of coins the robot can collect if it goes

from cell 1,1 to cell �, �

2 6 1 0

0 3 6 4

2 5 0 2

0 1 1 3

5 0 0 2

2 0 3 1

4 1 0 6

0 0 5 1

6 3 2 0

5 4 0 5

1 0 4 2

2 6 4 0

3 0 3 2

1 6 0 4

Collecting Coins

2 8 9 9

2 11 17 4

4 5 0 2

0 1 1 3

5 0 0 2

2 0 3 1

4 1 0 6

0 0 5 1

6 3 2 0

5 4 0 5

1 0 4 2

2 6 4 0

3 0 3 2

1 6 0 4

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

� 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

�
� �, � � �0, 																																																							��	� � 0	��	� � 0	max � �, � ! 1 , � � ! 1, � # $%,& , 						�'()�*�+)

Let $%,& � number of coins in cell �, �
Let � �, � � max number of coins the robot can collect if it goes

from cell 1,1 to cell �, �

2 6 1 0

0 3 6 4

2 5 0 2

0 1 1 3

5 0 0 2

2 0 3 1

4 1 0 6

0 0 5 1

6 3 2 0

5 4 0 5

1 0 4 2

2 6 4 0

3 0 3 2

1 6 0 4

Collecting Coins

2 8 9 9

2 11 17 4

4 16 0 2

0 1 1 3

5 0 0 2

2 0 3 1

4 1 0 6

0 0 5 1

6 3 2 0

5 4 0 5

1 0 4 2

2 6 4 0

3 0 3 2

1 6 0 4

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

� 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

�
� �, � � �0, 																																																							��	� � 0	��	� � 0	max � �, � ! 1 , � � ! 1, � # $%,& , 						�'()�*�+)

Let $%,& � number of coins in cell �, �
Let � �, � � max number of coins the robot can collect if it goes

from cell 1,1 to cell �, �

2 6 1 0

0 3 6 4

2 5 0 2

0 1 1 3

5 0 0 2

2 0 3 1

4 1 0 6

0 0 5 1

6 3 2 0

5 4 0 5

1 0 4 2

2 6 4 0

3 0 3 2

1 6 0 4

Collecting Coins

2 8 9 9

2 11 17 4

4 16 0 2

4 1 1 3

5 0 0 2

2 0 3 1

4 1 0 6

0 0 5 1

6 3 2 0

5 4 0 5

1 0 4 2

2 6 4 0

3 0 3 2

1 6 0 4

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

� 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

�
� �, � � �0, 																																																							��	� � 0	��	� � 0	max � �, � ! 1 , � � ! 1, � # $%,& , 						�'()�*�+)

Let $%,& � number of coins in cell �, �
Let � �, � � max number of coins the robot can collect if it goes

from cell 1,1 to cell �, �

2 6 1 0

0 3 6 4

2 5 0 2

0 1 1 3

5 0 0 2

2 0 3 1

4 1 0 6

0 0 5 1

6 3 2 0

5 4 0 5

1 0 4 2

2 6 4 0

3 0 3 2

1 6 0 4

Collecting Coins

2 8 9 9

2 11 17 21

4 16 17 23

4 17 18 26

14 14 14 16

23 23 26 27

27 28 28 34

27 28 33 35

10 20 22 26

15 24 24 31

16 24 28 33

29 35 39 39

34 35 42 44

35 41 42 48

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

� 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

�
� �, � � �0, 																																																							��	� � 0	��	� � 0	max � �, � ! 1 , � � ! 1, � # $%,& , 						�'()�*�+)

