
Algorithm Seminar – Chomping Strings

Scribe: Jiemin Zeng
Proposer: Steven Skiena

Friday, August 30, 2013

1 Chomping Strings

Suppose we have a text string T and a pattern P . Let us define an operation called “chomp” where
we are given T , P , and a location of T where the pattern P exists. When we chomp T , we remove
the pattern P from T at the specified location and concatenate the remaining pieces. Note that we
remove the pattern only once in one chomp operation.

Given T and P , can we execute a series of chomp operations such that only the empty string
remains? Can we chomp the entire string T?

Consider the example T = AABABA and P = ABA. We can chomp T at two locations,
T [1-3] and T [3-5]. chomp(T , P , [1-3]) ⇒ T ′ = ABA and chomp(T , P , [3-5]) ⇒ T ′ = AAB. As
you can see, if we are trying to chomp the entire string, we need to use the chomp(T , P , [1-3])
operation first. If we used the chomp(T , P , [3-5]) operation first, then the resulting string will not
be chompable.

2 A Solution

We can express any string that is chompable by a pattern as a context-free grammar. For example
the CFG for P = a1a2a3 . . . ak is:

T → ε

T → T a1 T a2 T a3 . . . T ak T

T → T T

Using dynamic programming, we can parse a string in O(n3) time. So we have an O(n3)
algorithm to determine if a string is chompable.

3 Circular Strings

If a circular string T is chompable, then there exists a cut such that the linear string is chompable.
Below is a sketch of the proof.

Proof. For the case of a circular string consisting of a single instance of the pattern, there exists a
cut, between the beginning and end of the pattern, where the resulting linear string is chompable.
Note that a sequence of chomps can be represedted in reverse as a series of pattern inserts into an

1



empty string (or a single pattern). For each insert, the pattern is inserted between two adjacent
characters. If these two adjacent characters are straddling the cut, the pattern can be inserted to
the right or the left of the cut. Therefore, at each stage (including the last), there is a cut that
exists that can create a linear chompable string.

This result immediately implies an O(n4) algorithm for circular strings, by trying the linear
strings resulting from all n possible cuts with the parsing algorithm above. This can be improved
to O(n3) by observing that if we break the circular string in a arbitrary place to create a linear
string S, the concatentated string SS has all n-length windows of the original circular string. Thus
we need to know whether there exists a parsible region of SS from i to i+n−1, which is determined
for all 1 ≤ i ≤ n in the course of parsing SS via dynamic programming.

4 Open Questions

1. Taking the most meat off the bone: Given T and P , can you find the largest sequence of
chomp operations we can execute starting from T? I (Steve) believe this can be done by dy-
namic programming, where the state T [i, j, xl, yl, xr, yr, P ] is the most chomps possible of the
substring of T from i to j ending up in non-terminal V , where the left of the remaining bone
starts with string T [xl] . . . T [yl] and the right of the remaining bone with string T [xr] . . . T [yr]
Thus the state table would be O(n2k4s) in size, where s is the number of non-terminals in
the grammar.

The recurrence would find the cheapst way the non-terminal V can be produced by production
V εAB between T [i] and T [j] as a consequence of something like

T [i, j, xl, yl, xr, yr, V ] = min
z

T [i, z, xl, y
′
l, x

′
r, y

′
r, A] + T [z + 1, j, x′′

l , y
′′
l , x′′

r , xr, B]

where the allowable indices make the right endstrings.

So: (1) what is the right recurrence and the exact complexity, and (2) is there a better
algorithm, or can we argue this is as hard as more general parsing?

2. Is the ultimate bone unique: Do all paths from T to the point where it does not have any more
occurences of P produce the same remaining string? This is interesting in the pseudo-biology
application: we would like to know if the state of the string after exposure to the chomper is
completely determined, ideally designing a sequence with this property.

3. Leaving pretty patterns on the bone (scrimshaw): Let T ′ be a second string. Can we chomp
from T to remaining bone T ′ using chomps from pattern P? The earlier problem dealt with
the case of T ′ equals the empty string.

Other generalizations include multiple chomping patterns, or restrictions on how many time
each chomping pattern can/must be used.

2