Let $%,& � number of coins in cell �, �
Let � �, � � max number of coins the robot can collect if it goes

from cell 1,1 to cell �, �

2 6 1 0

0 3 6 4

2 5 0 2

0 1 1 3

5 0 0 2

2 0 3 1

4 1 0 6

0 0 5 1

6 3 2 0

5 4 0 5

1 0 4 2

2 6 4 0

3 0 3 2

1 6 0 4

Collecting Coins

2 8 9 9

2 11 17 21

4 16 17 23

4 17 18 26

14 14 14 16

23 23 26 27

27 28 28 34

27 28 33 35

10 20 22 26

15 24 24 31

16 24 28 33

29 35 39 39

34 35 42 44

35 41 42 48

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

� 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

�
� �, � � �0, 																																																							��	� � 0	��	� � 0	max � �, � ! 1 , � � ! 1, � # $%,& , 						�'()�*�+)

Let $%,& � number of coins in cell �, �
Let � �, � � max number of coins the robot can collect if it goes

from cell 1,1 to cell �, �

2 6 1 0

0 3 6 4

2 5 0 2

0 1 1 3

5 0 0 2

2 0 3 1

4 1 0 6

0 0 5 1

6 3 2 0

5 4 0 5

1 0 4 2

2 6 4 0

3 0 3 2

1 6 0 4

Collecting Coins

2 8 9 9

2 11 17 21

4 16 17 23

4 17 18 26

14 14 14 16

23 23 26 27

27 28 28 34

27 28 33 35

10 20 22 26

15 24 24 31

16 24 28 33

29 35 39 39

34 35 42 44

35 41 42 48

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

� 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

�
� �, � � �0, 																																																							��	� � 0	��	� � 0	max � �, � ! 1 , � � ! 1, � # $%,& , 						�'()�*�+)

Let $%,& � number of coins in cell �, �
Let � �, � � max number of coins the robot can collect if it goes

from cell 1,1 to cell �, �

2 6 1 0

0 3 6 4

2 5 0 2

0 1 1 3

5 0 0 2

2 0 3 1

4 1 0 6

0 0 5 1

6 3 2 0

5 4 0 5

1 0 4 2

2 6 4 0

3 0 3 2

1 6 0 4

Collecting Coins

2 8 9 9

2 11 17 21

4 16 17 23

4 17 18 26

14 14 14 16

23 23 26 27

27 28 28 34

27 28 33 35

10 20 22 26

15 24 24 31

16 24 28 33

29 35 39 39

34 35 42 44

35 41 42 48

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

� 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

�
� �, � � �0, 																																																							��	� � 0	��	� � 0	max � �, � ! 1 , � � ! 1, � # $%,& , 						�'()�*�+)

Let $%,& � number of coins in cell �, �
Let � �, � � max number of coins the robot can collect if it goes

from cell 1,1 to cell �, �

2 6 1 0

0 3 6 4

2 5 0 2

0 1 1 3

5 0 0 2

2 0 3 1

4 1 0 6

0 0 5 1

6 3 2 0

5 4 0 5

1 0 4 2

2 6 4 0

3 0 3 2

1 6 0 4

Collecting Coins

2 8 9 9

2 11 17 21

4 16 17 23

4 17 18 26

14 14 14 16

23 23 26 27

27 28 28 34

27 28 33 35

10 20 22 26

15 24 24 31

16 24 28 33

29 35 39 39

34 35 42 44

35 41 42 48

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

� 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

�
� �, � � �0, 																																																							��	� � 0	��	� � 0	max � �, � ! 1 , � � ! 1, � # $%,& , 						�'()�*�+)

Let $%,& � number of coins in cell �, �
Let � �, � � max number of coins the robot can collect if it goes

from cell 1,1 to cell �, �

2 6 1 0

0 3 6 4

2 5 0 2

0 1 1 3

5 0 0 2

2 0 3 1

4 1 0 6

0 0 5 1

6 3 2 0

5 4 0 5

1 0 4 2

2 6 4 0

3 0 3 2

1 6 0 4

Collecting Coins

2 8 9 9

2 11 17 21

4 16 17 23

4 17 18 26

14 14 14 16

23 23 26 27

27 28 28 34

27 28 33 35

10 20 22 26

15 24 24 31

16 24 28 33

29 35 39 39

34 35 42 44

35 41 42 48

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

� 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

�
� �, � � �0, 																																																							��	� � 0	��	� � 0	max � �, � ! 1 , � � ! 1, � # $%,& , 						�'()�*�+)

Let $%,& � number of coins in cell �, �
Let � �, � � max number of coins the robot can collect if it goes

from cell 1,1 to cell �, �

2 6 1 0

0 3 6 4

2 5 0 2

0 1 1 3

5 0 0 2

2 0 3 1

4 1 0 6

0 0 5 1

6 3 2 0

5 4 0 5

1 0 4 2

2 6 4 0

3 0 3 2

1 6 0 4

Collecting Coins

2 8 9 9

2 11 17 21

4 16 17 23

4 17 18 26

14 14 14 16

23 23 26 27

27 28 28 34

27 28 33 35

10 20 22 26

15 24 24 31

16 24 28 33

29 35 39 39

34 35 42 44

35 41 42 48

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

� 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

�
� �, � � �0, 																																																							��	� � 0	��	� � 0	max � �, � ! 1 , � � ! 1, � # $%,& , 						�'()�*�+)

Let $%,& � number of coins in cell �, �
Let � �, � � max number of coins the robot can collect if it goes

from cell 1,1 to cell �, �

2 6 1 0

0 3 6 4

2 5 0 2

0 1 1 3

5 0 0 2

2 0 3 1

4 1 0 6

0 0 5 1

6 3 2 0

5 4 0 5

1 0 4 2

2 6 4 0

3 0 3 2

1 6 0 4

Collecting Coins

2 8 9 9

2 11 17 21

4 16 17 23

4 17 18 26

14 14 14 16

23 23 26 27

27 28 28 34

27 28 33 35

10 20 22 26

15 24 24 31

16 24 28 33

29 35 39 39

34 35 42 44

35 41 42 48

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

� 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

�
� �, � � �0, 																																																							��	� � 0	��	� � 0	max � �, � ! 1 , � � ! 1, � # $%,& , 						�'()�*�+)

Let $%,& � number of coins in cell �, �
Let � �, � � max number of coins the robot can collect if it goes

from cell 1,1 to cell �, �

2 6 1 0

0 3 6 4

2 5 0 2

0 1 1 3

5 0 0 2

2 0 3 1

4 1 0 6

0 0 5 1

6 3 2 0

5 4 0 5

1 0 4 2

2 6 4 0

3 0 3 2

1 6 0 4

Collecting Coins

2 8 9 9

2 11 17 21

4 16 17 23

4 17 18 26

14 14 14 16

23 23 26 27

27 28 28 34

27 28 33 35

10 20 22 26

15 24 24 31

16 24 28 33

29 35 39 39

34 35 42 44

35 41 42 48

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

� 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

�
� �, � � �0, 																																																							��	� � 0	��	� � 0	max � �, � ! 1 , � � ! 1, � # $%,& , 						�'()�*�+)

Let $%,& � number of coins in cell �, �
Let � �, � � max number of coins the robot can collect if it goes

from cell 1,1 to cell �, �

2 6 1 0

0 3 6 4

2 5 0 2

0 1 1 3

5 0 0 2

2 0 3 1

4 1 0 6

0 0 5 1

6 3 2 0

5 4 0 5

1 0 4 2

2 6 4 0

3 0 3 2

1 6 0 4

Collecting Coins

2 8 9 9

2 11 17 21

4 16 17 23

4 17 18 26

14 14 14 16

23 23 26 27

27 28 28 34

27 28 33 35

10 20 22 26

15 24 24 31

16 24 28 33

29 35 39 39

34 35 42 44

35 41 42 48

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

� 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

�
� �, � � �0, 																																																							��	� � 0	��	� � 0	max � �, � ! 1 , � � ! 1, � # $%,& , 						�'()�*�+)

Let $%,& � number of coins in cell �, �
Let � �, � � max number of coins the robot can collect if it goes

from cell 1,1 to cell �, �

2 6 1 0

0 3 6 4

2 5 0 2

0 1 1 3

5 0 0 2

2 0 3 1

4 1 0 6

0 0 5 1

6 3 2 0

5 4 0 5

1 0 4 2

2 6 4 0

3 0 3 2

1 6 0 4

Collecting Coins

2 8 9 9

2 11 17 21

4 16 17 23

4 17 18 26

14 14 14 16

23 23 26 27

27 28 28 34

27 28 33 35

10 20 22 26

15 24 24 31

16 24 28 33

29 35 39 39

34 35 42 44

35 41 42 48

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

� 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

�
� �, � � �0, 																																																							��	� � 0	��	� � 0	max � �, � ! 1 , � � ! 1, � # $%,& , 						�'()�*�+)

Let $%,& � number of coins in cell �, �
Let � �, � � max number of coins the robot can collect if it goes

from cell 1,1 to cell �, �

2 6 1 0

0 3 6 4

2 5 0 2

0 1 1 3

5 0 0 2

2 0 3 1

4 1 0 6

0 0 5 1

6 3 2 0

5 4 0 5

1 0 4 2

2 6 4 0

3 0 3 2

1 6 0 4

Collecting Coins

2 8 9 9

2 11 17 21

4 16 17 23

4 17 18 26

14 14 14 16

23 23 26 27

27 28 28 34

27 28 33 35

10 20 22 26

15 24 24 31

16 24 28 33

29 35 39 39

34 35 42 44

35 41 42 48

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

� 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

�
� �, � � �0, 																																																							��	� � 0	��	� � 0	max � �, � ! 1 , � � ! 1, � # $%,& , 						�'()�*�+)

Let $%,& � number of coins in cell �, �
Let � �, � � max number of coins the robot can collect if it goes

from cell 1,1 to cell �, �

2 6 1 0

0 3 6 4

2 5 0 2

0 1 1 3

5 0 0 2

2 0 3 1

4 1 0 6

0 0 5 1

6 3 2 0

5 4 0 5

1 0 4 2

2 6 4 0

3 0 3 2

1 6 0 4

Collecting Coins

2 8 9 9

2 11 17 21

4 16 17 23

4 17 18 26

14 14 14 16

23 23 26 27

27 28 28 34

27 28 33 35

10 20 22 26

15 24 24 31

16 24 28 33

29 35 39 39

34 35 42 44

35 41 42 48

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

� 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

�
� �, � � �0, 																																																							��	� � 0	��	� � 0	max � �, � ! 1 , � � ! 1, � # $%,& , 						�'()�*�+)

Let $%,& � number of coins in cell �, �
Let � �, � � max number of coins the robot can collect if it goes

from cell 1,1 to cell �, �

Collecting Coins

2 8 9 9

2 11 17 21

4 16 17 23

4 17 18 26

14 14 14 16

23 23 26 27

27 28 28 34

27 28 33 35

10 20 22 26

15 24 24 31

16 24 28 33

29 35 39 39

34 35 42 44

35 41 42 48

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

�

This algorithm design technique is called dynamic programming.

We computed solutions to larger and larger instances of the given

problem using saved solutions to smaller overlapping instances of the

same problem until we found a solution to the given instance.

Rooster Chase

Puzzle: A framer (F) is trying to catch a rooster (R) on a 2� � 2� grid.

― F’s initial position: bottom-left corner of the grid

― R’s initial position: top-right corner of the grid

― F and R move alternately until R is captured

R

F 8 � 8 board

1 2 3 4 5 6 7 8

8

7

6

5

4

3

2

1

― each move is to a neighboring

cell horizontally or vertically

― R is captured when F moves

to a cell occupied by R

What algorithm should F use to catch

R when

― F moves first?

― R moves first?

Rooster Chase

R

F 8 � 8 board

1 2 3 4 5 6 7 8

8

7

6

5

4

3

2

1

Initially, both F and R are on cells of

the same color.

If F is to catch R in the next move,

R must be in a cell horizontally or

vertically adjacent to F’s current cell.

So, right before F catches R, they must

be in cells of opposite color.

But that will never happen if F moves

first!

So, if F moves first, F will never be able to catch R!

Rooster Chase

R

F 8 � 8 board

1 2 3 4 5 6 7 8

8

7

6

5

4

3

2

1

If R moves first, then F will be able to

catch R in at most 2� ! 1 moves of its

own (or 2,2�	 ! 1- total moves)!

Let �. , �. � F’s current location,

and �/ , �/ � R’s current location.

F’s algorithm is as follows:

01 ! 02 3 41 ! 42: F moves up01 ! 02 � 41 ! 42: F moves right01 ! 02 � 41 ! 42: cannot happen

This is a greedy algorithm as F always chooses the option that looks

the best (i.e., reduces the Manhattan distance to R) at the time of

choice.

Three Jugs

Puzzle: You are given three jugs

― one 8-pint jug full of water

― one empty 5-pint jug

― one empty 3-pint jug

Your task is to get exactly 4 pints of water in one of the jugs by

completely filling up or emptying jugs into others. Minimize the

number of times you fill up / empty jugs.

3
-p

in
t

5
-p

in
t 8
-p

in
t

0 0 8
initial state

Three Jugs

556

7)8)7	0

Three Jugs

95:
5:9

7)8)7	1

556

7)8)7	0

Three Jugs

59:
556
9:5

9;9
556
9:5

7)8)7	2

95:
5:9

7)8)7	1

556

7)8)7	0

Three Jugs

95:
556
99;
5:9
5:9
95:
5:9
5;<
95:
9:5

7)8)7	3

59:
556
9:5

9;9
556
9:5

7)8)7	2

95:
5:9

7)8)7	1

556

7)8)7	0

Three Jugs

95:
556
99;
5:9
5:9
95:
5:9
5;<
95:
9:5

7)8)7	3

59:
556
9:5

9;9
556
9:5

7)8)7	2

95:
5:9

7)8)7	1

556

7)8)7	0
>:;
59:
95:
9:5

;5<
556
9;9
5:9

7)8)7	4

Three Jugs

95:
556
99;
5:9
5:9
95:
5:9
5;<
95:
9:5

7)8)7	3

59:
556
9:5

9;9
556
9:5

7)8)7	2

95:
5:9

7)8)7	1

556

7)8)7	0
>:;
59:
95:
9:5

;5<
556
9;9
5:9

7)8)7	4
5:9
99;
>5@
9:5

5;<
556
95:
;:>

7)8)7	5

Three Jugs

95:
556
99;
5:9
5:9
95:
5:9
5;<
95:
9:5

7)8)7	3

59:
556
9:5

9;9
556
9:5

7)8)7	2

95:
5:9

7)8)7	1

556

7)8)7	0
>:;
59:
95:
9:5

;5<
556
9;9
5:9

7)8)7	4
5:9
99;
>5@
9:5

5;<
556
95:
;:>

7)8)7	5
5>@
556
95:
>:;

5:9
9B>
;5<
9:5

7)8)7	6

Three Jugs

95:
556
99;
5:9
5:9
95:
5:9
5;<
95:
9:5

7)8)7	3

59:
556
9:5

9;9
556
9:5

7)8)7	2

95:
5:9

7)8)7	1

556

7)8)7	0
>:;
59:
95:
9:5

;5<
556
9;9
5:9

7)8)7	4
5:9
99;
>5@
9:5

5;<
556
95:
;:>

7)8)7	5
5>@
556
95:
>:;

5:9
9B>
;5<
9:5

7)8)7	6

We have just used a state-space search algorithm called the

breadth-first search.

